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Abstract

Background: Positive clinical outcomes are now well established for deep brain stimulation, but little is known about the
effects of long-term deep brain stimulation on brain structural and functional connectivity. Here, we used the rare
opportunity to acquire pre- and postoperative diffusion tensor imaging in a patient undergoing deep brain stimulation in
bilateral subthalamic nuclei for Parkinson’s Disease. This allowed us to analyse the differences in structural connectivity
before and after deep brain stimulation. Further, a computational model of spontaneous brain activity was used to estimate
the changes in functional connectivity arising from the specific changes in structural connectivity.

Results: We found significant localised structural changes as a result of long-term deep brain stimulation. These changes
were found in sensory-motor, prefrontal/limbic, and olfactory brain regions which are known to be affected in Parkinson’s
Disease. The nature of these changes was an increase of nodal efficiency in most areas and a decrease of nodal efficiency in
the precentral sensory-motor area. Importantly, the computational model clearly shows the impact of deep brain
stimulation-induced structural alterations on functional brain changes, which is to shift the neural dynamics back towards a
healthy regime. The results demonstrate that deep brain stimulation in Parkinson’s Disease leads to a topological
reorganisation towards healthy bifurcation of the functional networks measured in controls, which suggests a potential
neural mechanism for the alleviation of symptoms.

Conclusions: The findings suggest that long-term deep brain stimulation has not only restorative effects on the structural
connectivity, but also affects the functional connectivity at a global level. Overall, our results support causal changes in
human neural plasticity after long-term deep brain stimulation and may help to identify the underlying mechanisms of deep
brain stimulation.
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Introduction

Deep brain stimulation (DBS) is a neurosurgical procedure that

is increasingly used to alleviate the symptoms of a number of

otherwise intractable disorders including Parkinson’s Disease (PD),

essential tremor, dystonia and chronic pain [1,2]. DBS for PD has

become well established since the 1990s with two main surgical

targets, namely the subthalamic nucleus (STN) and the globus

pallidus internal (GPi) [3,4,5,6]. Recently, another target in the

pedunculopontine nucleus (PPN) has also shown promise [7]. The

PPN is a relatively new target in treating primarily gait and

posture symptoms in PD. Recent studies and reviews show positive

results [8,9]. Some studies however report much less positive

results [10,11].

Although positive clinical outcomes have now been well

established, little is known about the effects of long-term

stimulation on brain structure in terms of grey and white matter

connectivity and the underlying neural mechanisms. Some insight

has come from a rat study using the 6-OHDA model of

Parkinson’s disease showing that prolonged high frequency

stimulation of the STN has a neurorestorative action [12]. This

finding suggests that DBS can change brain connectivity,

corroborating previous findings from a human case study which,

using diffusion tensor imaging (DTI) in PD, has demonstrated that

DBS in the pedunculopontine nucleus (PPN) has a restorative
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action and increases connectivity of the PPN with the cerebellum

[13].

What is not yet clear is how DBS affects whole-brain

connectivity. The current study describes the case of a patient

with PD undergoing bilateral STN DBS surgery. In this rare case

we were able to acquire both preoperative and five-month

postoperative DTI from this patient, which allowed us to

investigate the long-term effects of DBS for PD using brain

connectivity measures and computational modelling. This study

involves a rare case due to the safety concerns and major artefacts

related to postoperative MRI and DTI data acquisition. This study

aims to elucidate long-term effects of DBS on the topological

properties of structural brain networks, investigate the restorative

function of DBS and predict the dynamical impact of such

structural alterations on resting-state functional networks.

To begin with the structural networks, using advanced graph

theoretical measures we concentrate on measures of nodal efficiency.

Nodal efficiency is related to shortest path length and is believed to

characterize the ability of parallel information transfer and large-

scale functional integration in brain networks [14]. Alterations in

the nodal efficiency of structural brain networks in PD may be

linked to the cognitive and behavioural problems occurring in the

advanced stages of the disease. Therefore, the recovery of healthy

nodal efficiency values after DBS could be indicative of an effective

restorative process in PD mediated by DBS.

Local alterations in white-matter structural connectivity, as

observed here in PD before and after DBS, can have significant

impacts on the large-scale dynamics of the brain. As a matter of

fact, several works have shown that the structural connectivity,

revealed by DTI, strongly shapes the functional connectivity (FC)

between brain areas during rest (measured as the temporal

correlations of the blood-oxygen-level-dependent (BOLD) signal

recorded with functional MRI (fMRI)) [15]. However, the

relationship between anatomical and functional brain connectivity

is not trivial, and computational models of large-scale neural

dynamics are unique tools to explore this relationship [16,17].

Importantly, models can be used to predict the effects of structural

alterations on brain dynamics [18,19], which is beyond reach on

the experimental side, making models a unique tool for the

comprehension of brain diseases.

To investigate the dynamical impact of the structural changes

occurring in PD before and after DBS, we used a dynamic mean

field model of spontaneous activity [16,20]. The spontaneous

dynamics obtained with the different structural connectomes, i.e.

pre-DBS, post-DBS and healthy controls, was analysed in terms of

stability and BOLD functional connectivity. In a previous work

[20], it was found that the optimal fit of the model with healthy

resting-state functional connectivity was obtained just before the

bifurcation point, i.e. the point above which neural activity

becomes unstable or chaotic, suggesting that the brain at rest

operates at the edge of instability. In the current work, we

observed that this bifurcation point was shifted in PD. Notably, it

was found that DBS induced the recovery of the structural

connectivity, so that the bifurcation point was shifted back towards

healthy values. In addition, we compared the simulated BOLD

functional connectivity obtained with the different connectomes

with a typical FC from healthy controls [21], We found that,

despite the shift of the bifurcation occurring in PD, the dynamics

exhibits homeostasis, i.e. the optimal fit with the empirical data

was always found just below the bifurcation threshold, indepen-

dently of the structural connectome considered. Finally, the

topological properties of simulated functional networks were

analysed using measures from graph theory. Results indicate that

DBS induces a topological reorganisation of functional connectiv-

ity, recovering its properties towards healthy values.

We predicted that long-term DBS concomitant with alleviation

of some clinical symptoms would affect regions which are known

to be connected with the STN and which change in PD. As such,

we predicted changes in the frontal cortices, which have been

shown to have high coherence with the STN in PD [5]. We also

predicted changes in the olfactory system given that olfactory

dysfunction is a common symptom in PD [22]. Prevalence

estimates of olfactory dysfunction in PD vary between 70–90% of

patients [23]. Yet, the importance of the olfactory system in PD

lies not only in its high prevalence. Olfactory dysfunction could be

the first sign of PD and appears approximately five years prior to

the onset of any motor symptoms [24]. Hummel and colleagues

[25] have found that DBS of the STN in patients with PD

significantly improves odour discrimination when DBS is turned

on. No effect however was found for odour detection threshold,

indicating changes in higher order olfactory areas. Given these

previous behavioural results investigating the effects of STN DBS

on olfactory functioning in PD, we predicted a change in nodal

efficiency in olfactory regions including the primary olfactory

cortex as well as in the secondary olfactory cortices in the

orbitofrontal cortex [26]. Finally, we predicted that the functional

connectivity resulting from the computational modelling of the

brain networks post-DBS would show more similar results to that

of a healthy functional connectivity compared to the strongly PD

networks in pre-DBS state.

Methods

Patient, Healthy Participants and Surgical Procedure
Diffusion tensor imaging (DTI) data were acquired preopera-

tively and five months postoperatively in a 45-year-old female

patient who underwent DBS surgery for PD. The main

troublesome symptoms were on/off fluctuations and troublesome

dyskinesias. The patient received continuous DBS stimulation on

and off over 5 months during which the stimulation parameters

were optimised. The patient received a post-DBS DTI scan to plan

a lead revision warranted by adverse side effects (emotional lability

and tearfulness) from the STN stimulation. After DBS implanta-

tion the medication was initially continued with Pramipexole 0.7

one and a half tablets three times a day, Stalevo was reduced to

50 mg three times a day (from 150 mg in the morning, 50 mg

twice a day and 100 mg in the evening) and Amantadine was

stopped completely (from 100 mg twice a day). The patient was

advised to return to her preoperative medication regime during

the periods when the DBS was turned off. Right DBS lead titration

resulted in improvement in rigidity. Left DBS lead titration was

more problematic (possibly due to the suboptimal positioning of

the electrode) resulting in side effects. Stimulation parameters

changed during these 5 months due to fine tuning and titration of

the DBS electrodes. The postoperative DTI scan was acquired for

a DBS lead revision to the GPi.

Additional DTI data were acquired for 9 healthy participants (3

females, age range 22–40 years) on the same scanner as the PD

patient. This study was approved by the National Research Ethics

Service (NRES) committee South Central – Berkshire in Bristol.

All healthy participants gave written informed consent. The

individual in this manuscript has given written informed consent

(as outlined in PLOS consent form) to publish these case details.

Surgical procedure. Electrodes for DBS were implanted in

the subthalamic nucleus (STN) bilaterally. Before surgery,

anatomical high-resolution T1 and T2 MRI scans with 16161

mm voxel size were acquired to plan the electrode implant
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protocol. The Cosman–Roberts–Wells stereotactic frame was

applied to the patient’s skull under local anaesthetic. For a

detailed description of the surgical procedure, see Kringelbach and

colleagues [27].

Image Acquisition
Patient. All DTI data for the patient were acquired on a

Philips Achieva 1.5 Tesla Magnet in Oxford. Diffusion weighted

imaging was performed using a single-shot echo planar sequence

with coverage of the whole brain. The scanning parameters were

echo time (TE) = 65 ms, repetition time (TR) = 9390 ms, recon-

structed matrix 1766176 and reconstructed voxel size of

1.861.8 mm and slice thickness of 2 mm. Furthermore, DTI

data were acquired with 33 optimal nonlinear diffusion gradient

directions (b=1200 s/mm2) and 1 non-diffusion weighted volume

(b=0). The post-DBS DTI data was acquired with DBS turned

off.

Healthy participants. Nine healthy participants were

scanned with the exact same parameters on the same clinical

scanner.

Structural Brain Networks
The construction of structural brain networks consisted of a

two-step process. First, the nodes of the network were defined

using brain parcellation techniques. Secondly, the connections

between nodes (i.e. edges) were estimated using probabilistic

tractography (Figure 1). In the following we outline the details

involved in each step.

1) Brain parcellation. We used the Automated Anatomical

Labeling (AAL) template to parcellate the entire brain into 90

cortical and subcortical regions (45 for each hemisphere), where

each region represents a node of the brain network [28].

Additionally we incorporated the probabilistic mask of the STN

from Forstmann and colleagues [29] resulting in a total of 92

cortical and subcortical regions (46 per hemisphere). The

parcellation was conducted in the diffusion MRI native space.

We used the Flirt tool (FMRIB, Oxford) [30] to linearly

coregister the b0 image in diffusion MRI space to the T1-weighted

structural image. The transformed T1-weighted image was then

mapped to the T1 template of ICBM152 in MNI space [31]. The

resulting transformation was inversed and further applied to warp

the Automated Anatomical Labeling (AAL) template [28] and the

STN masks [29] from MNI space to the diffusion MRI native

space, where interpolation using nearest-neighbour method

ensured that the discrete labeling values were preserved.

Finally, a binary mask of the electrode lead in the post-DBS

DTI data has been created and has subsequently been subtracted

from the brain masks and data of the pre-DBS DTI data as well as

from the DTI data of the healthy controls. Using this method we

can minimise the effects of the electrode lead within the right

hemisphere.

2) Analysis of interregional connectivity. We used the

FDT toolbox in FSL (version 5.0, http://www.fmrib.ox.ac.uk/fsl/

, FMRIB, Oxford) to carry out the various processing stages of the

diffusion MRI data. The initial preprocessing involved coregister-

ing the diffusion-weighted images to a reference volume using an

affine transformation for the correction of head motion as well as

eddy current induced image distortion. Following this preprocess-

ing, we estimated the local probability distribution of fibre

direction at each voxel using the default bedpostx parameters of

FSL v5.0 [32]. We then used the probtrackx algorithm allowing

for automatic estimation of two fibre directions within each voxel,

as specified in the previous step using parameter estimation from

bedpostx, which can significantly improve the tracking sensitivity

of non-dominant fibre populations in the human brain [33].

We estimated the connectivity probability by applying proba-

bilistic tractography at the voxel level using a sampling of 5000

streamline fibres per voxel. Voxels were defined based on the

binary brain mask for the whole brain. The connectivity

probability from a seed voxel i to another voxel j was defined by

the proportion of fibres passing through voxel i that reach voxel j

[33]. This was then extended from the voxel level to the region

level, i.e. in a brain region consisting of n voxels, 5000*n fibres

were sampled. The connectivity probability Pij from region i to

region j is calculated as the number of sampled fibres in region i

that connect the two regions divided by 5000*n, where n is the

number of voxels in region i.

For each brain region, the connectivity probability to each of

the other 91 regions was calculated. It should be noted, that

because of the dependence of tractography on the seeding

location, the probability from i to j is not necessarily equivalent

to that from j to i. However, these two probabilities are highly

correlated across the brain for all participants (the least Pearson

r=0.70, p,10250). We therefore defined the undirectional

connectivity probability Pij between regions i and j by averaging

these two probabilities, and considered this as a measure of the

structural connectivity between the two areas, with Cij = Cji. We

implemented the calculation of regional connectivity probability

using in-house Perl scripts. Regional connectivity was normalised

using the regions’ volume expressed in number of voxels. For both

pre- and postoperative conditions, a 92692 symmetric weighted

network C was constructed, representing the anatomical network

organisation of the brain. For all 9 healthy participants a single

averaged 92692 symmetric connectivity network C was created.

Further to this, as a precautionary measure resulting from the

visible postoperative artefact of the DBS lead in the left

hemisphere (see Figure 2), we considered only the sub-network

corresponding to the right hemisphere, i.e. not the full 92692

connectivity matrix but only the right hemispheric 46646 matrix

(without inter-hemispheric connections) as shown in Figure 3
[34]. We chose to do so even if the artefact may not be

immediately obvious from the connectivity matrix in Figure 3B.
Subsequent analyses were carried out on the right hemisphere

only, also for the healthy connectivity matrix.

Network Measures from Graph Theory
The structural brain networks derived from DTI can be

represented as 46646 connectivity matrices, CpreDBS, CpostDBS and

Ccontrols, that can be analysed as graphs. Using the Brain

Connectivity Toolbox [35,36], the brain networks were charac-

terized using measures from graph theory. Note that we used the

same graph measures used in previous studies of schizophrenia

[37,38].

Connection density. The connection density is the number

of edges in a network divided by the maximum number of possible

edges [(N2 2 N)/2, where N is the number of nodes in the

network].

Global efficiency. The global efficiency, Eg of a network C

reflects how efficiently information can be exchanged over that

network. The global efficiency is calculated as the average inverse

shortest path length, dij, and is inversely related to the character-

istic path length.

Neural Plasticity after Deep Brain Stimulation
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Figure 1. DTI and network construction based on the Automated Anatomical Labelling (AAL) parcellation [28].
doi:10.1371/journal.pone.0086496.g001
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Eg(C)~
1

N(N{1)

X

i=j[C

1

dij
ð1Þ

Nodal efficiency. Nodal efficiency, En, is used to calculate

how efficiently a node is connected to all other nodes in the

network. Nodes with high efficiency can reach all other nodes in

the network taking, on average, fewer edges. The nodal efficiency

is calculated as follows:

En(i)~
1

N{1

X

j[C

1

dij
ð2Þ

Clustering coefficient. The clustering coefficient (Cl) is the

fraction of triangles around a node and is equivalent to the fraction

of a node’s neighbours that are neighbours of each other.

Cl(C)~
1

DV 0D

X

v[V 0

dv
tv
, ð3Þ

where dv is connected triangles, tv is connected triples and V9 is the

set of nodes with degree .2.

Small-worldness. A network C is considered to be small-

world (s.1), if the average shortest path length is small (which is

equivalent to having high efficiency E) and the clustering

coefficient Cl is high, when compared to an equivalent random

graph R. s is calculated as

s~
Cl(C)=Cl(R)

Eg(C)
�
Eg(R)

ð4Þ

Robustness. When a node is removed, either randomly

(random attack) or in order of higher degree (targeted attack), the

network can fragment into two or more independent subgraphs.

The robustness of a network is estimated by calculating the size of

the largest connected component, s, each time a node is removed

from the network. The robustness is defined as the area under the

s(n) curve, where n the number of nodes removed [39], normalised

by N(N-1)/2. More robust networks retain a larger connected

component even when a large proportion of nodes have been

eliminated.

Hierarchy. The hierarchy coefficient b is the (positive)

exponent of the power-law relationship between the clustering

Ci and the degree di of the nodes in the network such that C,d 2b

[40,41]. b was estimated using the least-squares nonlinear fitting

function from MatlabH. The higher the hierarchy coefficient, the

more network hubs -defined so for having a large degree- have low

clustering, meaning that they are more connected to nodes poorly

connected to each other.

All global graph measures were calculated for the preoperative,

the 5-month postoperative and the average healthy anatomical

brain networks. For local measures (such as nodal efficiency)

differences between pre- and postoperative measures were only

considered if the difference was 20% or above. This conservative

decision was based on a test-retest reliability study by Cheng and

colleagues [42], who have shown that test-retest variability is

below 10% for weighted structural networks derived from DTI.

In addition, we used the same graph measures to characterize

the functional networks obtained with the model. However, since

the functional connectivity represents the correlation between

BOLD signals, we need to define a correlation threshold above

which a functional link is considered. To illustrate the differences

between pre-DBS and post-DBS we applied a threshold so that

any correlation in the connectivity matrix higher than 0 was

included and considered as a functional connection in a binarised

graph.

Dynamic Mean Field Model
To gain insight into the impact of the local structural changes

induced by DBS in the whole-brain activity, we use a computa-

tional model to simulate the spontaneous dynamics of the whole

brain. The dynamics of each brain area (constituted by a large

number of densely interconnected spiking neurons) can be

represented in a reduced manner by its mean field. The classical

mean field model [43] is used to calculate the steady states of the

spiking network only. However, since we are interested on the

temporal dynamics of this mean field (to investigate temporal

correlations between brain areas) we use a dynamic mean field

model [16,20] which approximates the temporal dynamics of the

spiking network. Brain areas are then coupled together (i.e. receive

excitatory inputs from other brain areas) according to the

anatomical structural connectome.

In short, the dynamic mean field approximation reduces the

spiking network model, including the whole dynamics of each local

network of excitatory and inhibitory populations of spiking

neurons interconnected by AMPA, GABA and NMDA receptors

and their respective equations [44], to a single one dimensional

equation [16,20]. Thus the global brain dynamics, represented as

a network of inter-connected local networks, can be simply and

consistently described by the following set of coupled differential

equations:

dSi(t)

dt
~{

Si

tS
z(1{Si)cH(xi)zsui(t), ð5Þ

H(xi)~
axi{b

1{ exp ({d(axi{b))
, ð6Þ

Figure 2. DBS electrode artefact from lead. The artefact from the
external lead of the DBS electrodes is visible in the form of dropout in
left hemisphere in A) the b0 weighted image and B) the diffusion tensor
image.
doi:10.1371/journal.pone.0086496.g002
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xi~wJNSizGJN
X

j

CijSjzI0, ð7Þ

where H(xi) and Si denote the population rate and the average

synaptic gating variable at the local cortical area i (from 1 to

N=45 areas in our case), respectively. w=0.9 is the local

excitatory recurrence and Cij corresponds to the coupling weight

between the areas i and j. Note that Cij is estimated from the

structural connectivity, i.e. in proportion to the number of white-

matter tracts detected between areas i and j, and therefore this

parameter is changed between pre-DBS, post-DBS and control

data. G is the global coupling weight that scales all the couplings

from C uniformly. Parameter values for the input–output function

(6) are a=270 VnC, b=108 Hz, and d =0.154 s. The kinetic

parameters are c=0.641/1000 (the factor 1000 is for expressing

everything in ms), and ts =100 ms. The synaptic couplings are

JN =0.2609 nA and the overall effective external input is

I0 =0.3 nA. In equation (5) ui is uncorrelated standard Gaussian

noise and the noise amplitude at each node is s=0.001 nA.

Simulations were run using the three structural connectivity

matrices, i.e. CpreDBS, CpostDBS and Ccontrols, and the bifurcation

points where the dynamics becomes unstable were identified. The

bifurcation analysis uses rigorous simulations and is based on

finding the fixed points of the network as a function of the

parameters. Long lasting simulations are run until convergences

appear and each simulation starts for 1000 different random initial

conditions.

Subsequently, the mean field activity was transformed into

BOLD signal using the Balloon-Windkessel hemodynamic model

of [45] (as in [16,19]). The Balloon-Windkessel model describes

the transduction of neuronal activity into perfusion changes and

subsequently into BOLD signal. The BOLD-signal estimation for

each brain area is computed by the level of synaptic activity in that

particular area, represented by the synaptic variable Si. The

simulated BOLD signal was down-sampled at 2s to have the same

temporal resolution as in the empirically measured BOLD signal.

The simulated FC between all brain areas is obtained by

computing the temporal correlation matrix of the simulated fMRI

signals.

The different FCs simulated with the model (i.e. obtained with

CpreDBS, CpostDBS and Ccontrols) were compared with an empirical

resting FC, provided to us by He and colleagues [21,46]. This

empirical FC matrix represents the average FC obtained from 18

right-handed healthy young volunteers (9 females, age range 21–

25 years). The participants were scanned using a 3T GE MR

scanner (EXCITE, Milwaukee, USA). The images were obtained

using an echo-planar imaging (EPI) sequence with the following

parameters: 30 axial slices, slice thickness = 4.5 mm with no gap,

matrix = 64664, TR=2,000 ms, TE=30 ms, flip angle = 90u,
field of view= 2206220 mm2. Participants were instructed to lay

completely still, keep their eyes closed and relax their minds as

much as possible. See [46] for a full description of the

preprocessing of the resting-state fMRI data.

For the functional modelling, only 45 regions from the DTI

matrices for the right hemisphere were used. The STN was

excluded from this part o the analysis, as data for the STN

connectivity was not present in the data from He and colleagues

[21,46]. However, as all matrices from the structural and

functional datasets resulted from MNI AAL template parcellation,

no further preprocessing steps were necessary as input for the

dynamic mean field modelling.

Results

We started by analyzing the pre- and post-DBS as well as the

healthy structural networks built from DTI using measures from

graph theory. Please note that, due to the visible DBS lead artefact

in the left hemisphere on the post-operative DTI, all measures

reported in the following refer to the right hemisphere (see

Figure 3 and Methods-Structural Brain Networks for details).

Overall, in terms of global graph measures, there was no

apparent shift between pre and post-DBS towards healthy

structural connectomes (see Table 1). Both pre- and post-

operative structural networks exhibit a small-world topology in

the right hemisphere as characterized by s.1. The connection

densities for the preoperative and postoperative network were

found to be 45.4% and 45.9%, respectively. Contributing to the

small-worldness of the network are both high global efficiency and

clustering coefficients seen in both preoperative and postoperative

networks.

In contrast, some local graph measures, i.e. referring to specific

brain areas, were significantly different between pre- and post-

DBS. A total of 17 brain regions (defined in the AAL+STN
parcellation scheme) show more than a highly conservative 20%

significant difference between preoperative and postoperative

nodal efficiency measures. Sixteen of these changes correspond

to increases in efficiency after 5 months of DBS, while there was

also one decrease. All 46 pre- and post-operative nodal efficiencies

for the right hemisphere are shown in Table 2, while Figure 4
shows the size and location of the significant changes induced by

DBS in the efficiency of brain regions on a three-dimensional

rendering of the brain.

To study the impact of DBS-induced structural changes in the

whole-brain activity, the spontaneous dynamics resulting from the

different structural connectomes (i.e. from pre-DBS, post-DBS and

healthy controls) was estimated by means of a computational

model. As shown in Figure 5, it was found that the bifurcation

point (above which the dynamics becomes unstable) was shifted in

the disease. In other words, before DBS in PD, the structural

connectivity is weaker and therefore stronger couplings are

required to reach the instability border, near which an optimal

fitting with empirical FC is obtained. Note that, despite the shift of

the bifurcation, the FC exhibits homeostasis, which means that the

optimal fit with the empirical data is always found just below the

bifurcation threshold, regardless of which connectome is consid-

ered. Still, our results show that after 5 months of DBS, the

structural connectome is changed in such a way that the

bifurcation point is now obtained at a weaker global coupling.

This shift of the bifurcation point towards the value of healthy

controls indicates recovery of the structural connectivity with DBS.

To gain more insight into the changes occurring at the FC level,

the topological properties of the optimal FCs (i.e. corresponding to

the maximal fitting of the empirical FC) obtained with the model

from pre-DBS, post-DBS and controls structural connectomes

were analysed and compared. As shown in Table 3, the

connection density, the average clustering, the global efficiency

and the small-worldness of functional networks were increased and

the hierarchy was decreased after DBS, in the direction of the

values obtained for the control FC.

These results indicate that prolonged DBS overall has

restorative effects in the structural connectome and furthermore

affects the functional connectivity at a global level.

Discussion

This is the first study investigating the long-term effects of DBS

on neuroplasticity in the human brain. We used the rare
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opportunity to acquire pre- and post-operative in vivo neuroimag-

ing data in a patient with PD with DBS in the STN. We employed

advanced computational modelling and graph theoretical analyses

to study the long-term effects on global and local measures of brain

structural and functional connectivity networks.

The patient showed improvement in rigidity from right DBS

lead stimulation. The left DBS lead stimulation resulted in a

reduction of the tremor on the right side, but was also

accompanied by problematic side effects such as facial tightness

and after prolonged stimulation emotional lability and tearfulness.

Although stimulation improved left sided rigidity and right sided

tremor, the DBS stimulation was on intermittently due to the

adverse side effects. These side effects led to the postoperative DTI

data acquisition to plan a DBS lead revision to the GPi.

Overall, in terms of structural connectivity, the results show that

DBS gives rise to local changes in specific brain regions, as

measured by changes in terms of nodal efficiency. However, global

measures such as small-worldness were unaffected between pre-

and post-DBS connectivity. These local changes were found

primarily in regions that can be roughly characterised as sensory-

motor, prefrontal/limbic and sensory regions.

In terms of functional connectivity, this study also shows that as

predicted there is a shift in bifurcation point between pre-DBS and

post-DBS networks towards the bifurcation point of a healthy

network. This means that the structural connectivity of the pre-

DBS network is weaker and requires stronger couplings for the

bifurcation. The couplings required for the post-DBS structural

connectivity network are lower and thus the bifurcation is closer to

the healthy network, which requires the lowest couplings. The shift

towards the healthy bifurcation point indicates recovery of some

functional connectivity after five months of DBS.

Equally, using dynamic mean field modelling this study shows

interesting differences between pre-DBS and post-DBS simulated

functional networks. Whereas the structural networks did not show

significant differences in global graph theoretical measures

between pre- and post-DBS measures, the simulated functional

connectivity networks (based on the structural network inputs)

show a tendency of global graph theoretical measures to shift

towards healthy functional connectivity of post-DBS compared to

pre-DBS. Connection density, average clustering (clustering

coefficient) and global efficiency show an increase from pre- to

post-DBS shifting towards values of the healthy simulation

functional network. These findings indicate that the underlying

local structural changes induced by DBS influence the functional

connectivity on a larger, more global, level.

The structural connectivity changes in regions linked to sensory-

motor integration showed mainly decreases in their nodal

efficiency post-op, which fits with previous studies showing that

STN stimulation alleviates symptoms by modulating the larger

thalamocortical loop networks. These networks are involved in

setting up, relaying and executing sequential motor program

commands [2,47]. A previous study investigating the functional

connectivity of the STN in PD with magnetoencephalography has

shown that there is strong coherence between the STN and

ipsilateral frontal cortices [5]. One main finding in this study is the

decrease in nodal efficiency in the precentral sensory-motor

cortical area, while there were increases in the subthalamic

nucleus, the thalamus and the supramarginal gyrus. Although

these areas are clearly implicated in thalamocortical loops by

previous studies, it is interesting to find a structural network

change in these areas indicating neural plasticity after prolonged

DBS of the STN.

Similarly, increases in nodal efficiency were found in prefrontal/

limbic regions which included regions of the olfactory cortex,

amygdala, hippocampus, temporal pole and orbitofrontal cortex

(OFC). Interestingly, the involvement of most of these areas in

olfactory processing has been well established with a reported

asymmetry favouring the right OFC [26,48]. Moreover, olfactory

dysfunction is a well-known non-motor symptom in PD and

manifests itself in a decrease in behavioural measures such as

odour threshold, odour discrimination and odour identification

[22,49]. In addition to these well-known olfactory areas, functional

imaging studies on olfactory processing in PD reveal significant

differences in the amygdala and hippocampus [50,51], two areas

which also show a large increase in nodal efficiency in this case

study after DBS. Furthermore, a DTI study on olfactory

dysfunction in PD has shown that the gyrus rectus part of medial

OFC shows reduced fractional anisotropy (FA) values of white

matter tracts in patients with anosmia or severe microsmia, but not

in patients without olfactory dysfunction [52]. These large

increases in nodal efficiency in known olfactory areas might point

towards changed olfactory functioning after long term DBS. This

corresponds to the significant increase in odour discrimination in

PD patients with DBS on compared to off stimulation [25].

Figure 3. Anatomical connectivity networks derived from DTI data. The pre- and post-operative structural networks (left and right columns,
respectively) are shown superimposed on a rendered brain (A/B) and as connectivity matrices, Cpre and Cpost (C/D). In both representations, the full
90-node networks are highlighted in green, while the left and right hemispheres are highlighted in blue and red, correspondingly (In Table 2 we
report the indexing of brain areas). In the matrix representations, transcallosal connectivity is shown in the other diagonals. In C and D, the red arrows
point to the pre- and post-operative 45645 right hemisphere connectivity matrices.
doi:10.1371/journal.pone.0086496.g003

Table 1. Graph properties of the preoperative, postoperative and control structural networks (right hemisphere only).

PD Patient Before DBS PD Patient After DBS Healthy controls

Connection density 45.0851 45.9357 60.1134

Average clustering coefficient 0.6680 0.6955 0.7668

Global efficiency 0.7295 0.7341 0.8072

Small-worldness 1.1912 1.2118 1.0829

Hierarchy 0.1369 0.1233 0.0818

Robustness (random) 0.9971 0.9923 0.9990

Robustness (targeted) 0.9411 0.8947 0.9372

doi:10.1371/journal.pone.0086496.t001
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Table 2. Listing the 45 AAL regions and STN with the indexing used in Figure 3.

AAL region Left Right
Preoperative nodal
efficiency

Postoperative nodal
efficiency Difference (%)

Precentral gyrus 1 47 154.83 111.39 228.05

Superior frontal gyrus, dorsolateral 2 48 142.49 163.69 14.87

Superior frontal gyrus, orbital part 3 49 97.46 128.07 31.41

Middle frontal gyrus 4 50 111.20 124.39 11.86

Middle frontal gyrus, orbital part 5 51 65.53 75.46 15.14

Inferior frontal gyrus, opercular part 6 52 145.84 126.38 213.34

Inferior frontal gyrus, triangular part 7 53 91.04 94.65 3.97

Inferior frontal gyrus, orbital part 8 54 95.03 123.60 30.06

Rolandic operculum 9 55 224.32 227.93 1.60

Supplementary motor area 10 56 123.85 102.34 217.36

Olfactory cortex 11 57 113.32 161.20 42.26

Superior frontal gyrus, medial 12 58 111.14 110.65 20.43

Superior frontal gyrus, medial orbital 13 59 126.44 138.98 9.92

Gyrus rectus 14 60 109.46 154.57 41.21

Insula 15 61 108.30 126.86 17.13

Anterior cingulate and paracingulate gyri 16 62 165.09 194.93 18.08

Middle cingulate and paracingulate gyri 17 63 169.76 174.84 3.00

Posterior cingulate gyrus 18 64 129.20 162.06 25.43

Hippocampus 19 65 112.79 166.70 47.80

Parahippocampal gyrus 20 66 110.91 119.84 8.05

Amygdala 21 67 113.45 156.20 37.68

Calcarine fissure 22 68 120.80 178.42 47.70

Cuneus 23 69 200.12 207.92 3.90

Lingual gyrus 24 70 91.98 135.11 46.90

Superior occipital gyrus 25 71 139.42 173.18 24.22

Middle occipital gyrus 26 72 136.09 130.53 24.08

Inferior occipital gyrus 27 73 109.82 124.72 13.57

Fusiform gyrus 28 74 149.29 157.77 5.68

Postcentral gyrus 29 75 128.16 109.54 214.53

Superior parietal gyrus 30 76 118.85 114.12 23.98

Inferior parietal gyri 31 77 193.01 160.54 216.82

Supramarginal gyrus 32 78 135.67 163.88 20.79

Angular gyrus 33 79 131.60 136.13 3.44

Precuneus 34 80 136.77 162.83 19.05

Paracentral lobule 35 81 124.05 126.07 1.63

Caudate nucleus 36 82 99.06 105.85 6.85

Putamen (lenticular nucleus) 37 83 102.70 110.43 7.52

Pallidum (lenticular nucleus) 38 84 113.83 127.50 12.00

Thalamus 39 85 81.77 114.11 39.54

Heschl’s gyrus 40 86 222.10 279.70 25.93

Superior temporal gyrus 41 87 154.29 174.56 13.13

Temporal pole: superior temporal gyrus 42 88 133.97 138.50 3.38

Middle temporal gyrus 43 89 93.18 92.25 21.00

Temporal pole: middle temporal gyrus 44 90 108.33 136.92 26.38

Inferior temporal gyrus 45 91 81.71 97.19 18.95

Subthalamic nucleus 46 92 96.72 164.80 70.38

Pre- and post-operative nodal efficiency measures and corresponding percentage differences are reported. AAL regions identified to have more than 20% difference
between preoperative and postoperative nodal efficiency are shown in bold.
doi:10.1371/journal.pone.0086496.t002
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Increases in nodal efficiency were also found in sensory regions

including visual and auditory cortices, with changes in calcarine

fissure and surrounding cortex and the superior occipital gyrus, as

well as the lingual gyrus and Heschl’s gyrus. This could be linked

to a normalisation of sensory systems with DBS given that visual

and auditory hallucinations and other sensory impairments are

common in PD [53]. At this point, however, it is unknown

whether these structural changes reflect functional changes in

sensory systems and calls for more research.

Although alleviation of motor symptoms is the main objective, it

is well established that DBS of the STN has wide spread effects

and influences the majority of non-motor symptoms [54]. Even

though no information on the olfactory function of this patient is

available, the findings in this study do corroborate previous

findings [25]. Furthermore, prefrontal and orbitofrontal areas

known to be involved in mood (especially depression) also show

considerable changes in this patient and could be argued to

explain the adverse side effects in mood lability.

In terms of supporting evidence from animal studies of

neuroplasticity following DBS, one recent animal study showed

increased new cell survival in the rostral migratory stream,

including the hippocampus, and the olfactory bulb [12]. These

finding are of great importance for a number of factors including

the preclinical manifestation of olfactory dysfunction as well as its

high prevalence rate. Additionally, olfactory dysfunction is highly

Figure 4. Nodal efficiency changes between pre- and post-DBS structural networks. The AAL regions with more than 20% difference in
nodal efficiency between pre- and postoperative measures are plotted on three-dimensional renderings of the human brain in MNI space seen from
above (top) and from the side (bottom). The size and colour of the circles indicate the magnitude (size) of the increases (blue) and decrease (red) in
nodal efficiency after DBS. The number inside each circle indicates the AAL ordering index reported in Table 2.
doi:10.1371/journal.pone.0086496.g004
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correlated with depression and low quality of life [55] and

depression often occurs in PD alongside olfactory dysfunction [56].

A potential limitation of this study is the fact that it only focuses

on the right hemisphere, because of the artefact that occurs due to

the external DBS lead. Although the results clearly show neural

plasticity and network changes after long term DBS in the right

hemisphere, inter-hemispheric connections could contain valuable

information, especially in bilateral DBS of the STN.

Another limitation is that this study is a single case study, yet the

rarity of neuroimaging pre- and post-DBS offers potentially unique

insights. The results demonstrate that connectivity measures and

network analysis are useful methods to investigate the effects of

long term DBS in patients in vivo. This can thus be applied on a

larger scale and over longer periods of time. More advanced DBS

electrodes with less or no lead artefact will increase the possibilities

of graph theory analysis on complex brain networks including both

hemispheres and transcallosal connections.

Though the DBS lead has been subtracted from the pre-DBS

data to minimise any effect of the electrode on the connectivity,

the presence of the electrode may artificially alter the connectivity

due to the probabilistic nature of the tractography algorithm.

Ideally the findings in the current manuscript would have to be

compared to post-mortem measures.

The functional modelling is partly based on the data from the

patient and partly uses a young healthy control group. It should be

noted that the healthy control data is not used in the comparison

of pre-DBS and post-DBS connectivity measures. The results

clearly indicate that the bifurcation of the functional network

shows a shift back towards a healthy regime, however this healthy

regime is based on a young control group. Additionally, a large

study of 80 subjects investigating the effects of ageing on diffusion

weighted imaging has found no significant differences between age

groups in the absolute apparent diffusion coefficient [57]. Another

study investigating the effects of age on diffusivity and fractional

anisotropy actually has a cut off age for the young group at age 47

[58], whereas our patient is only 45 years old.

Furthermore it should be noted that although structural changes

are found after DBS, resulting in a change in the functional

connectivity, these functional changes may only be apparent when

stimulation of the STN is ongoing. I.e. These structural changes

may not be fully utilised when stimulation is turned off, thus not

showing any long term effects of symptom changes off-stimulation.

Figure 5. Exploring the impact of DBS-induced structural changes on resting-state functional connectivity. A) Schematic overview of
how the simulated FC matrices are obtained from the SC matrices using the dynamic mean field (DMF) model. The simulated FC matrices are
subsequently compared to the empirical resting state FC matrix. B) Solid lines indicate the fitting of simulated functional connectivity (FC) matrices
obtained with the pre-DBS (black), post-DBS (red), and healthy controls (blue) structural connectivity matrices with the empirical healthy FC, as a
function of the global coupling weight (G). Vertical dashed lines indicate the corresponding bifurcation points, above which the dynamics becomes
unstable. We observe that the bifurcation point of the post-DBS FC is shifted from the pre-DBS FC bifurcation point towards the healthy bifurcation
point. This means that, before DBS, the structural connectivity is weaker and therefore stronger couplings are required to reach an optimal fitting
with empirical FC The shift of the post-DBS bifurcation point towards the healthy bifurcation point indicates recovery of the structural connectivity
with DBS.
doi:10.1371/journal.pone.0086496.g005

Table 3. Graph properties of simulated functional networks derived from the dynamic mean field model with the 3 structural
connectomes from the preoperative PD, postoperative PD and healthy controls.

Pre-DBS PD Post-DBS PD Healthy Controls Empirical FC

Connection density 28.5432 27.9506 30.7160 60.3457

Average Clustering 0.4061 0.4185 0.3589 0.6957

Global efficiency 0.2919 0.2859 0.3141 0.6172

Small-worldness 1.4668 1.4047 1.1678 1.1236

Hierarchy 0.3561 0.3499 0.3959 0.1104

Robustness (Random) 0.9949 0.9960 0.9808 0.9990

Robustness (Targeted) 0.8990 0.8848 0.8889 0.9778

doi:10.1371/journal.pone.0086496.t003
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In conclusion, we have demonstrated that long term DBS for

PD leads to significant changes in local structural connectivity as

well as global functional connectivity. The changes were seen in

regions previously associated with pathological changes in PD and

suggest that DBS helps to re-balance the networks, not only over

the short term but in terms of neuroplasticity. In particular, the

observed changes in olfactory systems suggest that DBS may help

patients to regain some olfactory function. The importance of the

extent of this change in olfactory function remains to be

investigated in detail.
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