
!

! !

!

Horaris Pompeu
design and implementation of a custom scheduling

solution using an iterative approach

 Font Sola, Octavi

Curs 2013-2014

!

Director: Davinia Hernández-Leo

GRAU EN ENGINYERIA INFORMÀTICA!

Trebal l de Fi de Grau

GRAU EN ENGINYERIA EN
xxxxxxxxxxxx

2

Contents

Abstract 7

English . 7

Català . 7

Castellano . 8

Introduction 9

Motivations . 9

Methodology . 9

1 Design goals 11

Requirements . 11

Problems . 12

Metrics . 12

2 Legacy system challenges 13

Why is an adaptation needed? . 13

Legacy system description . 13

Legacy system challenges . 15

3 Sprint 0 - Initial prototype 17

Technology stack . 17

Architecture . 19

Presentation . 19

Ubiquity . 20

3

4 CONTENTS

Parsing . 22

parser . 22

models . 23

Automation . 24

subjectparser.py . 24

aliasparser.py . 25

classparser.py . 25

4 Sprint 1 - Production ready prototype 27

Licensing . 27

Presentation . 28

Ubiquity . 29

Parsing . 30

Merging . 30

Automation . 30

5 Sprint 2 - Mobile compatible responsive design 33

Presentation . 33

Ubiquity . 34

Automation . 37

Deployment . 38

6 Sprint 3 - Automation, user communication and analytics 41

Presentation . 41

Parsing . 43

Automation . 43

Merging . 43

Deployment . 44

CONTENTS 5

7 Sprint 4 - Simpler parsing strategy, better parsing accuracy 45

Presentation . 45

Parsing . 46

Merging . 49

Automation . 49

Analytics . 50

8 Sprint 5 - Gestió Acadèmica refactoring 53

Presentation . 55

Parsing . 55

Merging . 57

Automation . 57

Conclusions 59

Bibliography 61

6 CONTENTS

Abstract

English

This Bachelor’s Final Project describes the design and implementation of a
platform aimed to create custom schedules for UPF students. Horaris Pompeu has
followed an iterative driven design, where the requirements and implementation
has evolved to best fit its users needs. The report will reflect this development
model, presenting motivations and design goals first, followed by an evaluation
of each iteration.

As of June 2014, the production system has support for ESUP’s 3 degrees:
Computer Science, Telematics Engineering and Audiovisual Systems Engineering.
Support for the rest of UPF bachelors and masters has already been implemented
and will be available next September.

Català

Aquest Treball de fi de grau descriu el disseny i implementació d’una plataforma
enfocada a la creació d’horaris personalitzats per estudiants de la UPF. Horaris
Pompeu ha seguit un procés de disseny iteratiu, on els requeriments i la imple-
mentació han evolucionat per adaptar-se millor a les necessitats dels seus usuaris.
Aquesta memòria té com a objectiu plasmar aquest model de desenvolupament,
presentant en primer lloc les motivacions i objectius inicials, seguides d’una
evaluació de cada iteració.

A data de juny de 2014, el sistema en producció té suport per 3 dels graus
de la ESUP: informàtica, telemàtica i enginyeria de sistemes audiovisuals. El
suport per la resta de graus i màsters de la UPF ja ha estat implementat i estarà
disponible aquest proper setembre.

7

8 CONTENTS

Castellano

Este trabajo de fin de grado describe el diseño e implementación de una
plataforma enfocada a la creación de horaris personalizados para estudiantes de
la UPF. Horaris Pompeu ha seguido un proceso de diseño iterativo, donde los
requerimientos i la implementación han evolucionado para adaparse mejor a las
necesidades de sus usuarios. Esta memoria tiene como objetivo plasmar este
modelo de desarrollo, presentando en primer lugar las motivaciones e objetivos
iniciales, seguidos de una evaluación de cada iteración.

A fecha de junio de 2014, el sistema en producción tiene soporte para 3 grados
de la ESUP: informática, telemática e ingeniería en sistemas audiovisuales. El
soporte para el resto de grados y másters ya ha estado implementado y estará
disponible de cara al siguiente septiembre.

Introduction

Motivations

As a student enrolled in two degrees simultanously I’ve had to deal with a subpar
scheduling experience throughout my bachelor. Having to check two or three
di�erent timetables was an ordinary nuisance. In fact, at a given time, I had
to check 4 di�erent timetables: telecommunications 3rd course, CS 2nd course,
optional courses list and audiovisuals 3rd course (for another non-compulsory
subject). Not even my weekly habit of writing down my custom timetable into
Google Calendar could save me from mistakes, since manual updates are error
prone, time consuming and not subject to future changes.

I told myself that something so basic as checking your schedule ought to be
simpler, but payed no heed to it until, in March 2013, I took an afternoon to
write a lesson parser. Its first version took 4 hours to code and was able to
address my needs. In fact, some of the code in production it’s still from that
first attempt1.

It took more time than what that first parser led me to believe, but nowadays,
Horaris Pompeu is a very useful resource for ESUP students. Error free, fast
and automatized. The production system is live at www.horarispompeu.com2.

Methodology

So far as software engineering is concerned, Horaris Pompeu has followed an
agile approach. In this particular case, where I am both the worst case scenario
user and the development team, most software development methodologies
would be more of a liability than an asset. As I understand, processes such
as waterfall, RUP or SCRUM3 are ways to establish a framework to facilitate

1Https://github.com/octavifs/horarispompeu/commit/c4acc671d4480fe01bc845224201fa80e6c59c5c.
2Https://www.horarispompeu.com.
3See [Sommerville 2010], [Kruchten 2003], [Sims and Johnson 2012], [Rubin 2012] and [Beck

et al. 2001].

9

https://github.com/octavifs/horarispompeu/commit/c4acc671d4480fe01bc845224201fa80e6c59c5c
https://www.horarispompeu.com

10 CONTENTS

fluid communication between the stakeholders and the development team. But
with a sole member both driving and implementing the design, communication
problems are nil, so the only issue left is correctly framing the problem at hand.
Thus, quickly iterating over prototypes is a better approach, and can also benefit
from hindsight.

In the following chapter I will define a minimum list of requirements the project
will have to meet at completion. From this initial list, I will extract a series of
metrics that I will use to measure how far has each iteration progressed. That list
of requirements will be also used to abstract the main list of technical challenges
this project presents.

After the requirements, metrics and main problems are presented, there will
come a series of chapters about each implementation sprint. Each sprint won’t
take longer than a month and will result in a complete iteration, ready to deploy,
of the project. On each implementation chapter we will discuss the changes done
to improve our metrics. Any modifications in the initial requirements will be
also discussed there.

Chapter 1

Design goals

In this chapter we will introduce the initial requirements that we set to achieve,
the problems that those requirements entice and the metrics we will use to
measure goal completion.

Requirements

A lot of agile software development techniques gather requirements in the form
of user stories. A user story is typically a short sentence where a stakeholder
states a need and why fulfilling that need is important to him. There are other
ways to gather user requirements (use cases, typically) but I considered that
the needs of this project are clear enough that simple user stories are enough to
serve this purpose.

In Horaris Pompeu case, there are 2 kinds of stakeholders: STUDENT and
ADMIN. In all the following user stories, the raison d’être behind every story is
to build a product that doesn’t get in the way.

• A STUDENT can create a schedule from any arbitrary selection of subjects,
from any course, from any degree.

• A STUDENT can view the custom schedule from any device he owns
(desktop, mobile or tablet).

• A STUDENT automatically receives updates upon lessons changes.
• An ADMIN can parse lessons from the source and save them to a local

DB.
• An ADMIN can manage update conflicts automatically.
• An ADMIN can configure the system to update lessons automatically.

11

12 CHAPTER 1. DESIGN GOALS

Problems

From the previous requirements list, it is possible to divide the implementation
tasks in 5 main problems:

• Presentation: Presenting choices in a way that doesn’t overwhelm the
user is key to make the calendar creation process as fast and easy as
possible.

• Ubiquity: What is the best way to display a calendar in multiple platforms
with minimal configuration and seamless synchronization?

• Parsing: The source data for the schedules is semi structured, since the
input process has many manual steps involved. That will condition the
parser and the database schema.

• Merging: Related with the previous problem. If manual changes are
needed in the local DB (to fix errors in the parsing), how can we later
synchronize our local DB with the timetables source, when those change?

• Automation: Can the parsing and merging process be automated? How
do we deal with backups? How do we inform of errors?

Metrics

For each problem presented in the previous section, we have a metric to measure
our level of progress achieved:

• Presentation: Percentage of calendars created per session. Total number
of calendars created.

• Ubiquity: Number of platforms supported. Number of subscribed calen-
dars.

• Parsing: Accuracy. How many entries have to be manually changed?
• Merging: Accuracy. Are there any errors or duplications while updating

an entry that had been manually changed?
• Automation: How much admin time does Horaris Pompeu require to

maintain a good QoS (no complains from users, no downtime, no errors in
the calendars)?

Chapter 2

Legacy system challenges

In this chapter we will study the current implementation of the scheduling system
in depth in order to analyze which di�culties will have to be faced when adapting
the new solution to the old framework.

Why is an adaptation needed?

Horaris Pompeu does not intend to supersede the current scheduling system,
since this is a political decision which I hold no power over. Instead, this
product is built to work alongside the o�cial solution, using its data in a more
user-friendly manner.

Since it will be necessary to parse the data from the current system before we
can use it, it is very important to understand how the actual system works and
what kind of problems will arise in the implementation of the parser.

Legacy system description

Currently, the timetables for ESUP are stored in static HTML files. Each degree,
course and group has 1 file. Each course and term has a list of subjects and its
schedule can be retrieved from the correct static HTML file.

Those HTML files are (semi) manually updated by the ESUP secretary de-
partment and published to the web, in this URL: http://www.upf.edu/esup/
docencia/horaris1314/.

Subject lessons are stored in one or multiple timetables (subjects can be shared
between degrees). Each timetable is a static file with a set of tables, where each
one shows the schedule for the week.

13

http://www.upf.edu/esup/docencia/horaris1314/
http://www.upf.edu/esup/docencia/horaris1314/

14 CHAPTER 2. LEGACY SYSTEM CHALLENGES

Figure 2.1: Example of a legacy timetable

LEGACY SYSTEM CHALLENGES 15

Some of the biggest shortcomings of the system are:

• the formatting is not consistent. Lessons are typically presented following
a certain pattern, but this is not always the case. Since data is manu-
ally entered, there tend to be di�erent styles in date formatting, groups,
classrooms, etc. The di�erences are subtle but make the data hard to
parse.

• poor support for redefining time. If the cell time is not correct, another
time for the lesson has to be specified inside the cell.

• poor support for multiple lessons. If di�erent subjects take place in the
same time slot, they are separated by dashes (—-).

• information duplicity. Since lots of subjects are shared between degrees
(but not groups!), a lot of the lessons found in a timetable are the sames
ones found in another timetable.

• because of the rigid structure in the timetables, some students have to
check many of them to get a full schedule for all their lessons, especially the
ones who study multiple degrees or have subjects pending from previous
courses.

• no mobile support of any kind. It’s especially di�cult to navigate the
ESUP page to the timetables, given it uses a dropdown on the sidebar.

Another important thing to consider is the frequency in which the schedule is
updated. It is very typical in the ESUP’s case that a schedule will have to be
updated various times throughout the term.

Legacy system challenges

All the points above set us a series of challenges regarding parsing and automation
mainly.

• It will be di�cult to normalize the data, starting from a denormalized set
(as the sources is).

• Inconsistencies in the format will make parsing error prone. The parser
will have to be aware of its inability to process the data and somehow
inform the admin that some lessons need manual editing.

• If manual editing is needed, there has to be a way to perform this kind
of administrative tasks easily, instead of having to deal with the database
directly, which would be slower and more error prone.

• Updates in the schedules force us to keep track of insertions and deletions
in the sources. This is especially hard if the parser is not good enough
and some of the parsing has to be done manually. If we are not careful,
this may cause synchronization problems between the sources and the new
platform, with some updated being missed by the system, or some entries
duplicated.

16 CHAPTER 2. LEGACY SYSTEM CHALLENGES

• Since updates may go wrong, they should be easy to roll back.

Chapter 3

Sprint 0 - Initial prototype

This will cover the initial sprint of the project, from 21-03-2013 until 28-03-2013.
Tagged as v01 on the Horaris Pompeu GitHub repository.

In this initial series of sprint chapters, I will talk about the initial decisions
regarding the chosen technology and architecture of the service. Afterwards, I
will proceed to explain the progress achieved in this iteration based on the criteria
established in the design goals chapter. This will cover the initial parser and
schema design, along with the application views and management commands.

Technology stack

Horaris Pompeu needs are those of a typical web application. A persistence layer
(database) to store the data (subjects, lessons, calendars, etc.) and views to
display such data in a useful manner. If anything, the main di�erence between
this project and other web applications will be the sources where data is obtained
from and the fact that the viewing of the calendars will not be done on-site
(more about this later).

There are many frameworks and libraries available to aid the development of
systems such as this. Most of these frameworks are inspired in the MVC design
pattern2. They use this strategy to ease the separation of concerns between
components and favor loose coupling. In short, MVC stands for Model View
Controller. Models represent data, and tend to be backed by a persistency layer.
The models role is to describe the data schema of the application and notify the
views and controllers when its data changes. Views request information from

1Https://github.com/octavifs/horarispompeu/tree/v0.
2See [Krasner and Pope 1988] for an introduction to the MVC pattern and [Le� and Rayfield

2001] to know more about its usage in web applications.

17

https://github.com/octavifs/horarispompeu/tree/v0

18 CHAPTER 3. SPRINT 0 - INITIAL PROTOTYPE

the model, in order to present the data to the user. Controllers are in charge
to manipulate the models.

The MVC paradigm was born in the 70’s, as a software design pattern to help
in the development of graphical user interfaces. In the web development world,
MVC started to gain traction with the release of the Spring framework (Java,
2003) and Rails (Ruby, 2004). Those kinds of frameworks have become really
popular and right now most programming languages have at least one major
mature alternative, so choosing between them may be a di�cult decision.

In the case concerning this project, since I wanted speed of iteration to be one
of its distinguishing factors, I preferred to search for a framework in a language
I was already familiar with and had a wide range of libraries (for tasks such as
parsing HTML). After a period of deliberation, I decided on Python. Python is
dynamic and interpreted language, born in the 90’s, known for its terse syntax
and focus on readability. Python is widely used in a lot of fields, such as scientific
computing, system administration and web development. I had worked with the
language before, and already felt comfortable with it. Moreover, I knew there
was a reasonably large web development community invested in the language
and that development tools and documentation would be readily available.

Once decided on the language, I had to choose the framework. There happen to
be many open source frameworks for web development in Python. Among the
ones I considered, we could find Django, Flask, Pylons, Web2Py, Pyramid, etc.
Some of them are more feature complete, some others take a more minimalistic
approach, but at the end I chose Django3. Django is the leading web framework
in the Python community. A direct reply to Ruby on Rails. Among the breadth of
features it o�ers, I particulary liked the ORM (a mapper between object models
and the actual database tables and queries needed to access them), template
system and admin site. The admin site was especially interesting (and unique to
Django), since it could be used to manually input data if there was any need
for corrections. In the previous chapter we have already discussed the number
of inconsistencies found in the original sources so, expecting problems in the
parser stage, I thought it wise to find a way to cheaply fix the small amount of
mistakes there may ocurr manually.

Finally, there was a choice to make regarding the database backend. Django
has native support for PostgreSQL, MySQL, SQLite and Oracle backends. I
ended choosing SQLite, for testing and production purposes. I considered that
in this particular case, since writes to the database will mostly come from batch
processes (no users) and the number of concurrent users in the site is not expected
to be high, it was preferable to use the simpler situation. In this case, SQLite
has been perfectly reliable, very easy to set up and even simpler to backup.

3Https://www.djangoproject.com/.

https://www.djangoproject.com/

ARCHITECTURE 19

Architecture

Django favors a modular approach when creating a new project. A typical
good designed Django project will be composed of multiple apps, each with its
own distinct purpose. Django also has a 3rd party app system, which meshes
naturally with the custom created apps and makes it easy to share and reuse
modules of 3rd parties (increased speed of iteration).

In our case, since all we want has to do with calendars (parse, store, create
and show them) I decided that it made sense to develop the project as a single
Django app and a few 3rd party add-ons.

In the following diagram, I’ve drawn the file structure of the project in it’s initial
iteration. The last iterations still follows most of this structure.

/
- README.md # general information about the project. Installation instructions.
- horarispompeu/

- settings.py # general settings of the Django project
- timetable/ # Django app

- admin.py # Describes models representation in the admin interface
- models.py # Describes the models
- urls.py # Describes the url routing
- views.py # Describes the business logic of the app
- templates/ # Holds the HTML templates for the app views
- static/ # Static files needed by the templates
- management/commands/ # Holds commands that will be run as batch operations

Presentation

Most e�orts in the presentation aspect were directed towards engineering the
views and flow between them.Horaris Pompeu must serve as a fast selector of
subjects for any student, so we have to construct an interface that makes it easy
to choose subjects.

Since it is important not to overwhelm users by o�ering too many choices (a list
of all the subjects, for example), I chose to make this subject selector using a
tiered approach, very similar to how the timetables are organized in the ESUP
page. The flow would be as follows:

1. Select degree(s)
2. Select course(s) and group(s)
3. Select subject(s)
4. Get calendar

20 CHAPTER 3. SPRINT 0 - INITIAL PROTOTYPE

To this basic flow, I also added a landing page, that explains the purpose of the
application in a few sentences.

What we have then, is a series of forms linked together, where the data sent to
the previous form determines the data shown in the next one. Displaying choices
in this tree-like structure minimizes the number of valid branches.

URL flow, as defined in urls.py and views.py:

1. /
2. /grau
3. /curs
4. /assignatures
5. /calendari

Once reached the /assignatures view, we can finally collect the list of subjects
the student is taking, and from this we create a custom calendar, choosing the
corresponding lessons.

At this point in the implementation, the 3 stage subject chooser was already
implemented, but the necessary templates to display the data were not finished,
and the calendar creation did not work, so there was still much to do before this
release could be considered apt for production usage.

Ubiquity

In the design goals chapter I’ve talked that one of the main objectives of the
project is to make the schedules accessible from any kind of device. Achieving this
may be really hard if you start to develop a custom solution for every platform,
since this would at least encompass apps for iOS, Android and a Desktop version
of the timetable. Instead of focusing on developing a custom solution to display
the timetables though, I explored what kind of options were already available in
the market. Calendars are basically a solved problem, and there are established
protocols and platforms which o�er easy interoperation between them.

The first option that I considered was using the Google Calendar API. A very
high percentage of people use GMail as their main email account, all UPF
students have a Google Apps account (with Calendar) and synchronization
between mobile, tablets and desktop is trivial using this platform, on Android
and iOS.

The Google Calendar API4 allows creation of calendars, addition and deletion
of events, permissions management (sharing calendars with others), etc. The
API is free to use, as long as you perform less than 100.000 daily API calls (each

4Https://developers.google.com/google-apps/calendar/.

https://developers.google.com/google-apps/calendar/

UBIQUITY 21

REST request is considered an API call). This API can be used in your own
accounts or on behalf of others, using the OAuth authentication framework.

Using the API was very tempting, as it would have allowed Horaris Pompeu to
add calendars to each student’s own account with a few clicks and no security
concerns. It would also make it possible to update those same calendars, as long
as the user wouldn’t revoke Horaris Pompeu’s permissions to do so. Still, there
were some concerns about how the API usage limits may had a�ected the real
world usage of the project.

To further test the feasibility of using Google’s API, I ran some calculations on
the limits it would force onto the project. In the following section I will detail
the estimate amount of calls needed to create a calendar:

Create a calendar:
10 weeks/term * 5 subjects/week * 3 lessons/subject = 150 lessons/term
100000 calls/day / 150 lessons/term = 666 calendars/day

666 calendars a day may seem like a fair figure, but this is a best case scenario
estimate. We are creating calendars per term (whole year calendars would
diminish the calendar creation rate by a factor of 3) and the restrictive API
usage makes problems such as updating harder, since deleting a calendar and
writing it form scratch is not cost e�ective. Updating under the Google Calendar
API should be something more fine grained. Also, creating a calendar remotely
would be slower than doing so locally, so maybe an asynchronous task queue,
that performed calendar creation in the background, would be needed to avoid
stalling user requests (complicates architecture, requires more resources and
setup).

Overall, even though the API makes the process of creating new calendars very
simple for the user, it places a lot of restrictions on the implementation side,
complicates the project’s architecture and may stunt its growth and long term
viability.

Since I found the API route too restrictive, I searched for more options that
struck a better balance between my ability to control the platform and ease of
use by the students. What I discovered was a standard file format for event
exchanges between applications. This format, called iCalendar, was created by
the IETF (RFC5545 [B. Desruisseaux and Oracle 2009], RFC5546 [C. Daboo
and Apple Inc. 2009] and RFC6868 [C. Daboo and Apple Inc. 2013] and is well
supported by most calendar applications (including Google Calendar). iCalendar
files can be imported or subscribed from a URL. This last option is especially
interesting in our case, since it makes possible to store the calendars in the
server, while the calendar app of the client regularly checks the url for updates.
This means that we only have to make sure our calendar files are updated and
available with the parsed data, and the user client (Google Calendar, for example)
will take care of the rest. This option is also especially interesting because the

22 CHAPTER 3. SPRINT 0 - INITIAL PROTOTYPE

client caches the calendar locally, so even if Horaris Pompeu is down, we will
still be giving service to our current users.

iCalendar subscription is supported by Google Calendar, but the feature is rather
hidden in the user interface, and only available from the desktop version of the
site (API or mobile version don’t have that option), so the subscription flow is
not as good as it was with the API, but the benefits from an implementation
standpoint weighted more.

To create icalendar files in Python I’ve used a 3rd party icalendar library5. With
this library converting the custom representation of the data as stored in the
DB to .ics files is very straightforward. In fact, this initial version already has6

a function that writes lessons to icalendar files.

Parsing

The parsing problem encompasses 2 steps. The first one is to structure and scrap
the data from the legacy timetables. The second one is how to organize this
data in a database schema, so that it stays true to the relations it represents
and makes it easy to di� updates.

parser

The parser was placed initially on /timetable/management/commands/_parser.py7.

The parsing of the legacy HTML timetables is done in 2 phases. The first one
obtains the data stored in each cell along its context (date and time). The
second one processes the cell data into one or various distinct lessons.

To parse the HTML I’ve used BeautifulSoup8. This is a well established Python
library for HTML parsing, that makes it very easy to traverse an HTML tree.
Since this is a mature project, it is able to process even broken HTML with very
good results, so it will be more than enough for the project needs.

During the HTML parsing, I use 3 nested loops. The first one loops through
every table (week) of the HTML. The second one iterates through every row of
the table (time slots). In this second iteration, the date (column header) and
time (row header) is saved in its own variable. When accessing the cell contents
(in a 3rd nested loop), the date and time values previously saved are used to
preserve the context of the lesson(s). The third loop rolls over each cell of each
row, extracts its content and tries to parse it.

5Http://icalendar.readthedocs.org/en/latest/.
6Https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/_parser.py#L104-

L121.
7Https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/_parser.py.
8Http://www.crummy.com/software/BeautifulSoup/.

http://icalendar.readthedocs.org/en/latest/
https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/_parser.py#L104-L121
https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/_parser.py#L104-L121
https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/_parser.py
http://www.crummy.com/software/BeautifulSoup/

PARSING 23

Once the text from the cell is obtained, parselesson function is launched.
parselesson takes the text from the cell, the date and hour and returns a list
of lessons contained inside. In broad strokes, the function proceeds like this:

1. strip the cell for blank lines
2. parse the subject
3. parse lesson kind (theory, practice, seminar, etc.)
4. parse specific hour (if any)
5. parse groups (if hour is found, go to #4)
6. store lesson (if separator is found, go to #2)

It is important to note the di�culty to correctly parse some fields, such as the
subgroups (specific seminar, practice or theory groups, usually Sxxx or Pxxx).

Some subgroup format variants:

Sxxx: classroom
Sxxx i Syyy: classroom
Sxxx, Syyy, Szzz: classroom
Aula: classroom

Each lesson returned by parselesson would have the following fields:

• subject
• kind
• group
• room
• date_start
• date_end
• raw_data

raw_data is a special field I added, to store the original text of the cell, just so
it would be easier to detect and correct errors during the parsing.

models

All models are defined in timetables/models.py9.
Faculty : To allow the usage of this schema in multiple faculties, I added this
model, even though it has only been used to hold one faculty (ESUP).
AcademicYear : To allow the usage of this schema yearly without having to
flush the previous database, I also store the academic year as an independent
entry.

9Https://github.com/octavifs/horarispompeu/blob/v0/timetable/models.py.

https://github.com/octavifs/horarispompeu/blob/v0/timetable/models.py

24 CHAPTER 3. SPRINT 0 - INITIAL PROTOTYPE

Degree : Each degree has a name and is linked to a faculty.

Subject : Each subject has a name and is linked to a faculty. In ESUP, subjects
may be shared among degrees and only depend on the faculty.

SubjectDuplicate : Created to deal with some problems with the subjectparser
command. The sources used in subjectparser had some subject duplication so,
to make sure re-running the script does not re-enter unwanted subjects, subjects
deleted from the Subject model are stored in this one.

SubjectAlias : Saves all the aliases and typos used in the legacy timetables to
refer to a specific subject.

Class (later renamed to Lesson) : Has all the information on the subject
taught, group, subgroup, kind of lesson, classroom and time of start and end.

DegreeSubject : Relates Subjects to Degrees. Also adds information on which
term, bachelor year, academic year and group the subject is taught.

Calendar : A simple model. Stores references to iCalendar files and all the
subjects it includes.

Automation

In this initial iteration I created a few batch commands necessary to synchronize
the local database with the legacy calendars and started configuring the admin
interface for manual management of the system.

Django has support to create scripts that can interact with the app models and
framework functions. This feature is very useful in our case, where we have to
run a series of batch operations (parsing legacy calendars and updating database
and our custom calendars accordingly). In this case, I’ve created 3 commands:

• management/commands/subjectparser.py10

• management/commands/aliasparser.py11

• management/commands/classparser.py12

subjectparser.py

One of the problems when parsing the legacy timetables is that the subject name
is not consistent (some subjects have various aliases, or typos). To obtain a
reliable list of subjects, I used the o�cial UPF syllabus from each degree:

10Https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/subjectparser.py.
11Https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/aliasparser.py.
12Https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/classparser.py.

https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/subjectparser.py
https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/aliasparser.py
https://github.com/octavifs/horarispompeu/blob/v0/timetable/management/commands/classparser.py

AUTOMATION 25

• Bachelor’s degree in Computer Sciences13

• Bachelor’s degree in Telematics Engineering14

• Bachelor’s degree in Audiovisual Systems Engineering15

This script parses the page, obtains the subject names and saves them into the
databse, if the entry did not previously exist.

aliasparser.py

As mentioned in the previous section, parsed subject may have di�erent aliases.
This runs the parser on all legacy timetables and inserts any non-registered alias
in the database. Then, those aliases can be manually linked to the corresponding
subject, so when we are inserting the lessons (3rd script), they have the correct
subject.

classparser.py

This is the script that runs the parser and saves the lessons to the database. Its
implementation only saves the lessons to the database and little else. Does not
deal with updates or deletions of any kind.

13Http://www.upf.edu/pra/3377.
14Http://www.upf.edu/pra/3376.
15Http://www.upf.edu/pra/3375.

http://www.upf.edu/pra/3377
http://www.upf.edu/pra/3376
http://www.upf.edu/pra/3375

26 CHAPTER 3. SPRINT 0 - INITIAL PROTOTYPE

Chapter 4

Sprint 1 - Production ready

prototype

This will cover the first sprint of the project, from 04-04-2013 until 28-04-2013.
Tagged as v11 on theHoraris PompeuGitHub repository. Di�2 between v0 and
v1.

v1 was the first iteration that I considered feature complete. It ran in production
during the 3rd term of the previous academic year (2012-13) and was beta-tested
by a handful of users.

In this iteration I finished the views and templates, the creation of calendars,
tweaked the database schema, improved the parser and refactored the manage-
ment scripts and admin interface, for easier administration of the site.

Licensing

Since the beginning, I wanted Horaris Pompeu to be an open source project.
The code was published in a public GitHub repository3 from the very start, but
I had not licensed the code properly. Even though GitHub’s terms of service
specify that public repositories must be open source, no license is specified, so
my project was in a legal void regarding licensing.

My objectives behind the licensing of the software were more concerned towards
preserving credit for the work done, trademarks and avoiding possible liabilities
caused to 3rd parties. Ensuring that the code would continue to be free, or that

1Https://github.com/octavifs/horarispompeu/tree/v1.
2Https://github.com/octavifs/horarispompeu/compare/v0...v1.
3Https://github.com/octavifs/horarispompeu.

27

https://github.com/octavifs/horarispompeu/tree/v1
https://github.com/octavifs/horarispompeu/compare/v0...v1
https://github.com/octavifs/horarispompeu

28 CHAPTER 4. SPRINT 1 - PRODUCTION READY PROTOTYPE

further modifications to it had to be published under the same terms was not a
concern of mine.

For all these reasons, I chose to license the code under the Apache v2 License4.
To license an open source project the main requirement is to upload a LICENSE
file, with the contents of the chosen license. It is also recommended to put a
boilerplate notice on top of every source file, referring to the full LICENSE5.

Presentation

The business logic on the views mostly remained the same, but I had to implement
the calendar creation view.

On the calendar creation view, the list of selected subjects is retrieved and
sorted by primary key. This sorted list of subjects is later hashed (using SHA1
[Information and Standards]). The hash is performed as a way to make sure
iCalendar files will be unique. Even though the number of possible subject
combinations is very high, SHA1 is a proven and widely used cryptographic hash,
with a collision rate on the order of 10ˆ-45, which makes name collisions very
unlikely.

Once the hash is performed, I query the Lessons for that calendar and, with
those Lessons, I create a new iCalendar, which is saved to a file into a static
folder. A reference to both the subjects and the calendar file is stored into a
Calendar model object.

Saving calendars this way (with a hash, to check for collisions) makes it trivial to
check if that calendar had already been created previously (and avoid recreating
it, if that is the case) and is also a good way to randomize file names. If, for
example, calendar names were created sequentially (1, 2, 3. . .) any person could
retrieve all the calendars stored in the database, which is not a problem per se,
but may be undesirable.

Apart from finishing the business logic, I also wrote the templates for the views. I
followed a simple design, where every template shown a single column of multiple
choice options. Once submitted, a new view with more choices was presented,
until the calendar was created. Once the calendar was done, a view with a URL
to the calendar and some instructions as to how to proceed was displayed.

This first version of the templates was inspired by the UPF visual identity6

and tried to preserve the iconic whites and reds. The same pantone is used
(pantone 186) and typography tries to stay close to the o�cial Excelsior, opting
for Georgia, a widely available and web safe font.

4Http://www.apache.org/licenses/LICENSE-2.0.html.
5Literature regarding software licensing can be found on [Github 2014], [Open Source

Initiative 1988], [Foundation 2004], [Free Software Foundation 1991] and [Free Software
Foundation 2007].

6Http://www.upf.edu/marca/evolucio/.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.upf.edu/marca/evolucio/

UBIQUITY 29

Figure 4.1: Design of iteration v1 of Horaris Pompeu

Ubiquity

Each iCalendar file was given a title with the url of the site (www.horarispompeu.com).
I considered this useful to remind users where they got the schedule, since once
it has been generated and subscribed, there is no longer any need to access the
page and people may forget about the project. A basic move to raise brand
awareness.

I also had to add timezone information in the file, so Google Calendar displayed
dates correctly.

Apart from these tweaks in the code, I also had to change some settings in the
production server to modify the headers used when serving the files.

NGINX .ics config
add_header Content-Type "text/calendar;charset=utf-8";
charset utf-8;

If mimetype and charset was not specified, Google Calendar would not load the
URL, or would read the charset wrongly and display accents and other special
characters as garbage.

30 CHAPTER 4. SPRINT 1 - PRODUCTION READY PROTOTYPE

Parsing

Minor changes in that regard. As I already mentioned in the previous chapter,
I renamed the Class class to Lesson, since the choice of words had been really
unfortunate and confusing that first time. Also, a __hash__ method was added
to the Lesson class, so objects could be compared by content equality now (and
not mere reference). This enabled the usage of the == operator and the usage of
sets to store Lesson objects.

Merging

The previous classparser command was renamed to lessonparser and rewritten
from scratch. In the previous version, the command was only able to add
new lessons to the database, but didn’t have any sort of conflict resolution
mechanisms. In this new version, some improvements were made:

• When downloading the legacy timetables, encoding is specified and correctly
set.

• Last legacy timetables update were saved, so the first step of the update is
to check whether the file has changed at all. If it has not, skip timetable.

• If changes in the timetable have taken place, both the current and the
previous stored timetable are parsed. Those parsed lessons are put on a
set and di�ed. With this, we get the subset of inserted and deleted lessons.

• Insertions and deletions are performed in the database.
• Calendars are updated.

This new system, while much better than the previous one, still had problems.
Basically, if any manual changes were done in the database lessons, and some of
those manually modified lessons had to be deleted, they may not get picked up
by the delete command, so the possibility of having rotted entries if the database
was manually managed was real.

In real use though, the problems were not really noticeable, but this is also
because the number of real users of Horaris Pompeu at that time was probably
no larger than 5 people and the calendars we used happened to be using one of
the less conflictive set of lessons.

Automation

admin.py was heavily reworked, so that every model in the database had useful
views and filters. Most of the work was done to make sure Lessons and Subjects
were sortable and that it was easy to discover whether any of those had any

AUTOMATION 31

missing information. The new filtering mechanisms would also be useful when
trying to manually a specific lesson.

Figure 4.2: Horaris Pompeu admin interface. List view of Lesson objects

Also, more models were introduced to ensure non-destructive Lesson updates.
The new system added the following models:

LessonArchive : Every time a lesson is deleted, store it in the LessonArchive
table. With this, the information is not destroyed, so if there has been an error,
it’s easier to recover the data.

LessonDelete : Every time a lesson is deleted, a referenced to the newly created
LessonArchive is saved, along with a timestamp.

LessonInsert : Every time a lesson is inserted, a reference to the newly created
Lesson is saved, along with a timestamp.

All this triggers described in the models are enforced via Django signals, a
functionality that enables developers to launch certain actions when certain
events take place in the database (inserts, deletes and updates).

32 CHAPTER 4. SPRINT 1 - PRODUCTION READY PROTOTYPE

Chapter 5

Sprint 2 - Mobile

compatible responsive

design

This will cover the second sprint of the project, from 20-08-2013 until 25-09-2013.
Tagged as v21 on the Horaris Pompeu GitHub repository. Di�2 between v1 and
v2.
v2 centered around improving the templates by adding mobile support to the
website, streamline the subscription process, better documentation regarding
the deployment process of the project and some changes in the management
commands to improve the management of the site.

Presentation

The major visible change of this new iteration was the rewrite of the templates.
The number one complain by the few beta testers was that v1 had no mobile
support, so using it in mobile devices was inconvenient.
In order to solve that, I decided to use a front-end framework with built-in
support for developing responsive websites that automatically reflow themselves
depending on the device used.
Front-end frameworks have recently come into the spotlight, as a result of the
increasing number of platforms and browsers a website has to optimized for. In
my case, I used Bootstrap3, an open source project started at Twitter. Bootstrap

1Https://github.com/octavifs/horarispompeu/tree/v2.
2Https://github.com/octavifs/horarispompeu/compare/v1...v2.
3Http://getbootstrap.com/.

33

https://github.com/octavifs/horarispompeu/tree/v2
https://github.com/octavifs/horarispompeu/compare/v1...v2
http://getbootstrap.com/

34CHAPTER 5. SPRINT 2 - MOBILE COMPATIBLE RESPONSIVE DESIGN

o�ers good support to define responsive layouts and many default styles for
a wide range of HTML elements. This makes it easy to prototype attractive
designs in little time and also ensures that those designs will be compatible
accross browsers (Bootstrap default styles take care of that).

All the templates were rewritten to make use of the Bootstrap framework, but
the core idea remained. The subject selector still was a list of checkable items,
and the main chromatic theme was dominated by white and red.

A few new elements were introduced: a navigation bar, that displayed the step
in the creation of the calendar and a background image. The idea behind the
addition of the background image was to take advantage of all that blank space
in the background and give a litle bit of character to the website, in a similar
fashion to what wall calendars do.

Figure 5.1: With the new responsive design the number of columns shown
depends on the width of the browser window.

Ubiquity

One of the other major sources of complaints from the initial beta testing of the
website was that the process of subscribing to Google Calendar was not clear
enough. As I explained previously, I decided to abandon the usage of the API in
favour of using iCalendar files, even with the problems of having to deal with an
inferior subscription workflow. Also, since I added explicit support for mobile
devices, and the mobile version of google calendar does not o�er the option to
subscribe to .ics files, I decided I had to o�er a working alternative to those
users, so they could complete the process from within their own device.

UBIQUITY 35

Since no API is available (current or deprecated versions) to add iCalendar
subscriptions to a Google Calendar account I had to write my own alternative.
To do this, I reversed engineered the commands issued by the google calendar
web application using the Chrome developer tools.

Using the network tab on the developer tools I inspected the flow from login
until adding a calendar:

GET https://www.google.com/calendar/
GET (redirect) https://accounts.google.com/
ServiceLogin?service=cl&passive=1209600&continue=https://www.google.com/
calendar/render&followup=https://www.google.com/calendar/render&scc=1
POST https://accounts.google.com/ServiceLoginAuth

{
GALX:tjHPwrFAGZY
continue:https://www.google.com/calendar/render
followup:https://www.google.com/calendar/render
service:cl
scc:1
bgresponse:!A0LBAIT9oRsN60Ra7G6io6QSvgIAAAAlUgAAAAYqAQKVzBdtaHnLkz8
88MhNsMXYJfRvkgJqzEhDY93lCl0yLtZFUM0y8R4Ye8aHAE4MqtqvMHuaB--p8k-Zpg
c_0ioEWMcAakWHarwjex3tfHbmEDjWncgy590W2yoi9W8RjByFJlJKanuMQeNSBS8gd
YnXjUGH4WxFvfReL0esVTKCMON7z19J3Uo_boXMy06GvswQ055AR-
YCS0zQHUjGI5RA3Wj2iSOjHa1ZendiTyV1HZK4vhltIlFvwDOpvvx3GL_-Se-
JF0bxOFlYHumRVQO-IWvmi0b2ZXiVYMNMzEsyh0gWHsGNDTxN0Nxl-
bB49ltL3LqJaf_HAGTppFUHt4u92RU
pstMsg:1
dnConn:
checkConnection:youtube:119:1
checkedDomains:youtube
Email:your_email@gmail.com
Passwd:your_password
signIn:Inicia la sessió
rmShown:1

}
GET (redirect) https://www.google.com/calendar/render
POST https://www.google.com/calendar/addcalendarfromurl

{
curl:https://www.horarispompeu.com/example.ics
cimp:true
cpub:false
secid:ceH0p6Iqix4jfHwVgKf84xzH0FA

}

The flow exposed here are the main requests involved in the process. For a
complete log download the HAR file of the experiment (source). You may use

https://www.dropbox.com/s/wdrb9b0pdb7tw6o/www.google.com.har

36CHAPTER 5. SPRINT 2 - MOBILE COMPATIBLE RESPONSIVE DESIGN

an online viewer such as chromeHar4.

Apart from this flow, a lot of cookies are setup during the process. Some of them
are set as part of the flow mentioned above and some others are set as part of
other AJAX calls executed when drawing the pages.

Cookies:
APISID, CAL, HSID, NID, OGP, OGPC, OL_SESSION, PREF, SAPISID, SID, SSID,
T, secid

The problem in this case is to discover which cookies actually need to be setup so
that out calls to POST https://www.google.com/calendar/addcalendarfromurl
will succeed.

Since Google Calendar is a complex page and javascript execution seems necessary
to correctly setup all the cookies, I searched for fully featured HTTP clients, that
worked more like browsers rather than a typical headless client like curl. What
I found was a project named PhantomJS5, which is a headless browser, based on
WebKit, that can be operated programatically through a Javascript API. Using
this headless browser I programmed a script (casperjs/addICSCal.js6) which
simulated a user going through all the steps I described above. This script takes
an email, password and iCalendar URL from the command line and is able to
log in and subscribe you to that URL automatically.

Even though the script made it possible to add automatic subscriptions, this
feature introduced security concerns to the application. Since the script works
by logging itself as the user, we have to gather the GMail password of our users
if they want to use this. This is a shady practice and could perfectly be used to
steal identities (not the case, but it is a legitimate concern). In fact, even though
the password was not saved in the system at any point, it was still possible than
a man-in-the-middle attack could capture the password, since it was sent as
cleartext (the site was HTTP only).

Given this grave security concern, were this feature published as the production
server was configured, Horaris Pompeu users would be vulnerable to identity
theft (and possibly worse things) so, to prevent that, I also added support for
HTTPS throughout the whole site. Later in this chapter I will talk in more
detail about the production system of Horaris Pompeu.

Apart from creating this script, I had to add a new view (/subscriu). This
view only listens to POST requests, with 3 parameters:

• calendar url
• email
4Http://ericduran.github.io/chromeHAR/.
5Http://phantomjs.org/.
6Https://github.com/octavifs/horarispompeu/blob/6ada413fdcf8f2e3beadfdd41c2256f2711736ab/casperjs/addICSCal.js.

http://ericduran.github.io/chromeHAR/
http://phantomjs.org/
https://github.com/octavifs/horarispompeu/blob/6ada413fdcf8f2e3beadfdd41c2256f2711736ab/casperjs/addICSCal.js

AUTOMATION 37

• password

Each time the view is invoked the casperjs/addICSCal.js script is called and
an automatic subscription is performed. The view does not have any specific
template, since it’s triggered via AJAX from inside the calendar.html template.

Overall, the new feature was convenient from a usability standpoint but contro-
versial as far as security is concerned, and even though by adding HTTPS all
man-in-the-middle attacks are greatly mitigated, it could still be possible that a
vulnerability in the server may be used to change the service configuration and
store the passwords somewhere. As far as the logs are concerned, the POST
body (with password and email) are never stored.

Figure 5.2: Horaris Pompeu automatic subscription form.

Automation

I added a new script, called subjectstojson.py that performed the same tasks
as the previous subjectparser but saved the results onto a JSON file instead of
directly to the database. This way, I could manually curate the lessons list since,
after all, this was not an activity which is performed often.

With that change done, subjectparser simply loaded the JSON file and saved
the subjects onto the database.

I also moved the legacy timetable sources from a Python dictionary to a JSON
file. The objective, in both cases, was to make the architecture of the app a

38CHAPTER 5. SPRINT 2 - MOBILE COMPATIBLE RESPONSIVE DESIGN

little bit more generalistic, so that using it by other faculties would only be a
matter of adding the corresponding configuration files with the data sources.

Deployment

So far I haven’t talked about the deployment process of a Django app. Since
in this iteration I added some files on the repository regarding the deployment
configuration, I will explain how the production system works.

Python web applications share a common protocol for communicating with web
servers called WSGI7. Any server that implements WSGI can talk with a Python
WSGI service. This is very useful for Python core web developers and HTTP
server developers since, as long as everyone follows the standard, both parts can
talk to each other.

The WSGI-compatible web servers can be typical web servers, such as Apache
(via the WSGI module) or specialized WSGI servers. Those specialized servers
are simple programs that focus on handling WSGI requests fast and little else.
A typical WSGI server has a pool of workers (running the Django project in
this case) and an event loop. In this case, dealing with requests is a matter of
dispatching requests to workers and little else.

Using simple servers like this is good for performance, but it’s not enough for all
the project needs. Those servers can’t serve static files, don’t handle rewrites or
can’t be configured with SSL. To fill those needs, another kind of webserver will
have to be used.

This project follows the typical Django deployment architecture. The front-facing
server is Nginx, which is used as a reverse proxy to GUnicorn (WSGI server)
and a static file server (for calendars). GUnicorn is used to serve the django web
application.

The Nginx config handled static files serving and reverse proxying. No caching
strategy was specified. SSL support is not added in this example configuration
file.

7The formal definition of the WSGI protocol can be found on [Eby 2003] and [Eby 2010].

DEPLOYMENT 39

Figure 5.3: Deployment diagram of Horaris Pompeu

40CHAPTER 5. SPRINT 2 - MOBILE COMPATIBLE RESPONSIVE DESIGN

Chapter 6

Sprint 3 - Automation, user

communication and

analytics

This will cover the third sprint of the project, from 13-11-2013 until 27-11-2013.
Tagged as v31 on theHoraris PompeuGitHub repository. Di�2 between v2 and
v3.

v3 centered around refactoring the management commands, streamlining the
database schema, adding some extra views (FAQ and contact form), Google An-
alytics support, a few extra tweaks on the user interface and some improvements
on the production configuration files.

Presentation

The changes in the presentation layer were small, in comparison to the last
iteration, but a nice step towards a more refined user experience nontheless.

I added Google Analytics support, so I could track user behaviour on the page. I
also changed the behaviour of the navigation bar so it would collapse on mobile
devices. Cookies were used to store the options chosen on every part of the
calendar creation process, and used to navigate backwards via the top navigation
bar.

The new navigation bar had links to the previous steps in the process and, thanks
to the cookies, it could restore the views based on the previous selected choices.

1Https://github.com/octavifs/horarispompeu/tree/v3.
2Https://github.com/octavifs/horarispompeu/compare/v2...v3.

41

https://github.com/octavifs/horarispompeu/tree/v3
https://github.com/octavifs/horarispompeu/compare/v2...v3

42CHAPTER 6. SPRINT 3 - AUTOMATION, USER COMMUNICATION AND ANALYTICS

Figure 6.1: Horaris Pompeu navigation bar.

Also, Horaris Pompeu was modified to only display subjects of the current term,
so the navigation bar indicated which term was available at the moment.

Another important change as far as presentation is concerned was the addition
of a FAQ page and a contact page. The FAQ page was simply an expanded
explanation on what Horaris Pompeu was and how it worked. The contact form
was a simple way to retrieve feedback from users. Those new pages needed
their own templates, view functions and the configuration of the email system
(the contact form contents are sent to an email account I created for Horaris
Pompeu).

Figure 6.2: Horaris Pompeu contact form.

PARSING 43

Parsing

The parser was refactored, using generators instead of lists (better performance
and conceptually cleaner). Also, the new version uses more accurate regular
expressions, that catch edge cases better.

Automation

Most changes in this update are related to the management commands and
the models. In the models.py file, apart from documenting better the purpose
of some classes, I deleted SubjectDuplicate. As I had mentioned in the last
update, the parsing of the subjects was dumped to a JSON file now, which I
manually curated. Since subjectparser inserted the lessons in this list, if you
manually make sure that the list is correct, there is no need for more checks. I
remind that SubjectDuplicate stored entries that had been deleted in Subject

so that re-running subjectparser would not add them again.

aliasparser and initdb were deleted, while lessonparser inherited their func-
tionality. The new lessonparser simply stopped if it encountered a subject
without an alias when parsing lessons. The function in charge of updating calen-
dars was moved onto another command (calendarupdater) and most critical
operations (lesson inserts and deletes) were moved to a new operations.py file,
which made the functions easier to test.

Merging

Since synchronizing the legacy timetables with the local database is conflictive
and error prone, I started a test suite to ensure that the implementation worked
fine against specific known cases. In this case, when the implementation has to
deal with so many edge cases, it is very interesting to have a series of automated
tests to prove that the implementation works and, even more importantly, that
future refactoring of the library won’t break old expected behaviours.

To perform good unit tests, having small and independent pieces of functionality
is key (so tests are kept small, to the point, and are di�cult to get wrong).
The problem was that, since all the insertion and deletion functionality were
methods in a Django Command class, using them as standalone functions for
the unit tests was not ideal. This is the reason why I moved that code into a
new operations.py file, composed only by functions that needed no previous
context.

The new operations.py releases aliasparser and lessonparser of the follow-
ing tasks:

44CHAPTER 6. SPRINT 3 - AUTOMATION, USER COMMUNICATION AND ANALYTICS

• insert lessons
• delete lessons
• insert subject alias
• insert degree subject
• update calendars

The implementation of those tasks is almost the same as it was in the previous
iteration, with the exception that delete_lessons got better at recognizing
manually updated Lessons, if only the date had been modified.

The newly created unit tests, stored under the timetable/tests folder reproduce
a series of real-world cases the code has to deal with. For details about those
cases I recommend to check the unit tests themselves (operations tests3, parser
tests4).

Deployment

Improved the default nginx configuration file, with request compression by default
and static file caching configured. I also added gunicorn (WSGI server) to the
django project itself, so it could be called using the ./manage.py command.

3Https://github.com/octavifs/horarispompeu/tree/v3/timetable/tests.
4Https://github.com/octavifs/horarispompeu/blob/v3/timetable/tests/test_parser.py.

https://github.com/octavifs/horarispompeu/tree/v3/timetable/tests
https://github.com/octavifs/horarispompeu/blob/v3/timetable/tests/test_parser.py

Chapter 7

Sprint 4 - Simpler parsing

strategy, better parsing

accuracy

This will cover the fourth sprint of the project, from 27-11-2013 until 08-02-2014.
Tagged as v41 on the Horaris Pompeu GitHub repository. Di�2 between v3 and
v4.

v4 was the first widely used version of Horaris Pompeu and the first one I could
start analyzing user behaviour thanks to the addition of Google Analytics and
the server logs.

v4 includes a refactored script for automatic calendar subscription, Nginx con-
figuration with SSL support, automatic backup strategy, better documentation
(regarding the subscription process), new (more reliable) parsing strategy, stream-
lined database schema and random background images.

Presentation

The most relevant change, regarding presentation, was the refactor of the Phan-
tomJS script (the one in charge to automatically subscribe users to calendars).
The old script used click events to perform the user actions (as if the user itself
did the clicks), which happened to be quite inconvenient, since it caused some
conflicts with Google Calendar javascript framework, and to perform a click on
the user interface you had to follow a special sequence of events (hover -> press

1Https://github.com/octavifs/horarispompeu/tree/v4.
2Https://github.com/octavifs/horarispompeu/compare/v3...v4.

45

https://github.com/octavifs/horarispompeu/tree/v4
https://github.com/octavifs/horarispompeu/compare/v3...v4

46CHAPTER 7. SPRINT 4 - SIMPLER PARSING STRATEGY, BETTER PARSING ACCURACY

-> release). For extra details, check the source3 of /casperjs/addICSCal.js.
The new version, instead of simulating clicks, it simply performed the necessary
network calls. This was simpler, more reliable and faster, since the original option
needed some timeout between events so that the interface could be drawn. I also
could avoid using CasperJS, a library on top of PhantomJS to simplify user form
filling and other actions and worked with a bare copy with PhantomJS plus an
injected jQuery script to perform DOM manipulation and AJAX calls. For more
details, check the source4 code of the script at /phantomjs/gcal_addICS.js.

Apart from the new automatic subscription script, I also performed some cosmetic
changes. The new version of the project was able to load backgrounds randomly
from a list of images defined by the project settings. Each image persists during
the length of the user session in the site (using cookies) and has a small footer
with the description and location. I also made sure I had the copyright of all the
images shown, to avoid any sort of licensing infringement. Images were resized
and optimized so the filesize would not be above 512KB and the site would keep
loading fast.

Finally I added screencasts to display the process of adding a calendar manually
from within the Google Calendar interface and another one displaying how to
synchronize the calendar with an Android device.

Parsing

Parsing legacy timetables right was a problem I had been trying to solve since
the first iteration but could never get completely right. The error rate of the
parser was 5%, aprox, which in a typical term amounts to 140 lessons out of
2900. 140 out of 2900 may not seem that much, but having to modify them
manually it’s slow and di�cult to complete, especially because the parser may
think that an entry is right, when it’s not, so you can’t detect it and correct the
error in advance.

Since I was not yet satisfied with the success result of the parser and the
automatic handling of conflicts I branched the repository and started a new,
simpler, implementation of the parser.

The major problem with the old parser was correctly detecting the groups and
classrooms. There are many di�erent formats used accross all subjects and
calendars and new ones are always added. Dates, on the other hand, while
sometimes tricky to parse, it’s easier to get them right. With that in mind, I
started to balance how much of a loss it would suppose if data such as the lesson
subgroup, lesson kind or room was added into a single field instead of parsed
into separated ones. The main problems if information is aggregated is that you
can’t show lessons by subgroup only and that the classroom can’t be put into the

3Https://github.com/octavifs/horarispompeu/blob/v3/casperjs/addICSCal.js.
4Https://github.com/octavifs/horarispompeu/blob/v4/phantomjs/gcal_addICS.js.

https://github.com/octavifs/horarispompeu/blob/v3/casperjs/addICSCal.js
https://github.com/octavifs/horarispompeu/blob/v4/phantomjs/gcal_addICS.js

PARSING 47

iCalendar location field of an event, which makes looking for that information in
a calendar application more incovenient.

Not being able to filter classes by subgroup could be a problem to some, but
in general is a fair trade-o�. Having a subgroup chooser wouldn’t be great
from a usability standpoint (too many of them, usually more than one per
lesson kind) and a lot of times would not even be that useful for the students
themselves, whom usually attent to other practice or seminar groups than their
own. With that in mind, not parsing subgroups seemed like an acceptable
sacrifice in functionality if it helped bringing up the parser’s precision.

The other problem would be that not parsing lesson classrooms makes it impos-
sible to put them into the location field of an iCalendar file. Usually calendar
applications show the location of an event even when its description is too long,
which is convenient for a lot of lessons that have very long subject names (and
there’s a great deal of them). If, instead of putting some information on the
location field of an event, all the information is placed into the description, it is
cut on the weekly or monthly view of the calendar. That is a problem, from a
usability standpoint, since the users have to click on the event to expand it and
be able to see the correct classroom and group (1 extra action by their part).
Still, 1 extra click by the user may be a fair trade-o� if the information he gets
is 100% accurate.

If we take another look onto a typical lesson, as written in a legacy timetable,
we always find something like this

Subject name
general info (usually lesson kind)
date
specific info (usually groups and classrooms)
more dates
more specific info

The parser acknowledges this and creates a lesson for each pair of date and
specific info it finds. This way, the lesson object drops the fields kind, group and
room and adds a new, more generic, data field.

Thanks to this new parsing strategy, even though the data displayed in the
students calendars is not as easy to read (since everything is put in the event
description, and entries tend to be long), the accuracy of the new system is
almost 100%. In fact, in this 3rd term, only 1 lesson out of 2910 was parsed
wrong (because of a wrongly formated date that the regular expression could
not catch). This big improvements in accuracy of the parser will also have big
benefits regarding our merging problem and will virtually eliminate any kind of
manual administration, if the update process are well automatized.

48CHAPTER 7. SPRINT 4 - SIMPLER PARSING STRATEGY, BETTER PARSING ACCURACY

Figure 7.1: Weekly view of a calendar created through Horaris Pompeu. Some
information is cut if no space is available.

Figure 7.2: Detail view of a calendar created through Horaris Pompeu.

MERGING 49

Merging

In the previous section we have already discussed the benefits and drawbacks of
the new parser regarding accuracy. In this one, we will talk about the e�ects of
the new parsing model on the database schema and the synchronization with
the legacy timetables.

The main problem merging had was that I expected to modify manually many
of the entries generated automatically with the parser. This makes deletion hard
since, to delete, I query the Lesson by reparsing the old HTML file, and if the
Lesson has manually changed in the database it won’t match with the original
content. Since the new parsing virtually eliminated the need to do any kind of
manual update, this problem was less likely to happen. Still, I found a way to
eliminate it entirely thanks to, once again, hashes. Each Lesson class by the
parser is hasheable so I added a uuid field to the Lesson model and saved the
hash of the parsed Lesson there. This means that, even if the model Lesson is
modified, if the hash matches, it still refers to the Lesson created by the parser.
Deletions, with the new uuid field, are just a mater of deleting in the database
all Lesson models whose uuid matches the hash of the lessons to be deleted.

Thanks to the use of hashing and the new parser, the chances of having to
do manual updates or getting an update wrong are almost non existent, so all
the models used to prevent information loss can be deleted. This means that
LessonArchive, LessonInsert, LessonDelete and all the signaling system can be
deleted. Not only does this change make our schema easier to understand, but
it also increases its performance, since database signals aren’t used.

operations.py was updated to ensure that insertions and deletions of lessons
followed the new model described above.

Automation

A new command was added, called updater. This was the complete batch
operation necessary to synchronize the database and calendars with the legacy
timetables. It also implemented an automatic backup system. updater was
designed as a maintenance task to be launched daily that would take care of
the administration of the site and send an email to the admin informing of the
process. The script does the following:

1. Backup of database and old timetables in a local folder, timestamped.
2. Backup of database and production configuration to Amazon S3 (in case

the production server is lost), timestamped.
3. Parse legacy timetables in search for new aliases (using subjectparser).
4. Parse lessons (using lessonparser).
5. Update calendars (using calendarupdater)

50CHAPTER 7. SPRINT 4 - SIMPLER PARSING STRATEGY, BETTER PARSING ACCURACY

6. Send email to admin detailing the results of the process

With this running daily, HorarisPompeu is a self maintained project, with
minimal interaction by my part. Only on the start of the term or in the case of
a new subject alias I need to take further action.

Figure 7.3: Email sent by Horaris Pompeu to the administrator on each updater
run.

Analytics

Since I had added Google Analytics to keep track of the webpage usage by the
users and Horaris Pompeu started gaining some traction the second term of this
year, I will analyze some metrics regarding the real usage of the platform.
A lone Facebook post on the ESUP group on 8th February skyrocketed Horaris
Pompeu popularity and has maintained it afloat for the rest of the year. That

ANALYTICS 51

sole day a 103 calendars were created. The server handled the user load very
well and no problems were noticed during that usage spike.
Since then, Horaris Pompeu has been receiving a lower but steady flow of users,
especially near the announcement date and the start of the 3rd term, which
is when calendars need to be created. So far, the tra�c statistics behave as
expected.
Horaris Pompeu bounce rate is 31.83%. That means that almost 7 out of 10
students that visit the page take at least some action. Even more important
is the fact that 5 out of 10 users that visit the page goes through the process
of creating a new calendar. If we only focus on the calendar creation rate of
new users (the ones visiting Horaris Pompeu for the first time), the rate rises to
60.58%.
Horaris Pompeu has an average time per session of 2min 48s. This could be
considered the time a standard user takes to create and subscribe to his calendar.
Less than 3 minutes. With an investment of less than 3 minutes in Horaris
Pompeu any user can’t forget about his schedule for the rest of the term. It is
also relevant the average number of pages viewed per session, which is very close
to 5 (5 is the number of steps required to create a calendar). This correlates
perfectly with the high number of calendars created per session.

Figure 7.4: Horaris Pompeu metrics from 01-01-2014 until 15-06-2014

To end this analysis, I will check the Nginx logs, in search for active calendars
(calendars subscribed by clients). From the user agent we can ascertain that the

52CHAPTER 7. SPRINT 4 - SIMPLER PARSING STRATEGY, BETTER PARSING ACCURACY

Figure 7.5: Calendars created form 01-01-2014 until 15-06-2014

vast majority of them are used from Google Calendar, even though some of our
users opt for desktop clients such as Outlook on Windows and iCal on OSX.

Using the logs form 7 di�erent days, we can see that the number of active unique
calendars is 160, and the average number of updates per day is 3.2 times per day,
that is, one update every 7.5 hours5. 160 calendars in use out of 335 created
calendars is not such a great number (48%), especially in comparison to the
ones presented before. That makes me think that the decision not to use Google
Calendar API may have been suboptimal and that, at least, I should rethink
the communication strategy to shorten the gap between calendar creation and
subscription.

Still, looking at the facts, Horaris Pompeu has a user conversion rate of 25%,
engages almost 70% of it’s users and allows the creation of calendars in 5 steps
and less than 3 minutes. I think that those numbers reflect that there was
demand for better schedules.

5This data is obtained from the Nginx logs from the last 7 days. Only unique calendar urls
were counted.

Chapter 8

Sprint 5 - Gestió
Acadèmica refactoring

This will cover the fifth and final sprint of the project, from 17-04-2014 until
27-04-2014. Tagged as v51 on theHoraris PompeuGitHub repository. Di�2

between v4 and v5.

Next year, Gestió Acadèmica will give public access to their platform so that
students can create their own timetables. Gestió Acadèmica already had that
information in their database, since it was inputted to create the weekly timeta-
bles posted on each classroom of the university, but that information was not
available to the public, so every faculty had implemented their own system.
Starting this year though, things are changing and many faculties will adopt the
new system for the timetables.

The new system, while universal for the whole university, does not allow creating
timetables with multiple degrees or years. It also doesn’t o�er any way to
subscribe to the custom calendar or any permanent url to access it so, in some
ways, it’s an inferior solution, with the upside that the data is nicely formatted,
so it will be easier to parse this time.

Since the new system still does not solve the problems Horaris Pompeu was
set to resolve, I decided to rewrite the parser so it could make use of the new
backend, this time with the addition of new faculties and degrees.

v5 is the first iteration of Horaris Pompeu that uses the new platform3 by Gestió
Acadèmica as the data source, instead of the legacy ESUP timetables. This
implies changes in the parser, modifications in the database schema and new
management commands. In this iteration I also refactored the views, refined the

1Https://github.com/octavifs/horarispompeu/tree/v5.
2Https://github.com/octavifs/horarispompeu/compare/v4...v5.
3Http://gestioacademica.upf.edu/pds/consultaPublica/look[conpub]ActualizarCombosPubHora.

53

https://github.com/octavifs/horarispompeu/tree/v5
https://github.com/octavifs/horarispompeu/compare/v4...v5

54 CHAPTER 8. SPRINT 5 - GESTIÓ ACADÈMICA REFACTORING

Figure 8.1: Gestió Acadèmica new custom calendar system.

PRESENTATION 55

implementation of the random background images, tweaked the CSS to reduce
font size and improved the settings by clearly dividing which options should be
public and which ones private.

Presentation

Regarding the presentation, the most visible change is the addition of a new
faculty template. Since the new system has support for multiple UPF faculties,
the first step now is choosing the faculty, instead of the degree. I also reduced
the fontsize of the form elements, so that long names would not overflow as
frequently.

The refactoring performed under the hood was more profound, since I wanted
to implement best practices in Django developments as described in [Greenfield
and Roy 2014]. First and foremost, I changed the implementation of the random
background image to use a context processor instead of a view decorator. With
the context processor I made sure that each request has the background variables
injected in the context. This way, it’s not necessary to manually add the variables
with a decorator.

The implementation of the views was refactored, using class based views instead
of function based views, but the functionality remained the same.

Parsing

The most important new piece of code of this v5 iteration is the scraper.
scraper.py has a double role:

• discover all available faculties, degrees and subjects.
• get all available lessons.

To perform the first task, the scraper has a populate_db function. populate_db
starts scanning the Gestió Acadèmica subject chooser (url) to discover all possible
faculties, degrees and subjects. To do this, the scraper scans all possible options
applying a Depth-First-Search strategy from the root of the tree.

populate_db tree:
+- planDocente (1:N)
�+- centro (1:N)
�+- estudio (1:1)
�+- planEstudio (1:N)
�+- curso (1:3)
�+- trimestre (1:2)

http://gestioacademica.upf.edu/pds/consultaPublica/look%5bconpub%5dInicioPubHora?entradaPublica=true&idiomaPais=ca.ES¢ro=335&planDocente=2013

56 CHAPTER 8. SPRINT 5 - GESTIÓ ACADÈMICA REFACTORING

�+- grupo (1:N)
�+- asignaturas

Once the whole tree is available, it is flattened and inserted into the database.
The other role of the scraper is to parse lessons and store them into the databse.
To do this I had to reverse engineer the system used by Gestió acadèmica to
display the data which, in this case, is quite simple.
To create a calendar a POST request to http://gestioacademica.upf.edu/pds/consultaPublica/look[conpub]MostrarPubHora
needs to be made. The parameters needed by the post request are:

planDocente, centro, estudio, planEstudio, curso, trimestre, grupo,
asignaturas, asignatura20052, asignatura20057, asignatura20045,
asignatura20062, asignatura20134, asignatura20137, asignatura20080,
asignatura20070, asignatura20077, asignatura20107, asignatura22037,
asignatura20114, asignatura20110, asignatura20127, asignatura22038,
asignatura20166, asignatura20098

It is easy to see that each new subject needs its own entry as a POST request
key.
Also important to note that to query that URL, some cookies need
to be set, so before performing the POST request, you should GET
http://gestioacademica.upf.edu/pds/consultaPublica/look%5bconpub%5dInicioPubHora?entradaPublica=true&idiomaPais=ca.ES.
After the POST request is done, you will obtain an HTML with some content.
Inside that content, there is a script with a big list of JSON objects, Those
JSON objects are the lesson entries we need. They look like this:

{
title: "Darreres Tendències Artístiques",
aula: "20.183",
tipologia:"Teoria",
grup:"1",
start: "2013-09-25 12:00:00",
end: "2013-09-25 14:00:00",
className:"assig03 ",
festivoNoLectivo: false,
publicarObservacion:"N",
observacion:""

}

It is important not to interpret the page, since when the javascript executes the
array is deleted and the data can only be accessed through the browser’s DOM.
To perform all this actions with Python, it is a simple matter of using the requests
library, with care to ensure that cookie sessions are maintained. The parsing of

MERGING 57

the JSON array is done via regular expressions, since it was the easiest way to
isolate that data from all the boilerplate code from the request.

Now that we know how the Gestió Acadèmica service works, implementing
populate_lessons is just a matter of performing the correct requests to retrieve
the desired lessons. I also made sure that the implementation could fetch multiple
URL’s at once, to speed up the retrieval process of the data.

Merging

Each update drops the Lessons database and loads it from scratch. Since we
assume that Gestió Acadèmica’s data is correct and that we haven’t manually
modified anything we might want to keep, the simplest strategy is to replace our
database contents by what the scraper has retrieved.

Automation

Data in the new system is well defined, so there is no need to deal with subject
aliases or other typos that might arise from human errors. This means that
the SubjectAlias table is refactored out of the system. It also means that the
subjectparser and subjectstojson commands are deleted, since they are no
longer necessary. The sources needed to locate the legacy timetables are also
deleted, along with the operations.py, which dealt with insertions and deletions
of the old Lesson system.

New management commands are the following:

populate.py : Bootstraps the database with faculties, degrees, subjects and
lessons.

update.py : Updates lessons and calendars.

backup.py : Backs up database and config, calls updater.py. Reports results
via email to site admin.

58 CHAPTER 8. SPRINT 5 - GESTIÓ ACADÈMICA REFACTORING

Conclusions

In this report we have gone through the process of designing and evolving a
product to create custom calendars for UPF students. As a result, we’ve obtained
a web application that parses the legacy timetables accurately, manages itself
and enables custom calendar creation for a whole term in less than 3 minutes.

Development cycle has been defined by short bursts (usually one or two weeks,
rarely longer than a month), followed by long periods of inactivity where I could
focus on managing the platform and evaluating the usefulness of the changes I
had made. The large number of iterations, the time spent managing the system
and the feedback collected by the users has proven very useful to pin-point the
best approach to the problem.

Attention to detail is time consuming. Even though the foundations of the
user interface were established as far as v1, all iterations have included some
changes in the templates, whether they were more superfluous, such as dynamic
background images or relevant, like automatic calendar subscription.

Automation is key. Having an automated system in charge of updating the
calendars and backing up the service daily frees me from worries and Horaris
Pompeu from errors. Every minute dedicated to it will return its investment
tenfold.

Sacrifice is a powerful tool, when judiciously applied. Thanks to a relaxation on
the parser requirements (v4) I was able to simplify the codebase, increase the
accuracy of the parser and, in conclusion, end up with a much more reliable and
automatable system, while losing little functionality.

Launching a critical service challenging. Even though I advertise Horaris Pompeu
as an unnoficial solution, if it ever has any hope of gaining traction it has to be
100% reliable. This is the main reason why I delayed public announcement as
far as v4, because that was the first version were I was truly convinced that all
lessons were right. I have received no complaints so far of any missed classes
because of Horaris Pompeu, and I’m sure I would have gotten notice, since
errors and problems are the main (and only) motivation for users to talk with
the support team (me). Still, the feedback has been positive and having users,
while a responsibility, it is also a big motivation to continue improving and

59

60 CHAPTER 8. SPRINT 5 - GESTIÓ ACADÈMICA REFACTORING

maintaining the system. The sooner you can enter this feedback loop the better.
Your software will thank you for it.

Now that the analytics have validated Horaris Pompeu approach, I plan to do a
university wide launch next year. Since the coding part is finished it will only
be a matter of setting up the web app and focus on doing a good marketing
campaign. If anything, the system leaves us with a sole open question: how
do we engage more users to finish the subscription process to their calendars?
Right now about 50% percent of the students creating a calendar subscribes to
it, which may be either because they don’t understand the system or because
they don’t trust the automatic subscription approach. It would be interesting,
for upcoming terms, to evaluate how a better communication strategy may raise
the subscription rates or even to reassess the usage of the Google Calendar API
as a means of lowering the barrier to subscription.

Bibliography

B. Desruisseaux, E. and Oracle. 2009. Internet Calendaring and Scheduling
Core Object Specification (iCalendar). http://tools.ietf.org/html/rfc5545.
Beck, K., Beedle, M., van Bennekum, A., et al. 2001. Agile Manifesto.
http://agilemanifesto.org/.
C. Daboo, E. and Apple Inc. 2009. iCalendar Transport-Independent
Interoperability Protocol (iTIP). http://tools.ietf.org/html/rfc5546.
C. Daboo, E. and Apple Inc. 2013. Parameter Value Encoding in iCalendar
and vCard. http://tools.ietf.org/html/rfc6868.
Eby, P.J. 2003. Python Web Server Gateway Interface v1.0. http://legacy.
python.org/dev/peps/pep-0333/.
Eby, P.J. 2010. Python Web Server Gateway Interface v1.0.1. http://legacy.
python.org/dev/peps/pep-3333/.
Foundation, T.A.S. 2004. Apache License, Version 2.0. http://www.apache.
org/licenses/LICENSE-2.0.html.
Free Software Foundation. 1991. GNU General Public License version 2.
http://www.gnu.org/licenses/gpl-2.0.txt.
Free Software Foundation. 2007. GNU General Public License v3. http:
//www.gnu.org/licenses/gpl-3.0.txt.
Github. 2014. Open source licensing. https://help.github.com/articles/
open-source-licensing.
Greenfield, D. and Roy, A. 2014. Two Scoops of Django: Best Practices
For Django 1.6. Two Scoops Press.
Information, F. and Standards, P. FIPS PUB 180-4 Secure Hash Standard
(SHS). March 2012.
Krasner, G.E. and Pope, S.T. 1988. A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 System. .
Kruchten, P. 2003. The Rational Unified Process: An Introduction. Addison-
Wesley Professional.

61

http://tools.ietf.org/html/rfc5545
http://agilemanifesto.org/
http://tools.ietf.org/html/rfc5546
http://tools.ietf.org/html/rfc6868
http://legacy.python.org/dev/peps/pep-0333/
http://legacy.python.org/dev/peps/pep-0333/
http://legacy.python.org/dev/peps/pep-3333/
http://legacy.python.org/dev/peps/pep-3333/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt
https://help.github.com/articles/open-source-licensing
https://help.github.com/articles/open-source-licensing

62 CHAPTER 8. SPRINT 5 - GESTIÓ ACADÈMICA REFACTORING

Leff, A. and Rayfield, J.T. 2001. Web-application development using the
model/view/controller design pattern. . . . , 2001. EDOC’01. Proceedings. Fifth
IEEE . . . , 118–127.

Open Source Initiative. 1988. MIT License. http://opensource.org/licenses/
MIT.

Rubin, K.S. 2012. Essential Scrum: A Practical Guide to the Most Popular
Agile Process. Addison-Wesley Professional.

Sims, C. and Johnson, H.L. 2012. Scrum: a Breathtakingly Brief and Agile
Introduction. Dymaxicon.

Sommerville, I. 2010. Software Engineering. Addison-Wesley.

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT

	Abstract
	English
	Català
	Castellano

	Introduction
	Motivations
	Methodology

	Design goals
	Requirements
	Problems
	Metrics

	Legacy system challenges
	Why is an adaptation needed?
	Legacy system description
	Legacy system challenges

	Sprint 0 - Initial prototype
	Technology stack
	Architecture
	Presentation
	Ubiquity
	Parsing
	parser
	models

	Automation
	subjectparser.py
	aliasparser.py
	classparser.py

	Sprint 1 - Production ready prototype
	Licensing
	Presentation
	Ubiquity
	Parsing
	Merging
	Automation

	Sprint 2 - Mobile compatible responsive design
	Presentation
	Ubiquity
	Automation
	Deployment

	Sprint 3 - Automation, user communication and analytics
	Presentation
	Parsing
	Automation
	Merging
	Deployment

	Sprint 4 - Simpler parsing strategy, better parsing accuracy
	Presentation
	Parsing
	Merging
	Automation
	Analytics

	Sprint 5 - Gestió Acadèmica refactoring
	Presentation
	Parsing
	Merging
	Automation

	Conclusions
	Bibliography

