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0 Day 0: Prerequisites

These are a few facts about vectors you should be aware of. Revise them carefully and complete information by
checking any high school algebra book or college manual.

0.1 Vectors in R2 and R3

Consider two points (either in R2 or R3): P and Q. This pair of points is called a vector,
−−→
PQ. Point P is called the

origin and point Q the endpoint. The easy way to think of vectors is considering them arrows starting at the origin
and ending at the endpoint. For example, if ~v =

−−→
PQ is a vector1 in R2:

P

Q

−−→
PQ vector in R2

v1

v2

−−→
PQ = (v1, v2)

In R3 we would have three components (v1, v2, v3) describing the way of going from P to Q following each of the
coordinate axes:

P

Q
−−→
PQ = (v1, v2, v3)

v1

v2

v3

1Vectors are usually represented as ~v (blackboard notation) or using boldface v. We will use indistinctly both notations.
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The components of a vector can be found as the difference between the coordinates of the endpoint and the origin.
Notice that the components of a a vector depend only on the relative position of its origin and endpoint. In this way,
a vector can be “moved” as long as the “arrow” does not change its length, its direction (moves to a parallel line) or
sense (does not point at the contrary direction).

Vectors can be manipulated using their components (analytically) or using their graphical representation as arrows
with an origin and an endpoint (geometrically). So, vectors can be added:

• Analytically:

(v1, v2) + (w1, w2) = (v1 + w1, v2 + w2) or (v1, v2, v3) + (w1, w2, w3) = (v1 + w1, v2 + w2, v3 + w3)

• or geometrically (both in R2 and R3):

~v

~w

~v + ~w

Vectors can also be multiplied by numbers:

• Analytically:
α·(v1, v2) = (α·v1, α·v2) or α·(v1, v2, v3) = (α·v1, α·v2, α·v3)

• or geometrically (both in R2 and R3):

~v

α·~v

If the origin coincides with the endpoint, the vector is the vector ~0 = (0, 0) or ~0 = (0, 0, 0).

0.2 Linear independence

Two vectors are called linearly dependent if one can be obtained as the other multiplied by a number. This means
that both vectors have the same direction.

If two vectors are not dependent, they are independent. Their directions are different.

Linearly Dependent (LD) Linearly Independent (LI)
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Using components, two LD vectors have proportional components:

In R2 v1
w1

=
v2
w2

⇔

∣∣∣∣∣ v1 v2

w1 w2

∣∣∣∣∣ = 0;

In R3 v1
w1

=
v2
w2

=
v3
w3

⇔ rank of matrix
(
v1 v2 v3
w1 w2 w3

)
is not 2.

Two LI vectors have non-proportional components

In R2 v1
w1
6= v2
w2

⇔

∣∣∣∣∣ v1 v2

w1 w2

∣∣∣∣∣ 6= 0;

In R3

{
v1
w1

=
v2
w2

=
v3
w3

}
is not true ⇔ rank of matrix

(
v1 v2 v3
w1 w2 w3

)
is 2.

0.3 Linear independence for more than two vectors

A vector ~u is a linear combination (LC) of two other vectors ~v, ~w when we can find real numbers s and t such that

~u = s·~v + t·~w.

Now, three vectors are LD when one of them is a LC of the other two. Consequently, three vectors are LI when they
are not LD, that is, when none is a LC of the other two.

In R2, it is impossible to have three LI vectors. In R3, three (non-zero and different) vectors are LI if and only if they
are not on one plane. This means also that if we have three vectors on the same plane, they are LD.

In general, the independence of a set of vectors can be determined by using matrices. We write the vectors as lines
(or columns) of a matrix and then the rank of this matrix is the maximum number of independent vectors that you
can find in the set. If you use Gauss’ method to determine the rank of the matrix, the non-zero files left at the end
of the process correspond to LI vectors.

0.4 Scalar product

The “length” of a vector is called its module (or norm). It can be found simply by using Pythagoras Theorem:

‖(v1, v2)‖ =
√
v2
1 + v2

2 ; or ‖(v1, v2, v3)‖ =
√
v2
1 + v2

2 + v2
3 .

There is an important external operation called the scalar product or dot product of two vectors:

α◦

~v

~w

~v • ~w = ‖~v‖ · ‖~w‖ · cosα◦

As it is geometrically obvious, if ~v and ~w are perpendicular (orthogonal), α◦ = 90◦ and as cos 90◦ = 0, ~v • ~w = 0. This
is true in R2 and R3:

~v ⊥ ~w ⇔ ~v • ~w = 0.

This can be translated into components. It is not difficult to see (we need some trigonometry for that) that

~v • ~w = v1·w1 + v2·w2 + v3·w3.

Consequently
~v⊥~w ⇔ ~v • ~w = 0 ⇔ v1·w1 + v2·w2 + v3·w3 = 0.

These notions will be very important in the following.

3



1 Day 1: Lines and planes in R3

1.1 Planes

Close your eyes and imagine the classroom we are in bare of furniture and the floor completely level. The left-down
corner is the origin of coordinates (0, 0, 0). The x axis runs where the floor meets the left glass wall. The y axis is the
meeting of the floor and the blackboard wall, and lastly, the z axis is the vertical corner going up from the origin to
the ceiling. We are all in the (+,+,+) area of the space R3.

Question 1. What have in common all the points on the blackboard wall? Answer to question 1.

Question 2. And those on the floor (remember there are no seats and the floor is completely level)?
Answer to question 2.

Question 3. And the points on the glass wall? Answer to question 3.

z

x

y

We have seen three examples of equations of planes.

Now, in the same way that 3x+ 2y − 5 = 0 is the equation of a straight line in R2, the equation 2x− y + 3z − 4 = 0
is the general equation of a plane in R3.

Any equation ax+ by + cz + d = 0 is the equation of a plane in R3 (a, b, c not all 0).

Later, we will see why this is so.

Question 4. What happens with the plane if a = b = 0? Answer to question 4.

Question 5. Find the equation of the plane that contains points (0, 0, 1), (0, 2, 0) and (−1, 1, 0). Answer to question 5.

1.2 Lines.

Let us go back to our imaginary empty classroom. Where are all the points (0, 0, ·)? These points satisfy the system
of equations x = 0; y = 0 where the variable z does not appear since it can take any value. Close your eyes. Can you
picture in your mind points like (0, 0, 1), (0, 0, 2), etc? What do they share?

You must have realized by now that we are talking of a straight line: the z-axis. In fact, x = 0 is a plane (the
blackboard wall), y = 0 is another plane (the glass wall) and the z-axis is their intersection. Any straight line can be
imagined as the intersection of two planes.

A straight line in R3 does not have “an equation” but a system of equations.2

2Actually, the system must have one degree of freedom, that is, the rank of the system matrix must be 2. That means that in the box,
vectors (a1, b1, c1) and (a2, b2, c2) have to be linearly independent.
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A system of equations
{
a1x+ b1y + c1z + d1 = 0
a2x+ b2y + c2z + d2 = 0 represents a line in R3

((a1, b1, c1) and (a2, b2, c2) linearly independent).

It happens that we refer to the system as the general equation of the line (forcing language). Each one of the equations
of the system is the equation of a plane. The line is given as the intersection of two planes.

But there are an infinity of couples of planes that intersect in the same line. Consequently, there are an infinity of
“equations” of a line as the intersection of two planes. A little reflection, though, convinces us that any other plane
that goes trough the same line must have an equation which is a linear combination of the two initial planes: given

the line r with the equation
{
a1x+ b1y + c1z + d1 = 0
a2x+ b2y + c2z + d2 = 0 , the plane

s·(a1x+ b1y + c1z + d1) + t·(a2x+ b2y + c2z + d2) = 0 s, t ∈ R (not both 0).

contains line r.

Question 6. Find a plane that contains line
{

2x− 3y + z + 1 = 0
−x+ y − z − 3 = 0 and passes through point (0, 0, 0).

Answer to question 6.

Answers to questions:

A1. All points have a first coordinate equal to zero, i.e. x = 0. Back

A2. Now z = 0. Back

A3. y = 0. Back

A4. If a = b = 0 then c 6= 0 and the equation is cz + d = 0 or, equivalently, z = −d/c. The plane is parallel to the
floor plane, z = 0. Back

A5. If ax+ by + cz + d = 0 is the equation of the plane we seek, each point must satisfy it: a·0 + b·0 + c·1 + d = 0
a·0 + b·2 + c·0 + d = 0

a·(−1) + b·1 + c·0 + d = 0

This is an dependent system (3 equations, 4 unknowns). Its solution, in terms of d, is c = −d
b = −d/2
a = b+ d = d/2

If we take any value of d 6= 0, for instance d = 2 (which is convenient to avoid fractions) we have as equation of
our plane x− y − 2z + 2 = 0. Back

A6. The plane we seek must have as equation a linear combination of the two equations that define the given line

s·(2x− 3y + z + 1) + t·(−x+ y − z − 3) = 0, that is (2s− t)x+ (−3s+ t)y + (s− t)z + s− 3t = 0

If the plane has to pass through point (0, 0, 0), then s − 3t = 0. That means that s = 3t. Using a value (6= 0)
for t, for example, t = 1, we have s = 3 and the equation of the plane is

5x− 8y + 2z = 0.

(See further down for a different solution to the same problem.) Back

2 Day 2: Vector equations of lines and planes.

The textbook, Sydsaeter & Hammond, presents a new way of seeing points, lines and planes in space: the vector
point of view. This is very useful in many occasions.

Any point (a1, a2, a3) in R3 can be seen as a vector with three components, a = (a1, a2, a3). This vector is also called
a position vector. We have a total one-to-one correspondence between points and their position vectors.

Now, if we have two points on a line,
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Any point x = (x, y, z) on the line that goes through two given points in space, a and b can be obtained as

x = a + t (b− a) where t is a real number.

This is so because x− a and b− a are LD:

For t = 0 we obtain a. For t = 1, we get b. And so on. The points in between a and b are obtained for values of t
between 0 and 1. Thus, the midpoint between a and b is

m = a + 0.5(b− a) = 0.5b + 0.5a =
1
2

(a + b).

The vector equation of the line that goes through points a and b is:

x = a + t (b− a) , where t ∈ R. (1)

a

b

x

x− a = t · (b− a)

Vector b− a is called a direction vector for our line. Actually, any vector joining two different points of the line is
a direction vector (proportional to each other).

Remember that x represents any point on the line and that to each point there corresponds a unique value of t and
viceversa. If we break this vector equation in components, we have

(x, y, z) = (a1, a2, a3) + t (b1 − a1, b2 − a2, b3 − a3)

that is  x = (1− t)a1 + tb1
y = (1− t)a2 + tb2
z = (1− t)a3 + tb3, t ∈ R

which is another form of “equation” for our line: the parametric equation.

Similarly, a plane has also a vector equation:

Any point x = (x, y, z) of the plane that goes through three given points in space (non-collinear), a, b, and c may be
obtained as

x = a + s (b− a) + t (c− a) where s and t are real numbers. (2)

The vectors b−a and c−a are called direction vectors of the plane. Actually, any pair of linearly independent vectors
contained in the plane are direction vectors of the plane.

Equation (2) is easily obtained as vectors x− a,b− a and c− a must be LD if they are all in a plane. As b− a and
c− a are LI, we must have

x− a = s (b− a) + t (c− a) where s and t are real numbers.

Question 7. Rework question 6 at the end of the previous section. Answer to question 7.

2.1 The general equation of a plane.

A plane can be defined

• by any three of its points (non collinear) or
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• by any one of its points, a, and any orthogonal vector (perpendicular) to the plane (which is called a normal
vector), p.

In the first case, three non-collinear points provide us with a position vector (any of the points) and two direction
vectors (any two of the vectors defined by any pair of the given points). The vector equation of the plane, (2), is very
easy to write.

In the second case, any other point on the plane x satisfies the general equation of the plane:

p · (x− a) = 0. (3)

This translates immediately into components as

p1(x− a1) + p2(y − a2) + p3(z − a3) = 0.

Expanding this last equation, we end up with an equation like

p1 x+ p2 y + p3 z + d = 0,

where d = −a1 p1 − a2 p2 − a3 p3.

This is again the equation we met at the beginning of the lecture. Notice that the coefficients of x, y, and z are exactly
the components of a normal vector to our plane.

2.2 Some examples.

Work out a few exercises as examples. Try to solve each one before looking up the solution.

1. Find the equation of the line through the points (2, 3, 4) and (−3, 0, 5).
We can get different equations as the solution. The vector equation would be (I choose a = (2, 3, 4); could be
the other point, no problem):

x = (2, 3, 4) + t·(−3− 2, 0− 3, 5− 4), that is x = (2− 5t, 3− 3t, 4 + t), t ∈ R

Separating each component we get the equation in a different way (parametric equation): x = 2− 5t
y = 3− 3t
z = 4 + t, t ∈ R

As t has to be the same value in each of the three equations above, we have

x− 2
−5

=
y − 3
−3

=
z − 4

1

which is called the continuous (or symmetric) equation of a line. In fact, we can obtain two independent
equations from the two equalities above:

x− 2
−5

=
y − 3
−3

y − 3
−3

=
z − 4

1

that is

{
3x− 5y + 9 = 0
y + 3z − 15 = 0

which is the general equation of the line as intersection of two planes.

2. Find the equation of the plane which is parallel to plane 3x − 2y + z − 7 = 0 and passes through the origin of
coordinates.
Two parallel planes have the same normal vector. Thus the plane we are looking for must have as general
equation

3x− 2y + z + d = 0.

The value of d can be determined imposing that (0, 0, 0) belong to the plane:

0 + d = 0 ⇒ d = 0.

The solution is 3x− 2y + z = 0.
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3. Find the equation of the plane that passes through the three points (−1, 1, 1), (2, 0,−1), and (3,−2,−1).
If our plane has ax+ by+ cz+ d = 0 as general equation, the three points must satisfy it. This provides us with
a system of equations:  −a+ b+ c+ d = 0

2a− c+ d = 0
3a− 2b− c+ d = 0

The system is dependent. Solving for three of the variables (let us use d as a parameter), we have a = −(4/3)d
b = −(2/3)d
c = −(5/3)d.

Let us choose a value for d. Let us say d = −3 (in this way we will get positive whole numbers for a, b and c).
The solution is

4x+ 2y + 5z − 3 = 0.

Any other value of d would lead to a multiple of the equation of the plane (that is, the same equation).

Another way of solving this problem is to think about the general equation of the plane as given by

p·(x− a) = 0.

Point a can be any of the three points: let us say a = (−1, 1, 1). We want to find the components of the normal
vector (p1, p2, p3). Again, replacing x with the coordinates of the other two points, the equation has to be
satisfied: {

(p1, p2, p3)·(2 + 1, 0− 1,−1− 1) = 0
(p1, p2, p3)·(3 + 1,−2− 1,−1− 1) = 0 ⇒

{
3p1 − p2 − 2p3 = 0

4p1 − 3p2 − 2p3 = 0

Again, this is a dependent system. Solving for p1, p2:{
p1 = 4p3/5
p2 = 2p3/5

Let us choose a value for p3. Let us say p3 = 5 (in this way we will get whole numbers for p1, p2). The solution
is p1 = 4 and p2 = 2 and the equation is

(4, 2, 5)·(x+ 1, y − 1, z − 1) = 0 ⇒ 4x+ 2y + 5z − 3 = 0.

Answers to questions:

A7. Another way of solving question 6 is finding two points of the given line and, with their help, establish the vector
equation of the plane wanted. How do we find points on line r? Solving the system of equations:{

2x− 3y + z + 1 = 0
−x+ y − z − 3 = 0

This is a dependent system. We may use variable z as a parameter:{
2x− 3y = −z − 1
−x+ y = z + 3 ⇒

{
x = −2z − 8
y = −z − 5

When z = 0 we get point (−8,−5, 0) and when z = 1, we get (−10,−6, 1). We can use point (0, 0, 0) as a base
point and the vectors with these endpoints and (0, 0, 0) as origin as direction vectors for our plane. Its vector
equation will be

(x, y, z) = t·(−8,−5, 0) + s·(−10,−6, 1).

We can see that it coincides with the answer obtained before. The parametric equation will be x = −8t− 10s
y = −5t− 6s
z = s

Now, this system must have a solution for t and s. Consequently, the determinant∣∣∣∣∣∣∣∣
−8 −10 x

−5 −6 y

0 1 z

∣∣∣∣∣∣∣∣ = 0.
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This provides us with the general equation of our plane:

−5x+ 8y − 2z = 0.

Back

Incidentally, this example provides us with a new way of getting directly the:

General equation of a plane given one of its points, say (a1, a2, a3), and two direction vectors, say (u1, u2, u3)
and (v1, v2, v3): ∣∣∣∣∣∣∣∣

u1 v1 x− a1

u2 v2 y − a2

u3 v3 z − a3

∣∣∣∣∣∣∣∣ = 0.

3 Day 3: Functions of two variables

This course deals mainly with two-variable functions, that is, functions whose real value depends on two independent
variables x and y (or x1 and x2): f(x, y). The value of the function is usually called z. The following are examples of
functions of two variables:

z = x2 + y2; z =
x2

x+ y
; z = ln(x− y); z =

√
x2 + y2 − 4. (4)

As in the case of one-variable functions, the image of f(x, y) can be any real value with the only condition that it is
unique: to a pair of values (x, y) there corresponds, at the most, only one value of z = f(x, y).

3.1 The graph of z = f(x, y)

We will adopt the convention of representing (x, y) as a point on the plane z = 0 of R3, the xy-plane, and the
corresponding image f(x, y) on the z-axis. Thus, we obtain a point in space (x, y, f(x, y)) whenever f(x, y) exists.
Joining all these points we get the graph of our function z = f(x, y) which is a surface in space. In fact, a plane of
equation z = mx+ ny+ p is an easy example of a two-variable function with a recognizable graph. All planes, except
those parallel to the z-axis (Why?), are the graphs of functions.

In class we will see a few of those graphs obtained with computer software. There are many freeware programmes
that plot 3D graphs. We will use mainly two

www.wolframalpha.com
www.livephysics.com/ptools/online-3d-function-grapher.php

Question 8. Use these programmes to plot a few two-variable functions as z = x2 − y2; z = ex
2+y2

, z = sin(x+ y);
z = 1/(x+ y); etc. Answer to question 8.

3.2 The domain of z = f(x, y)

The set of points in R2 for which f(x, y) is defined is called the domain of f . The set of values in R that are images
f(x, y) for some values (x, y) is called the range of f . Notice that the domain is a subset of R2 and is part of the
plane xy-plane and the range is a subset of R and is part of the z-axis.

When a function is defined as an algebraic formula in the variables x and y (see the examples above), the domain is
the greatest subset of R2 for which the formula makes sense and produces an image.

Question 9. What is the domain of the functions in example (4) above? Answer to question 9.

Question 10. Draw the domains in question 9. Remember that, for a two-variable function, the domain is a set in
the xy-plane!

Answer to question 10.
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3.3 Limits and continuity

We are not going into the details of limits of two-variable functions and the formal definition of continuity. You have
already worked these ideas for one-variable functions and those are not too different in the case of two variables (though
limits can be a little tricky). Continuity of a function f(x, y) over a domain S is interpreted as the fact that the surface
of its graph does not break. If it does, the lines over which this happens are called lines of discontinuity. In the
function z = x2/(x+ y), the line x+ y = 0 is a line of discontinuity.

Functions defined through formulae that involve polynomials, rational expressions, powers, exponentials, logarithms
and trigonometric functions are continuous on their domains.

3.4 Level curves

A nice way of looking at a two-variable graph is to use level curves as in a topographical map. We plot, in the same
diagram, f(x, y) = c for different values of c and these curves give you an idea of how the “terrain” (the surface of
f(x, y)) looks like. Watch the video www.tv3.cat/3alacarta/#/videos/3315331, minutes 6–10.

Question 11. For the function z = 2x+ 3y − 6 draw in the same diagram the level curves

z = −4, z = −2, z = 0, z = 2, z = 4.

Answer to question 11.

Question 12. For the function z = x2 + y2 draw in the same diagram the level curves

z = 1, z = 4, z = 9.

Answer to question 12.

Question 13. For the function z = ln(y − x) draw in the same diagram the level curves

z = −1, z = 0, z = ln 2, z = 1.

Answer to question 13.

Answers:

A8. Use the web pages indicated.

Back

A9. (a) For z = x2 + y2 the domain is R2 (the whole plane) because x2 + y2 can be always be calculated for any
(x, y). The range is quite obvious in this case: [0,∞).

(b) For z =
x2

x+ y
the domain is the set of points:

S = {(x, y) : x+ y 6= 0} .

This is the whole plane except for those points on the line x+ y = 0.

(c) For z = ln(x− y) the domain is the set of points:

S = {(x, y) : x− y > 0} .

This is an open half-plane: the set of points on one side of the line y = x.

(d) Lastly, for z =
√
x2 + y2 − 4 the domain is the set of points:

S =
{

(x, y) : x2 + y2 ≥ 4
}
.

This is the exterior of the circle of center (0, 0) and radius 2, including the circumference itself.

Back

A10. (a) For z = x2 + y2 the domain is R2 (the whole plane). Graphically there is not much to see:
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−2 −1 1 2

−2

−1

1

2

0

(b) For z =
x2

x+ y
the domain is the set of points:

S = {(x, y) : x+ y 6= 0} .

This is the whole plane except for those points on the line x+ y = 0:

−2 −1 1 2

−2

−1

1

2

0

(c) For z = ln(x− y) the domain is the set of points:

S = {(x, y) : x− y > 0} .

This is an open half-plane: the set of points below line y = x.

−2 −1 1 2

−2

−1

1

2

0

(d) Lastly, for z =
√
x2 + y2 − 4 the domain is the set of points:

S =
{

(x, y) : x2 + y2 ≥ 4
}
.

This is the exterior of the circle of center (0, 0) and radius 2, including the circumference itself:
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Back

A11.

−4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

0

z = −4

z = −2

z = 0

z = 2

z = 4

Back

A12.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

z = 9 z = 4

z = 1

Back
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A13.

−4 −3 −2 −1 1

−2

−1

1

2

0

z = −1
z = 0

z = 1
z = ln 2

Back

4 Day 4: Partial derivatives

4.1 Review: one-variable derivative concept

Let us recall the definition of the derivative of a one-variable function, f , at an interior3 point a of its domain:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

. (5)

The numerator of the fraction in the limit is the increase (or decrease) of the value of function f as x moves from a
to nearby a+ h: 4f = f(a+ h)− f(a). The fraction in the limit reflects the “slope” of the graph of f as if it were a
straight line joining points (a, f(a)) and (a+ h, f(a+ h)). In economics, the derivative is called the “marginal” of the
function at point a. As a rough approximation, the limit in (5) is sometimes taken as if h = 1

f ′(a) ≈ f(a+ 1)− f(a)

and the marginal value is so the “value of the last unit”. As an example, think of the profit function of a firm, π(q),
as a function of the production q. The marginal profit when q = 30 would be π(31) − π(30), that is, the increase in
profit as a consequence of moving production from 30 to 31 units.

4.2 Definition of partial derivative

Let us now think of a function of two variables: z = f(x, y) and consider an interior point in its domain (a, b). How
can we define the concept of derivative of f at (a, b)? Moving from (a, b) can now be done in many directions! What
if we try to move to a nearby point by just changing one variable at a time? We can pass from (a, b) to (a+ h, b) and
so just change variable x or we can move from (a, b) to (a, b+ k) and so change only variable y. Mimicking definition
(5), we can now define two derivatives at (a, b):

f ′x(a, b) = lim
h→0

f(a+ h, b)− f(a, b)
h

; (6)

f ′y(a, b) = lim
k→0

f(a, b+ k)− f(a, b)
k

(7)

which we will call partial derivatives with respect to (w.r.t.) x and y respectively. These derivatives have different
notations (that we will use indistinctly):

f ′x and f ′y or f ′1 and f ′2 or
∂f

∂x
and

∂f

∂y
or D1f and D2f.

When we are given the point (a, b) at which the derivative is taken we write

f ′x(a, b) and f ′y(a, b) or
∂f

∂x

∣∣∣∣
(a,b)

and
∂f

∂y

∣∣∣∣
(a,b)

or D1f(a, b) and D2f(a, b).

3The point has to be interior to the domain to allow h to take positive and negative values while keeping a+ h inside the domain.
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It is not difficult to see that the same rules that are valid for one-variable derivatives are also valid for partial derivatives
and so, when a function is defined by a formula, the partial derivatives —as functions of (x, y)— can be obtained
using the usual calculus rules. We only have to fix the value of the other variable (consider it a constant) and proceed
as if the function were a one-variable function. Take, for example,

f(x, y) = x3 + 3x2y − 5xy2 + xy − y4 we have

{
f ′x = 3x2 + 6xy − 5y2 + y;

f ′y = 3x2 − 10xy + x− 4y3.

4.3 Linear approximations of the derivatives

As in the one-variable case, we can also interpret the partial derivative of a two-variable function as a marginal value
w.r.t. one of the variables (keeping the other one fixed):

f ′x(a, b) ≈ f(a+ 1, b)− f(a, b);

f ′y(a, b) ≈ f(a, b+ 1)− f(a, b).

This approach allows us to study the effect of altering one variable without changing the other. For example, if P (K,L)
is a production function depending on the variables K (capital) and L (labour), P ′x(300, 70) would be, approximately,
the increase in production when K changes from 300 to 301 (keeping labour at 70). Using symbols:

P ′x(300, 70) ≈ P (301, 70)− P (300, 70).

In fact, the approximation also works even if we use a value of h and k different from 1:

f ′x(a, b) ≈ f(a+ h, b)− f(a, b)
h

⇒ f(a+ h, b) ≈ f(a, b) + h·f ′x(a, b) ; (8)

f ′y(a, b) ≈ f(a, b+ k)− f(a, b)
k

⇒ f(a, b+ k) ≈ f(a, b) + k·f ′y(a, b) . (9)

The closer h and k are from 0, the better the approximation.

As it is seen from these last formulae, the value of f at a point (a, b) and the value of its derivatives there can be used
to approximate linearly the value of f at a nearby point. This is particularly useful when both, f(a, b) and f ′x(a, b)
(or f ′y(a, b)) are known (or easy to find). The next question illustrates this point.

Question 14. Find the approximate value of f(x, y) = ln(x2 +y) at point (0.1, 1) using the linear approximation given
by the derivative w.r.t. x at point (0, 1). ( Hint: what are the values of f(0, 1) and f ′x(0, 1)?). Answer to question 14.

4.4 Graphic approach

These variations on the (infinitesimal) value of functions can also be easily read on a level curves map (contour plot) of
the function. Consider f(x, y) = x2 + 2y2. The level curves z = 1, z = 2, z = 3, etc. are (inside out) ellipses centered
on (0, 0):

−2 20

A

z = 1

z = 2

z = 3

z = 4

At a point like A in the figure, lying on z = 3, f ′x(A) < 0 because moving from A horizontally to the right (that is,
increasing the x coordinate by h > 0 while the y coordinate stays the same) causes the value of the image to decrease
as it moves from z = 3 towards z = 2. With a similar reasoning, f ′y(A) > 0 because moving from A vertically upwards
(that is, increasing the y coordinate by k > 0 while the x coordinate stays the same) causes the value of the image to
increase as it moves from z = 3 towards z = 4.
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4.5 Second-order derivatives.

Each first-order derivative of f(x, y) is a two-variable function. As such we can find for it its first order derivatives.
These will be the second-order derivatives of f . There are 4 of these:

f ′′xx, f
′′
xy, f

′′
yx, f

′′
yy or

∂2f

∂x2
,
∂2f

∂y ∂x
,
∂2f

∂x ∂y
,
∂2f

∂y2
.

Fortunately, for the most usual functions we have that the mixed derivatives, f ′′xy and f ′′yx are equal. This fact is
known as Young’s Theorem:

Young’s Theorem. If f ′′xy and f ′′yx exist at a point and are continuous, they coincide.

Young’s Theorem extend to third-order derivatives, etc. For example, it says that

f ′′′xyx = f ′′′xxy = f ′′′yxx

whenever these three derivatives exist and are continuous.

Question 15. Check Young’s Theorem with the function of the example above: f(x, y) = x3 + 3x2y− 5xy2 + xy− y4

for which we had

f ′x = 3x2 + 6xy − 5y2 + y

f ′y = 3x2 − 10xy + x− 4y3.

Answer to question 15.

4.6 The Hessian matrix.

The Hessian matrix of a function z = f(x, y) is the following matrix formed by the 4 second-order partial derivatives:

H(x, y) =


∂2f

∂x2

∂2f

∂y∂x

∂2f

∂x∂y

∂2f

∂y2

 .

The Hessian matrix plays a fundamental role at the time of classifying maxima and minima of two-variable functions.

As an easy corollary of Young’s Theorem, the Hessian matrix of a function is a symmetric matrix.

Question 16. Find the Hessian matrix of z = e3x+2y. What is its value at the point (1, 1)? Answer to question 16.

Question 17. What is the value of the determinant of the Hessian matrix we have just found? Answer to question 17.

Answers to questions:

A14. In this case, f(0, 1) = ln 1 = 0 and f ′x =
1

2
(
x
2 + y

) gives f ′x(0, 1) = 0.5. We use (8) with h = 0.1:

f(0.1, 1) = ln(1.05) ≈ f(0, 1) + 0.1·f ′x(0, 1) = 0 + 0.1·0.5 = 0.05.

This is a good approximation of ln(1.05) whose real value is 0.04879 . . . Back

A15. The second order mixed derivatives are

f ′′xy = 6x− 10y + 1 and f ′′yx = 6x− 10y + 1

which are exactly the same. As for the third-order mixed derivatives,

f ′′′xyx = 6; f ′′′xxy = (6x+ 6y)′y = 6; f ′′′yxx = 6.

They also coincide. Back

A16. The first-order derivatives are

∂z

∂x
= 3e3x+2y;

∂z

∂y
= 2e3x+2y.
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The second order partial derivatives are:

∂2z

∂x2
= 9e3x+2y;

∂2z

∂y∂x
= 6e3x+2y

∂2z

∂y2
= 4e3x+2y;

∂2z

∂x∂y
= 6e3x+2y.

The Hessian is

H(x, y) =


∂2z

∂x2

∂2z

∂y∂x

∂2z

∂x∂y

∂2z

∂y2

 =

(
9e3x+2y 6e3x+2y

6e3x+2y 4e3x+2y

)
.

Notice that the Hessian is a “function” of (x, y), that is, it changes with each point (x, y):

H(0, 0) =

(
9 6

6 4

)
; H(1, 1) =

(
9e5 6e5

6e5 4e5

)
= e5·

(
9 6

6 4

)
.

(Remember that matrices and determinants behave differently when multiplied by an external number.) Back

A17.

|H(1, 1)| =

∣∣∣∣∣ 9e5 6e5

6e5 4e5

∣∣∣∣∣ = e5·e5
∣∣∣∣∣ 9 6

6 4

∣∣∣∣∣ = e10·3·2

∣∣∣∣∣ 3 2

3 2

∣∣∣∣∣ = 0.

(Remember that matrices and determinants behave differently when multiplied by an external number.) Back

5 Day 5: Tangent plane.

The simplest surface we can imagine in R3 is a plane. If the plane is not parallel to the z-axis, its equation may
be written in the form (Why?):

z = mx+ ny + p, where m,n, p ∈ R.

We may now think of mx+ ny + p as the image of a two-variable function:

g(x, y) = ax+ by + c.

Thus, a non vertical plane is the graph of the two-variable (linear) function g(x, y) above. Can we find its normal
vector? No problem. We write the general equation plane of our plane

mx+ ny − z + p = 0 ⇒ normal vector: v = (m,n,−1).

We now notice that m = g′x and n = g′y. Consequently, our normal vector can be written also as

v = (g′x, g
′
y,−1).

Let us now consider a function f(x, y) and one of the points on its surface: P = (a, b, f(a, b)). If the surface is
smooth enough (we will later define the concept of “smoothness”), you will agree that if we stay close to P the
surface is approximately flat.
We define the tangent plane to our surface at P as the plane that passes through P and has

(f ′x(a, b), f ′y(a, b),−1)

as normal vector. Its equation will be

f ′x(a, b)·x+ f ′y(a, b)·y − z + d = 0.

The value of d can be found by imposing that point P must belong to the plane:

f ′x(a, b)·a+ f ′y(a, b)·b− f(a, b) + d = 0 ⇒ d = −f ′x(a, b)·a− f ′y(a, b)·b+ f(a, b).

The equation of the tangent plane to f(x, y) at the point (a, b, f(a, b)) of its surface can be written as

z = f(a, b) + f ′x(a, b)·(x− a) + f ′y(a, b)·(y − b).

Question 18. Find the equation of the tangent plane to f(x, y) = x3 + xy2 − 3xy at point (2, 1) Answer to

question 18.

Question 19. Is x − z = 0 the equation of one of the tangent planes to f(x, y) =
√
x2 − y2? If the answer is

yes, what is the point of tangency? Answer to question 19.

Question 20. Is 2x − 3y − 2z + 4 = 0 the equation of one of the tangent planes to f(x, y) = x2 + y2? If the
answer is yes, what is the point of tangency? Answer to question 20.
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Answers to questions:

A18. We need to find f(2, 1), f ′x(2, 1), and f ′y(2, 1):

f(x, y) = x3 + xy2 − 3xy ⇒ f(2, 1) = 4;

f ′x(x, y) = 3x2 + y2 − 3y ⇒ f ′x(2, 1) = 10;
f ′y(x, y) = 2xy − 3x ⇒ f ′y(2, 1) = −2.

The equation of the tangent plane is

z = 4 + 10(x− 2)− 2(y − 1) ⇔ z = 10x− 2y − 14.

Back

A19. Let us write the equation of the plane solved for z:

x− z = 0 ⇒ z = x.

If this is the equation of one of the tangent planes, we must have a point (a, b) in the domain of f for which

f ′x(a, b) = 1; that is
a√

a2 − b2
= 1;

f ′y(a, b) = 0; that is
−b√
a2 − b2

= 0

The second equation implies that b = 0 which, inserted into the first one, gives
a√
a2

=
a

|a|
= 1 ⇒ any a > 0 is a solution.

Thus, the point should be (a, 0) with a > 0. In this case f(a, 0) = a and the tangent plane would be

z = a+ (x− a) ⇔ z = x.

It coincides with the plane given. The answer is yes and there are an infinity of points of tangency: (a, 0, a)
for a > 0.

Back

A20. Let us write the equation of the plane solved for z:

2x− 3y − 2z + 4 = 0 ⇒ z = x− 3
2
y + 2.

If this is the equation of one of the tangent planes, we must have a point (a, b) in the domain of f for which

f ′x(a, b) = 1; that is 2a = 1;
f ′y(a, b) = −3/2; that is 2b = −3/2.

Thus, we must have a = 1/2 and b = −3/4. In that case, f(1/2,−3/4) = (1/2)2 + (−3/4)2 = 13/16 and
the tangent plane would be

z =
13
16

+ 1·
(
x− 1

2

)
− 3

2
·
(
y +

3
4

)
⇔ z = x− 3

2
y − 5/16.

The equation is not equivalent to the one provided. The planes are different. The answer is no. Back

6 Day 6: Quadratic forms in two variables

We mentioned some days ago that the process to find the max/min of a two-variable function is similar to the
one used in the case of a function of one variable. Particularly the “second derivative test”, that allowed us to
classify a candidate point as a max or a min (or none) by finding the sign of f ′′ at the candidate, will be replaced
by finding the “sign” of the Hessian matrix of f(x, y). This is the purpose of this section.
A function of the form

f(x, y) = ax2 + 2bxy + cy2

is called a quadratic form in two variables.
It is quite easy to check that

ax2 + 2bxy + cy2 =
(
x y

)
·

(
a b

b c

)
·

(
x

y

)
The square matrix above is called the matrix of the quadratic form.
Notice that the matrix of a quadratic form is symmetric.
Reciprocally, any symmetric matrix 2× 2 can be seen as the matrix of a quadratic form in two variables.

17



Question 21. If f(x, y) = x3 + 2xy, write the Hessian of f at point (2, 1) as a quadratic form. Answer to

question 21.

6.1 Classification of a quadratic form in two variables.

Quadratic forms are classified according to the sign of its values.

Positive Definite (PD) f(x, y) > 0 for all (x, y) 6= (0, 0)
Negative Definite (PN) f(x, y) < 0 for all (x, y) 6= (0, 0)
Positive Semidefinite (PSD) f(x, y) ≥ 0 for all (x, y) 6= (0, 0)
Negative Semidefinite (NSD) f(x, y) ≤ 0 for all (x, y) 6= (0, 0)
Indefinite (I) f(x, y) > 0 for some (x, y) and f(x, y) < 0 for other (x, y)

Examples.

• f(x, y) = x2 + y2 is PD.

• f(x, y) = −x2 − y2 is ND.

• f(x, y) = x2 is PSD.

• f(x, y) = −x2 is NSD.

• f(x, y) = x2 − y2 is I.

1.1 z = x2 + y2 (PD) 1.2 z = −x2− y2 (ND) 1.3 z = x2 (PSD) 1.4 z = −y2 (NSD)

The indefinite case has the most interesting graph, a horse saddle mount :

z = x2 − y2 (Indefinite)

These examples are quite obvious. In other cases, the character of f(x, y) is not so easy to decide. For example

f(x, y) = x2 − 6xy + 9y2.

We see, for instance, that f(1, 1) = 4, f(1, 0) = 1, f(0, 1) = 9, etc. It seems positive, but . . . can we be sure that
for all (x, y) 6= (0, 0), x2 − 6xy + 9y2 > 0? Fortunately there is an easy way to check. The following table tells
us how to do it.

PD ⇔ a > 0, c > 0,

∣∣∣∣∣ a b

b c

∣∣∣∣∣ > 0

ND ⇔ a < 0, c < 0,

∣∣∣∣∣ a b

b c

∣∣∣∣∣ > 0

PSD ⇔ a ≥ 0, c ≥ 0,

∣∣∣∣∣ a b

b c

∣∣∣∣∣ ≥ 0

NSD ⇔ a ≤ 0, c ≤ 0,

∣∣∣∣∣ a b

b c

∣∣∣∣∣ ≥ 0

I ⇔

∣∣∣∣∣ a b

b c

∣∣∣∣∣ < 0
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The same table can be read from right to left and even simplified:

∣∣∣∣∣ a b

b c

∣∣∣∣∣ > 0 f(x, y) is Definite
Positive if a > 0
Negative if a < 0∣∣∣∣∣ a b

b c

∣∣∣∣∣ = 0 f(x, y) is Semidefinite
Positive if a ≥ 0 and c ≥ 0
Negative if a ≤ 0 and c ≤ 0∣∣∣∣∣ a b

b c

∣∣∣∣∣ < 0 f(x, y) is indefinite

6.2 A direct proof of the cases above

• Case a = 0, c = 0, and b 6= 0. In that particular case, the form reduces to f(x, y) = 2bxy which is indefinite

and satisfies that

∣∣∣∣∣ 0 b

b 0

∣∣∣∣∣ < 0.

In the following cases, we write our quadratic form in a different way by using simple algebraic manipulations.

• Case a > 0. We can change the expression of f as follows:

f(x, y) = ax2 + 2bxy + cy2 = a·
(
x2 + 2

b

a
xy +

c

a
y2

)
=

= a·

[(
x+

b

a
y

)2

− b2

a2
y2 +

c

a
y2

]
=

= a·

[(
x+

b

a
y

)2

+
(
c

a
− b2

a2

)
y2

]
=

= a·
(
x+

b

a
y

)2

+
(
ac− b2

a2

)
y2. (10)

Now, clearly, a·(x+ by/a)2 > 0 for (x, y) 6= (0, 0) and it is also obvious that

As a > 0, if ac− b2 =

∣∣∣∣∣ a b

b c

∣∣∣∣∣ > 0 ⇒ f Positive definite;

As a > 0, if ac− b2 =

∣∣∣∣∣ a b

b c

∣∣∣∣∣ < 0 ⇒ f Indefinite;

As a > 0 (and c cannot be < 0), if ac− b2 =

∣∣∣∣∣ a b

b c

∣∣∣∣∣ = 0 ⇒ f Positive semidefinite.

The reciprocal result [⇐] is also easily proved from (10).

• Case a < 0. In the previous case, change “positive” by “negative”.

There is a more tedious proof (see Sydsaeter & Hammond, Section 15.8) that treats case by case.

Finally, let us classify the example given before: f(x, y) = x2 − 6xy + 9y2.

Here a = 1, b = −3, and c = 9: ∣∣∣∣∣ 1 −3

−3 9

∣∣∣∣∣ = 0 and a > 0, c > 0

imply that f(x, y) is positive semidefinite. That means that it is never negative and that it is 0 for values
different from (0, 0). For instance, f(3, 1) = 0.

6.3 Quadratic forms in two variables restricted to a linear constraint.

In some occasions we will be interested in classifying a quadratic form where x and y are not free but forced to
fulfill a homogeneous linear constraint (this means that (x, y) lies on a line through (0, 0)). The problem is quite
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easy to solve. Imagine we are dealing with f(x, y) = ax2 + 2bxy + cy2 and px + qy = 0. We can assume q 6= 0
and solve the constraint for y: y = −(p/q)x. Replacing in f :

f

(
x,−px

q

)
=

1
q2
(
aq2 − 2bpq + cp2

)
·x2

Thus, the sign of D = aq2 − 2bpq + cp2 will determine the character positive or negative of f restricted to the
line. There is an easy way of remembering that value:

aq2 − 2bpq + cp2 = −

∣∣∣∣∣∣
0 p q
p a b
q b c

∣∣∣∣∣∣ .
D is exactly the opposite of what we call the bordered hessian of f(x, y) restricted to px+ qy = 0.

Thus, the sign (PD or ND) of f(x, y) restricted to the constraint is the opposite of the sign of the bordered
hessian.

Question 22. Can f constrained to a line be indefinite? Answer to question 22.

Question 23. If f is PD, can f constrained to a line be ND? Answer to question 23.

Question 24. What happens if f is indefinite? Answer to question 24.

Answers to questions:

A21. The Hessian of f is

H(x, y) =

(
6x 2

2 0

)
; at point (2, 1), H(2, 1) =

(
12 2

2 0

)
.

The Hessian is a symmetric matrix. Consequently, we can look at it as a quadratic form:

Q(x, y) = 12x2 − 4xy.

Back

A22. Obviously not. The value aq2 − 2bpq + cp2 is either positive (then f constrained is PD), negative (then f
constrained is ND) or 0 and then f = 0 and does not take either positive or negative values. Back

A23. Obviously not. If f is PD, then for all (x, y) 6= (0, 0), f(x, y) > 0, in particular for those (x, y) 6= (0, 0)
situated on any line whatsoever. Back

A24. This is the really interesting case. If f is indefinite, then∣∣∣∣∣ a b

b c

∣∣∣∣∣ < 0.

But aq2 − 2bpq + cp2 is also a quadratic form on the variables (q, p). Its matrix is(
a −b

−b c

)

and its determinant is ∣∣∣∣∣ a −b

−b c

∣∣∣∣∣ =

∣∣∣∣∣ a b

b c

∣∣∣∣∣ < 0.

Consequently, aq2 − 2bpq + cp2 as a quadratic form is indefinite and will take positive or negative values
depending on the values of q and p. Back

7 Day 7: Chain Rule. Directional derivatives. Gradient

7.1 The Chain Rule

In many occasions, the variables in a function will, in their turn, be functions of one or more variables. The
situation is the following. Let F (x, y) be a two-variable function and let x = f(t) and y = g(t). Then, in fact
F (f(t), g(t)) can be thought of as a one-variable function of the variable t. Can we obtain dF/dt, the total
derivative, indirectly? That is, without having an explicit algebraic expression for it?
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Let us work out an example. Imagine you have F (x, y) = x2 + y2 and we know that x = t2 and y = 2t. It is
pretty obvious that, in this case, F (x(t), y(t)) = (t2)2 + (2t)2 = t4 + 4t2. If we want to get dF/dt, the direct way
is to use this last value:

F (t) = t4 + 4t2 ⇒ dF

dt
= 4t3 + 8t.

What about the indirect way? The indirect way is called the Chain Rule:

If F (x, y) is a two-variable function and x = f(t) and y = g(t), then

dF

dt
=
∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
.

In our example we have F ′x = 2x and F ′y = 2y. Then

dF

dt
= 2x·dx

dt
+ 2y·dx

dt
= 2x·(2t) + 2y·(2) = 2·t2·2t+ 2·2t·2 = 4t3 + 8t.

This result is manly used in complicated cases or in theoretical reasonings. As you can imagine, the possibility
of the direct substitution method is quite straightforward in most of the occasions.

7.2 Directional derivatives

Let (a, b) be a point in the domain S of a function f(x, y). We know that ∂f/∂x|(a,b) and ∂f/∂y|(a,b) are the
slopes of the function as we face the direction (1, 0) and (0, 1) respectively. That means that

∂f

∂x

∣∣∣∣
(a,b)

= lim
h→0

f(a+ h, b)− f(a, b)
h

and
∂f

∂y

∣∣∣∣
(a,b)

= lim
h→0

f(a, b+ h)− f(a, b)
h

If, instead of the directions above, we move from (a, b) in the direction of vector ~v = (v1, v2) and we calculate
the corresponding differential quotient limit, we will obtain the directional derivative of f in the direction of
~v:

D~vf(a, b) = lim
h→0

f(a+ h·v1, b+ h·v2)− f(a, b)
h

.

In order not to alter the units of measure, we require that vector ~v = (v1, v2) be a unitary vector, that is a
vector of norm one: ‖~v‖ = 1. Remember that the module of a vector (v1, v2) is its length:

√
v2
1 + v2

2 . If the given
direction is not a unitary vector, the vector has to be changed by another with the same direction and sense but
module 1. This is easily done by multiplying the given vector by 1/ ‖~v‖.

For any vector ~v 6= (0, 0), the vector

~w =
1
‖~v‖
·~v

shares the direction of ~v, keeps it sense but has norm one.

Question 25. Given the function f(x, y) = x/y find the directional derivative in the direction of vector ~v =
(−1, 2) at point (3, 1). Answer to question 25.

7.3 An easier way to find directional derivatives.

Another way of obtaining the directional derivative is the following.

Let g(t) = f(a+ t·v1, v + t·v2). If ‖(v1, v2)‖ = 1, the directional derivative is just dg/dt|t=0:

D~wf = g′(t) =
∂f

∂x
·dx
dt

+
∂f

∂y
·dy
dt

=
∂f

∂x
·v1 +

∂f

∂y
·v2 =

(
∂f

∂x
,
∂f

∂y

)
• (v1, v2) 4

Now, for t = 0,

g′(0) =

(
∂f

∂x

∣∣∣∣
(a,b)

,
∂f

∂y

∣∣∣∣
(a,b)

)
• (v1, v2)

In question 25 above, (
∂f

∂x

∣∣∣∣
(a,b)

,
∂f

∂y

∣∣∣∣
(a,b)

)
=
(

1
y
,− x

y2

)∣∣∣∣
(3,1)

= (1,−3).

Then,

D~wf(3, 1) = (1,−3) •
(
− 1√

5
,

2√
5

)
= − 7√

5
.

4This last operation is the dot product (scalar product) of two vectors.
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7.4 The gradient.

The vector

∇f(a, b) =

(
∂f

∂x

∣∣∣∣
(a,b)

,
∂f

∂y

∣∣∣∣
(a,b)

)
is called the gradient of f at the point (a, b).

Our previous section shows that D~vf(a, b) = ∇f(a, b) • ~v where ‖~v‖ = 1.

7.5 Properties of the gradient.

The gradient of a function has two important properties:

i) ∇f(a, b) points in the direction of maximum growth from (a, b). That is, the direction of the gradient is
the one with a maximum directional derivative.

ii) ∇f(a, b) is orthogonal to the level curve at level z = f(a, b).

We are going to prove these two statements.

Proof of i)

• Short proof. We know that the dot product of two vectors forming an angle α between them can be found
as

~u • ~v = ‖~u‖ · ‖~v‖ · cosα

Then, since −1 ≤ cosα ≤ 1, the maximum value of the dot product of two vectors with a given module
must be found when cosα = 1. That is, when α = 0◦.
Let us apply that to directional derivatives. Given a point (a, b), let us consider any unitary vector (‖~v‖ = 1)
~v. The directional derivative in the direction of ~v is

D~vf(a, b) = ∇f(a, b) • ~v.

It will be max when ~v forms a 0◦ with the gradient, that is, when it points in the same direction and sense
as the gradient!

• Not so short proof.
Any vector of length 1 can be written as (cos θ, sin θ). That is because for any angle 0◦ ≤ θ < 360◦,
cos2 θ + sin2 θ = 1.

θ

cos θ

sin θ

Thus, ‖(cos θ, sin θ)‖ = 1 and the directional derivative in the direction of vector (cos θ, sin θ) is

D(cos θ,sin θ)f(a, b) = ~∇f(a, b) • (cos θ, sin θ) =
∂f

∂x

∣∣∣∣
(a,b)

· cos θ +
∂f

∂y

∣∣∣∣
(a,b)

· sin θ.

We can define a one-variable function

s(θ) =
∂f

∂x

∣∣∣∣
(a,b)

· cos θ +
∂f

∂y

∣∣∣∣
(a,b)

· sin θ

whose images are the different slopes (directional derivatives) from point (a, b) in every possible direction.
What is the maximum value of s(θ)? Easy:

s′(θ) = − ∂f

∂x

∣∣∣∣
(a,b)

· sin θ +
∂f

∂y

∣∣∣∣
(a,b)

· cos θ = 0
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If the solution to this equation is θ0, we can write

tan θ0 =

∂f

∂y

∣∣∣∣
(a,b)

∂f

∂x

∣∣∣∣
(a,b)

.

So tan θ0 is exactly the slope of vector (
∂f

∂x

∣∣∣∣
(a,b)

,
∂f

∂y

∣∣∣∣
(a,b)

)
,

the direction of the gradient as we contended!!

Proof of ii)

What is the tangent line to a level curve at one of its points? Imagine we are at point (a, b). The level curve that
passes through it is f(x, y) = f(a, b). If, near (a, b), we consider our level curve as the graph of a one-variable
function, y = y(x), for which b = y(a), the tangent vector is(

1,
dy

dx

∣∣∣∣
a

)
.

We will say that in the neighbourhood of (a, b), y can be seen as a function of variable x: an implicit function.

How do we find dy/dx? Well, if f(x, y) = f(a, b) we can consider x = x; y = y(x). In this way, we have

f(x, y(x)) = f(a, b); and taking derivatives on both sides w.r.t. x,

we have
df

dx
= 0.

We now use the chain rule in order to find df/dx:

∂f

∂x
·dx
dx

+
∂f

∂y
·dy
dx

= 0.

Obviously, dx/dx = 1 and we can write
∂f

∂x
+
∂f

∂y
·dy
dx

= 0,

that is:

dy

dx
= −∂f/∂x

∂f/∂y
. (11)

We will soon give a name to this important formula: the Implicit Function Theorem.

For this formula to be valid is necessary that, at point (a, b), we have

∂f

∂y

∣∣∣∣
(a,b)

6= 0.

The tangent vector we were looking for is 1,−

∂f

∂x

∣∣∣∣
(a,b)

∂f

∂y

∣∣∣∣
(a,b)

 ,

or better, (
∂f

∂y

∣∣∣∣
(a,b)

,− ∂f

∂x

∣∣∣∣
(a,b)

)
.
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The equation of the tangent line (in the xy plane) is:

y − b = −

∂f

∂x

∣∣∣∣
(a,b)

∂f

∂y

∣∣∣∣
(a,b)

·(x− a) (12)

Lastly, it is seen at once that:(
∂f

∂x

∣∣∣∣
(a,b)

,
∂f

∂y

∣∣∣∣
(a,b)

)
•

(
∂f

∂y

∣∣∣∣
(a,b)

,− ∂f

∂x

∣∣∣∣
(a,b)

)
= 0

which proves that the gradient at a point is orthogonal to the level curve through this point.

Answers to questions:

A25. First of all, we must check the module of vector ~v:

‖~v‖ = ‖(−1, 2)‖ =
√

(−1)2 + 22 =
√

5.

As the module is not 1, we change our vector by multiplying it by 1/
√

5: ~w =
(
− 1√

5
,

2√
5

)
.

Now,

D~wf(3, 1) = lim
h→0

f(3 + h·(−1)/
√

5, 1 + h·2/
√

5)− f(3, 1)
h

= lim
h→0

3− h√
5

1 + 2h√
5

− 3

h
= lim
h→0

−7 6h
(
√

5 + 2h) 6h
= − 7√

5
.

Back

8 Day 8: Implicit functions.

Notice that when we talked in (11) about implicit functions, we derived the formula (Implicit Function’s Theorem)

If f(x, y) = c ⇒ dy

dx

∣∣∣∣
(a,b)

= −
∂f/∂x|(a,b)
∂f/∂y|(a,b)

, valid when ∂f/∂y|(a,b) 6= 0.

Question 26. Consider function f(x, y) = x2−y2. Find the equation of the tangent line to its level curve z = 3
at point (2, 1). Answer to question 26.

Question 27. Sydsaeter & Hammond Problem 16.3.4. A curve in the xy plane is given by the equation

2x2 + xy + y2 − 8 = 0.

(a) Find the equation for the tangent line at the point (2, 0).

(b) Which points on the curve have a horizontal tangent?

Answer to question 27.

Answers to questions:

A26. The level curve z = 3 is the hyperbola x2 − y2 = 3. Point (2, 1) belongs to it because it satisfies the
equation. The tangent line will have as a point-slope equation:

y − 1 =
dy

dx

∣∣∣∣
(2,1)

·(x− 2)

Using the Implicit Function Theorem we have:

dy

dx
= −f

′
x

f ′y
= − 2x
−2y

=
x

y
. At point (2, 1):

dy

dx

∣∣∣∣
(2,1)

= 2.

The equation of the tangent is (see (12)):

y − 1 = 2·(x− 2); ⇔ y = 2x− 3.

Back
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A27. (a) We need to find the first-order derivatives of f(x, y) at the point (2, 0):

∂f

∂x
= 4x+ y;

∂f

∂x

∣∣∣∣
(2,0)

= 8;

∂f

∂y
= x+ 2y;

∂f

∂y

∣∣∣∣
(2,0)

= 2.

Now the equation of the tangent line is (see (12)):

y = −8
2

(x− 2) ⇔ y = −4x+ 8.

The graph is:

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

4

5

0

2x2 + xy + y2 − 8 = 0

y = −4x+ 8

(b) A horizontal tangent means a tangent vector like (·, 0), that is

− ∂f

∂x

∣∣∣∣
(a,b)

= 0.

In our case, the points (a, b) with a horizontal tangent will be those on the curve satisfying 4a+b = 0.
Consequently, they will be the solution of the system{

2a2 + ab+ b2 − 8 = 0
4a+ b = 0

Replacing b = −4a from the second equation in the first equation we get

2a2 + a(−4a) + (−4a)2 − 8 = 0; a = ±
√

4
7
≈ ±0.76

and the points are
A(0.76,−3.02); B(−0.76, 3.02).
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

2x2 + xy + y2 − 8 = 0

A

B

Back

9 Day 9: Homogeneous functions.

A linear function of two variables, f(x, y) = ax+ by has a very interesting property: if we multiply our x and y
by a constant, the image gets multiplied by the same constant. That is

f(λ·x, λ·y) = λ·f(x, y) since a(λx) + b(λy) = λ·(ax+ by).

Linear functions, are the only ones with this property? We are interested in functions z = f(x, y) such that
satisfy, for all values of (x, y) in their domain and any λ ∈ R

f(λ·x, λ·y) = λ·f(x, y). (13)

These are called homogeneous functions of degree one. In a very naive way, any function where replacing

x and y by λx and λy can lead to λ factored out as a common factor will do. For instance: f(x, y) =
x2 + y2

x+ y
is

a homogeneous function of degree one:

f(λ·x, λ·y) =
λ2x2 + λ2y2

λx+ λy
=
λ2·(x2 + y2)
λ(·x+ y)

= λ·f(x, y).

More generally, a homogeneous function of degree k satisfies

f(λ·x, λ·y) = λk·f(x, y), (14)

where k is any real number (so we can talk of negative degrees, 0 degree, and any real value).

The easiest examples of k-degree homogeneous functions are the homogeneous polynomials. That is, polynomials
where all the monomials are of degree k.

For instance, P (x, y) = x3 + x2y − 3xy2 + 5y3 is homogeneous of degree 3 and a quadratic form q(x, y) =
ax2 + 2bxy + cy2 is homogeneous of degree 2.

Another very interesting homogeneous function is the Cobb-Douglas function: f(x, y) = A·xayb. Indeed

f(λx, λy) = A·λa+bxayb = λa+bf(x, y).

Question 28. Check whether the following functions are homogeneous or not:

(a) f(x, y) =
x+ 3y√
5x2 − y2

(b) f(x, y) = ln(xy)

(c) f(x, y) = ex+y

Answer to question 28.
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9.1 Euler’s Theorem.

f(x, y) is homogeneous of degree k ⇔ x
∂f

∂x
+ y

∂f

∂y
= k·f(x, y).

For instance, for P (x, y) = x3 + x2y − 3xy2 + 5y3,

x
∂P

∂x
+ y

∂P

∂y
=

= x·(3x2 + 2xy − 3y2) + y·(x2 − 6xy + 15y2) =
= 3x3 + 2x2y − 3xy2 + x2y − 6xy2 + 15y3 =
= 3·(x3 + x2y − 3xy2 + 5y3) =
= 3·P (x, y).

Question 29. Check whether the functions of question 28 are homogeneous or not by checking the validity of
Euler’s Theorem. ( Hint: take the derivatives by hand. Later, use www. wolframalpha. com to check your results.
The day of the final exam, you will not have a computer to help you!) Answer to question 29.

Proof of Euler’s Theorem.

[⇒]

We are assuming that f is homogeneous of degree k. Thus f(λx, λy) = λk·f(x, y). Taking derivatives w.r.t. λ
on each side

∂f

∂x

∣∣∣∣
(λx,λy)

·d(λx)
dλ

+
∂f

∂y

∣∣∣∣
(λx,λy)

·d(λy)
dλ

= kλk−1·f(x, y).

That is
∂f

∂x

∣∣∣∣
(λx,λy)

·x+
∂f

∂y

∣∣∣∣
(λx,λy)

·y = kλk−1·f(x, y).

This last expression is valid for any (x, y) and for any λ. Taking λ = 1, we have

∂f

∂x

∣∣∣∣
(x,y)

·x+
∂f

∂y

∣∣∣∣
(x,y)

·y = k·f(x, y).

[⇐]

This part of the proof is more elaborate. You can find it in section 16.6 of Sydsaeter & Hammond.

9.2 Returns to scale.

Homogeneous functions are good for the comprehension of what economists call “returns to scale”. When con-
sidering a production function of some description (for instance, a Cobb-Douglas function Q(K,L) = A·KaLb),
economists say it shows constant returns to scale if inputting λ times more of each factor of production
(λK and λL) we get the same scale in the production (λQ). That means that our production function is a
homogeneous function of degree 1. In the case of the Cobb-Douglas function above, that is true if a+ b = 1.

9.3 Linear approximations and differential of a function.

At a point, (a, b), where the graph of f(x, y) has a tangent plane:

z = f(a, b) +
∂f

∂x

∣∣∣∣
(a,b)

·(x− a) +
∂f

∂y

∣∣∣∣
(a,b)

·(y − b),

the values of the function for nearby points can be approximated using the images calculated on the tangent
plane instead of the surface. That is:

If (x, y) is near (a, b), f(x, y) ≈ f(a, b) +
∂f

∂x

∣∣∣∣
(a,b)

·(x− a) +
∂f

∂y

∣∣∣∣
(a,b)

·(y − b).

Question 30. For f(x, y) = ln(x+ y) find an approximation of f
(e

2
+ 0.1,

e

2
+ 0.2

)
using the tangent plane at

point
(e

2
,
e

2

)
. (No calculators). Answer to question 30.
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The linear part of the approximation above, as a function of variables x− a and y− b, is called the differential
of f :

df(a,b)(x− a, y − b) =
∂f

∂x

∣∣∣∣
(a,b)

·(x− a) +
∂f

∂y

∣∣∣∣
(a,b)

·(y − b).

Instead of x− a and y − b it is usual to use dx and dy, read differential of x and differential of y. It is a bit
confusing, but it is accepted mathematical notation. Thus, the differential of f at point (a, b) is usually written

df(a,b) =
∂f

∂x

∣∣∣∣
(a,b)

dx+
∂f

∂y

∣∣∣∣
(a,b)

dy.

If the point is not specified, then we write

df =
∂f

∂x
dx+

∂f

∂y
dy.

The approximation through the tangent plane now can be seen as using the differential in order to find the
change in the function, 4z = f(x, y)− f(a, b):

4z ≈ dz =
∂z

∂x
dx+

∂z

∂y
dy.

Question 31. Find an approximate value for V =
√

(4.02)2 + (2.99)2 using the approximation 4T ≈ dT for a
suitable function T (x, y). Answer to question 31.

Answers to questions:

A28. i. f(λx, λy) =
λx+ 3λy√

5(λx)2 − (λy)2
=

λ(x+ 3y)√
5λ2x2 − λ2y2

=
λ(x+ 3y)

λ
√

5x2 − y2
=

x+ 3y√
5x2 − y2

is homogeneous of

degree 0.
ii. f(λx, λy) = ln(λ2xy) = ln(λ2) + ln(xy). This is not of the form λk ln(xy). The function is not

homogeneous.
iii. f(λx, λy) = eλx+λy = (eλ)x+y. Not homogeneous.

Back

A29. i. For f(x, y) =
x+ 3y√
5x2 − y2

, f ′x = − y·(15x+ y)
(5x2 − y2)3/2

and f ′y =
x·(15x+ y)

(5x2 − y2)3/2
. Then

xf ′x + yf ′y = −x y(15x+ y)
(5x2 − y2)3/2

+ y
x(15x+ y)

(5x2 − y2)3/2
= 0.

This means that our function is homogeneous of degree 0.
ii. For f(x, y) = ln(xy),

xf ′x + yf ′y = x
1
x

+ x
1
y

= 2 6= k· ln(xy) for any k.

The function is not homogeneous.
iii. For f(x, y) = ex+y,

xf ′x + yf ′y = xex+y + yex+y = (x+ y)ex+y 6= kex+y for any k.

The function is not homogeneous.
Back

A30. The partial derivatives of f are
∂f

∂x
=

1
x+ y

;
∂f

∂y
=

1
x+ y

.

At point
(e

2
,
e

2

)
these derivatives are both 1/e and f

(e
2
,
e

2

)
= ln e = 1.

Using the tangent plane approximation,

f
(e

2
+ 0.1,

e

2
+ 0.2

)
≈ 1 +

1
e
·0.1 +

1
e
·0.2 = 1 +

0.3
e

= 1.11.

Notice that we have obtained an approximate value of ln(e+0.3) without using a calculator. The real value
is ln(e+ 0.3) = 1.15. Back
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A31. The structure of the value V suggest the use of the function T (x, y) =
√
x2 + y2. For this function

dT =
x√

x2 + y2
dx+

y√
x+ y

dy.

The point (4.02, 2.99) is very near (4, 3) and T (4, 3) = 5. So 4T = T (4.02, 2.99)− T (4, 3) can be approxi-
mated by dT at (4, 3)

dT =
∂T

∂x

∣∣∣∣
(4,3)

dx+
∂T

∂y

∣∣∣∣
(4,3)

dy =
4
5
·dx+

3
5
·dy.

In our case, dx = 4.02− 4 = 0.02 and dy = 2.99− 3 = −0.01.

4T ≈ dT =
4
5
·0.02 +

3
5
·(−0.01) =

0.05
5

= 0.01

We conclude that √
(4.02)2 + (2.99)2 ≈ 5 + 0.01 = 5.01.

The true value is 5.01004. Not a bad approximation! Back

10 Day 10: Local optimization. First-order conditions.

The domain of a two-variable function is a set S contained in the xy plane. An interior point of a set S is a
point such that there exists a disk centered at the point with a positive radius entirely contained in the set. In
the figure below, P is an interior point of S and Q is not.

P

Q

S

P

S

An open set is a set where all its points are interior to it. Same set S above without the border curve is
an open set.

We will assume all functions differentiable and defined on open domains.

We are interested in finding points of the domain S of a function f(x, y) at which f has a maximum or minimum
value. The concept of maximum or minimum for a two-variable function is similar to its one-variable counterpart.
We can talk of local or global max/min.

f(x, y) has a global max at (a, b) if for all (x, y) ∈ S, f(x, y) ≤ f(a, b). If the inequality is <, we say that the
max is strict. Notice the language: the actual max is the value of f at (a, b), f(a, b) but we say that f has a
max at (a, b) or even that (a, b) is a max.

Similar definitions for min, replacing ≤ with ≥.

Strict Max Strict Min Non-strict Max Non-strict-Min

The local concept is the same except that it is not required that the inequality be satisfied by all points (x, y)
in the domain but only by those in a disk around (a, b).

A necessary condition for f(x, y) to have a max/min in an interior point (a, b) of its domain is
∂f

∂x

∣∣∣∣
(a,b)

= 0

∂f

∂y

∣∣∣∣
(a,b)

= 0
(15)
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The points at which both partial derivatives are 0 are called stationary or critical points of the function. That
is equivalent to saying that the tangent plane at the point is parallel to the xy plane (horizontal). We know
from our study of quadratic forms that there are points where the tangent plane may be horizontal and not be
a max or a min. These stationary points are called saddle points. They look like (0, 0, 0) for z = x2 − y2:

In order to find the stationary points of a function f(x, y), we need to solve the system of equations (15). This
may be easy (if the system is a linear one) or not so easy (if the system is not linear). In this last case, some
amount of ingenuity will be needed to find all the solutions.

As a general advice, these systems have to be solved by substitution: if you can solve one of the equations for
x or y and replace in the other equation, you will have a one-variable equation to solve. Mind, this may be a
formidable task!

If you cannot use the substitution approach, it is recommendable to try to factorize each equation as much
as possible. If you succeed, and say you manage to factor the first equation into a product of two (simpler)
equations = 0, you only have to solve the new systems formed by each one of these factors with the second
equation. The following two questions illustrate this situation.

Question 32. Find all the stationary points of f(x, y) = 8x3 +
1
8
y3 + 6xy. Answer to question 32.

Question 33. Find all the stationary points of f(x, y) = (x2 + y2)2 − (x2 + y2). Answer to question 33.

Answers to questions:

A32. We have to solve {
24x2 + 6y = 0

6x+
3
8
y2 = 0

⇔
{

4x2 + y = 0 (E1)
48x+ 3y2 = 0 (E2)

From equation (E1), y = −4x2. Replacing in (E2), 48x + 48x4 = 0 which simplifies to x + x4 = 0. This
is a fourth-degree equation in x. It may have 4 solutions. Actually, factoring x out, we have only two real
solutions:

x·(1 + x3) = 0 ⇒
{

x = 0
1 + x3 = 0 ⇒ x = −1.

One solution, x = 0, replacing in E1 or E2, leads to y = 0 and x = −1 gives y = −4. We have only two
stationary points: (0, 0) and (−1,−4).

Back

A33. We have to solve{
4x(x2 + y2)− 2x = 0
4y(x2 + y2)− 2y = 0 ⇔

{
2x(x2 + y2)− x = 0 (E1)
2y(x2 + y2)− y = 0 (E2)

From (E1), factoring x, we deduce either x = 0 or x2 + y2 = 1/2.
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• Case x = 0. Replacing in (E2) we have 2y3 − y = 0 which leads to y = 0 or 2y2 − 1 = 0. Solutions
(0, 0), (0, 1/

√
2), (0,−1/

√
2).

• Case x2+y2 = 1/2. Replacing in (E2) we have 0 = 0. Consequently, all points in the circle x2+y2 = 1/2
are solutions. The two points (0, 1/

√
2), (0,−1/

√
2) belong to that circle.

Alternatively, we could have started factoring (E2) from which we deduce either y = 0 or x2 + y2 = 1/2.

• Case y = 0. Replacing in (E1) we have 2x3 − x = 0 which leads to x = 0 or 2x2 − 1 = 0. Solutions
(0, 0), (1/

√
2, 0), (−1/

√
2, 0).

• Case x2 + y2 = 1/2. Replacing in (E1) we have 0 = 0. Again we obtain all the points in the circle
x2 + y2 = 1/2 as solutions. And again the two points (1/

√
2, 0), (−1/

√
2, 0) belong to the circle.

All in all, the only stationary points are (0, 0) and those (a, b) that satisfy a2 + b2 = 1/2, which is a circle
of center (0, 0) and radius 1/

√
2. Back

11 Day 11: Local optimization. Second-order conditions.

How do we tell a max from a min from a saddle point? A little reflection may help. If we are placed at a strict
max, (a, b), we have that dz(a, b) = 0 and if we move a small distance in any direction the value of dz decreases.
That means that d(dz) = d2

(a,b)z < 0. Let us find the value of d2z.

d2z = d(dz) =

= d

(
∂z

∂x
dx+

∂z

∂y
dy

)
=

=
∂

∂x

(
∂z

∂x
dx+

∂z

∂y
dy

)
dx+

∂

∂y

(
∂z

∂x
dx+

∂z

∂y
dy

)
dy =

=
∂2z

∂x2
dx2 +

∂2z

∂y∂x
dy dx+

∂2z

∂x∂y
dx dy +

∂2z

∂y2
dy2.

Using Young’s Theorem we have

d2z =
∂2z

∂x2
dx2 + 2

∂z

∂y∂x
dx dy +

∂2z

∂y2
dy2.

which, once evaluated at (a, b), is a quadratic form in the variables dx, dy. The matrix of this quadratic form is

H(a, b) =


∂2z

∂x2

∣∣∣∣
(a,b)

∂2z

∂y∂x

∣∣∣∣
(a,b)

∂2z

∂y∂x

∣∣∣∣
(a,b)

∂2z

∂y2

∣∣∣∣
(a,b)

 ,

the hessian matrix of our function f !

Thus, the condition d2
(a,b)z < 0 is equivalent to saying that the quadratic form above is Negative Definite, which

is equivalent to

|H(a, b)| =

∣∣∣∣∣∣∣∣∣
∂2z

∂x2

∣∣∣∣
(a,b)

∂2z

∂y∂x

∣∣∣∣
(a,b)

∂2z

∂y∂x

∣∣∣∣
(a,b)

∂2z

∂y2

∣∣∣∣
(a,b)

∣∣∣∣∣∣∣∣∣ > 0 and
∂2z

∂x2

∣∣∣∣
(a,b)

< 0.

If (a, b) is a strict min, then d2
(a,b)z > 0 and the quadratic form is Positive Definite. When at (a, b) we have

a saddle point, d2
(a,b)z will be sometimes positive and sometimes negative. The hessian will be an indefinite

quadratic form.
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11.1 Summary.

Maxima, minima and saddle points are amongst the stationary points of f(x, y). Thus, in order to find them we
need to solve the system of equations: 

∂f

∂x

∣∣∣∣
(a,b)

= 0

∂f

∂y

∣∣∣∣
(a,b)

= 0

If (a, b) is one of the solutions, in order to know whether it is a max, a min or a saddle point, we need to classify
the quadratic form

d2z(a,b)(dx, dy) =
∂2z

∂x2

∣∣∣∣
(a,b)

dx2 + 2
∂2z

∂y∂x

∣∣∣∣
(a,b)

dx dy +
∂2z

∂y2

∣∣∣∣
(a,b)

dy2.

Then,

If |H(a, b)| > 0

and
∂2f

∂x2

∣∣∣∣
(a,b)

< 0 LOCAL MAX

and
∂2f

∂x2

∣∣∣∣
(a,b)

> 0 LOCAL MIN

If |H(a, b)| < 0 SADDLE POINT
If |H(a, b)| = 0 ?

The case |H(a, b)| = 0 could lead to a local max or min or a saddle point. It needs a special treatment for each
problem and this can be sometimes difficult. Consider the three functions:

a) f(x, y) = x2 + y4; b) g(x, y) = x2 − y4; c) h(x, y) = x3 − 2xy2 (Monkey Saddle).

The three have (0, 0) as a stationary point and for the three we have

|H(0, 0)| =

∣∣∣∣∣ 0 0

0 0

∣∣∣∣∣ = 0.

At (0, 0) function f in a) has a min and both g in b) and h in c) have saddle points. The function in c) is called
the Monkey Saddle because it has three “slopes” down from (0, 0), two for the legs of the monkey and one for
the tail.

a) Function f(x, y) = x2 + y4; b) Function f(x, y) = x2 − y4; c) Function f(x, y) = x3 − 2xy2

Question 34. Classify the stationary points of question 32. Answer to question 34.

Question 35. Find and classify the stationary points of f(x, y) = x4 + x2 − 6xy + 3y2. Answer to question 35.

Question 36. Classify the stationary points of question 33. Answer to question 36.

Answers to questions:

A34. The second-order derivatives are:

∂2z

∂x2
= 48x;

∂2z

∂y∂x
=

∂2z

∂x∂y
= 6;

∂2z

∂y2
=

3
4
y.

Thus the hessian is

H(x, y) =

 48x 6

6
3
4
y


• Point (0, 0).

|H(0, 0)| =

∣∣∣∣∣ 0 6

6 0

∣∣∣∣∣ < 0 ⇒ SADDLE POINT.
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• Point (−1,−4).

|H(−1,−4)| =

∣∣∣∣∣ −48 6

6 −3

∣∣∣∣∣ > 0 and
∂2z

∂x2

∣∣∣∣
(−1,−4)

= −48 < 0 ⇒ LOCAL MAX.

Back

A35. For f(x, y) = x4 + x2 − 6xy + 3y2 the first-order conditions are{
4x3 + 2x− 6y = 0 E1
−6x+ 6y = 0 E2

From E2, x = y. Replacing in E1 we get 4x3 − 4x = 0 which, factored, leads to x(x2 − 1) = 0. Three
solutions for x:

x = 0 ⇒ y = 0; candidate: (0, 0).
x = 1 ⇒ y = 1; candidate: (1, 1).

x = −1 ⇒ y = −1; candidate: (−1,−1).

The Hessian is

H(x, y) =

(
12x2 + 2 −6

−6 6

)
• Point (0, 0):

|H(0, 0)| =

∣∣∣∣∣ 2 −6

−6 6

∣∣∣∣∣ = −24 < 0.

At (0, 0) we have a SADDLE POINT.
• Point (1, 1):

|H(1, 1)| =

∣∣∣∣∣ 14 −6

−6 6

∣∣∣∣∣ = 48 > 0 and f ′′xx(1, 1) = 14 > 0

At (1, 1) we have a MIN.
• Point (−1,−1):

|H(−1,−1)| =

∣∣∣∣∣ 14 −6

−6 6

∣∣∣∣∣ = 48 > 0 and f ′′xx(−1,−1) = 14 > 0

At (−1,−1) we have a MIN.

Back

A36. The second-order derivatives are:

∂2z

∂x2
= 12x2 + 4y2 − 2;

∂2z

∂y∂x
=

∂2z

∂x∂y
= 8xy;

∂2z

∂y2
= 12y2 + 4x2 − 2.

The hessian is

H(x, y) =

(
12x2 + 4y2 − 2 8xy

8xy 12y2 + 4x2 − 2

)
• Point (0, 0).

|H(0, 0)| =

∣∣∣∣∣ −2 0

0 −2

∣∣∣∣∣ > 0 and
∂2z

∂x2

∣∣∣∣
(0,0)

= −2 < 0 ⇒ LOCAL MAX.

• Points (a, b) such that a2 + b2 = 1/2. We can write b = ±
√

1/2− a2 in order to replace in the hessian

|H(a, b)| =

∣∣∣∣∣ 8a2 ±4
√

2·a
√

1− 2a2

±4
√

2·a
√

1− 2a2 4(1− 2a2)

∣∣∣∣∣ = 0 ⇒ ?5

5Another way of getting to the same place is to write the Hessian in a slightly different way:

H(x, y) =

(
8x2 + 4x2 + 4y2 − 2 8xy

8xy 8y2 + 4y2 + 4x2 − 2

)
and now replacing x = a, y = b, and a2 + b2 = 1/2:

|H(a, b)| =

∣∣∣∣∣ 8a2 8ab

8ab 8b2

∣∣∣∣∣ = 0.
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The graph of our function (at the end of Example 2) shows that these points are min. Can we find a
way to prove it? A look at the function shows that if we replace x2 + y2 = t in its definition and we
have the one-variable function: g(t) = t2 − t for t ≥ 0:

0.5 1 1.5

0.5

1

0

This has global min at t = 1/2, which corresponds to the values (a, b) such that a2 + b2 = 1/2 and
a local max at t = 0, which correspond to x2 + y2 = 0, that is x = 0, y = 0. Consequently, f has a
min= −1/4 at each (a, b) such that a2 + b2 = 1/2.

Back

12 Day 12: Convex and concave functions.

12.1 Convex sets in R2.

A convex set S in R2 is a set that has “no dents”. This means that the segment joining any two points in S is
completely within S.

Convex sets

Non-convex set

12.2 Concave/convex functions.

Definition 1. Let S be a convex set in R2. We say the continuous function f(x, y) defined on S is concave
(convex) on S if the segment joining any two points in S is never above (never below) the graph of f .
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(a, b) (c, d)

P

Q

T

R

M

S

Segment PQ not above PRQ

TR = f((a, b) + t·(c− a, d− b)) ≥

≥ TM = f(a, b) + t·(f(c, d)− f(a, b))

If the segment PQ is always below PRQ, we say the function is strictly concave. (Similarly for strictly
convex)

There are many more formal ways of defining a convex/concave function, but the one above is the easiest to
understand. It relies on the visual aid of the graph of the function and, consequently, it will not be useful for
functions of more than 2 variables.

The easy examples are f(x, y) = x2 + y2: strictly convex on R2. f(x, y) = −x2 − y2: strictly concave on R2.
f(x, y) = x2; convex on R2. f(x, y) = ax+ by: concave and convex at the same time. f(x, y) = x2 − y2: neither
concave nor convex.

A more useful definition, valid for any number of variables, is the following:

Definition 2. Let S be a convex set in R2. We say that the continuous function f(x, y) defined on S is concave
[resp. convex] on S if

f((a, b) + t·(c− a, d− b)) ≥ f(a, b) + t·(f(c, d)− f(a, b)) for all (a, b), (c, d) ∈ S, and t ∈ [0, 1]. [resp. ≤].

If f(x, y) is differentiable (which is the case we are interested in), we can use the tangent plane to define
concavity/convexity:

Definition 3. Let S be an open convex set in R2. We say that the differentiable function f(x, y) defined on S
is concave [resp. convex] on S if at any point (a, b) ∈ S, the tangent plane is above or on the graph of f . This
means that for any (a, b) ∈ S

f(x, y) ≤ f(a, b) + f ′x(a, b)(x− a) + f ′y(a, b)(y − b)︸ ︷︷ ︸
image of (x, y) using the tangent plane

for any (x, y) ∈ S [resp. ≥].

In case the inequality above is strict for all (x, y) 6= (a, b), we say that f is strictly concave [resp. strictly
convex].

12.3 Second-order conditions for concavity/convexity

If our function is twice differentiable, we can use its hessian to determine its concavity and convexity on an open
convex set S. The idea is that if f is concave, at any point (a, b) ∈ S there will be a neighbourhood of (a, b)
where the difference

D = f(x, y)− f(a, b)− f ′x(a, b)(x− a)− f ′y(a, b)(y − b) ≤ 0
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will have a max (= 0) at (a, b) and consequently its d2 at (a, b) will be negative (definite or semidefinite). But
d2
(a,b) of the function D above is exactly equal to d2

(a,b)f = H(a, b), the hessian of f . As this happens at any
point in S, we can state

Let f(x, y) be twice differentiable on an open convex set S ⊂ R2. Then

f convex on S ⇔ H(x, y) Positive (D or S) in S ⇔

∣∣∣∣∣ f
′′
xx f ′′xy

f ′′yx f ′′yy

∣∣∣∣∣ ≥ 0; f ′′xx ≥ 0, f ′′yy ≥ 0 for all (x, y) ∈ S

f concave on S ⇔ H(x, y) Negative (D or S) in S ⇔

∣∣∣∣∣ f
′′
xx f ′′xy

f ′′yx f ′′yy

∣∣∣∣∣ ≥ 0; f ′′xx ≤ 0, f ′′yy ≤ 0 for all (x, y) ∈ S

f NCNC on S ⇔ H(x, y) Indefinite in S ⇔

∣∣∣∣∣ f
′′
xx f ′′xy

f ′′yx f ′′yy

∣∣∣∣∣ < 0 for some (x, y) ∈ S.

(16)

NCNC=non-concave, non-convex.

Notice that the signs of the Hessians in the last result have to be maintained in ALL OF THE SET S.

As for strict concavity or convexity, we can use the above result in one sense:6

If H(x, y) is Definite in S, the concavity/convexity will be strict.

For many functions, H(x, y) will not be always ≥ 0 or ≤ 0 at all points on the domain. In some occasions one
can determine the greatest convex set where f is concave (or convex) by imposing the necessary conditions on
the Hessian in order to have the right signs.

Question 37. Given f(x, y) = x3 + y2− 6xy, determine the largest convex set S on which f is concave/convex.
Answer to question 37.

12.4 Useful concavity/convexity conditions.

Besides the Hessian conditions, there are other ways of determining whether a function is concave or convex (or
non-convex, non-concave). The following results are useful. Let f and g be defined on a convex set S:

(a) If f is convex [concave] then −f is concave [convex].

(b) A linear function, f(x, y) = ax+ by is both convex and concave for any a, b ∈ R.

(c) f and g concave [convex] ⇒ f + g concave [convex]. Example: f(x, y) = x2 + y2 + x+ y is convex because
it is the sum of x2 + y2 and x + y, both convex. Remark: this is true for the addition of two functions,
not for the subtraction nor the product! xy is the product of two concave (and convex) functions but it is
neither!

(d) f concave [convex] ⇒ af, (a > 0) concave [convex]. Example: f(x, y) = 3x2 + 3y2 is convex.

(e) If f(x, y) = F (x) or F (y) and F (·) is concave [convex], then f(x, y) is concave [convex]. Example:
f(x, y) = x4 + y2 is convex because it is the sum of x4 and y2 which, as functions of one variable, are
convex.

(f) If f(x, y) is concave [convex] and F (t) is increasing and concave [convex], then F (f(x, y)) is concave [convex].
Example: ex

2−y is convex because et is an increasing convex function of one variable and f(x, y) = x2− y
is a convex function of two variables. Remark: notice that in both cases, concave and convex, F (t), as a
one-variable function, has to be increasing.

Question 38. Use, if possible, item (f) above to determine the concavity/convexity of g(x, y) = e−x
2−y2

. Answer

to question 38.

12.5 A sufficient condition for global max/min.

Imagine we know that f(x, y) is concave on all of its open convex domain S and (a, b) is a stationary point in
S. Can we decide right away whether (a, b) is a max, a min or a saddle point? Well if the function is concave
on all of S, (a, b) cannot be a min nor a saddle point. Consequently it has to be a global max!

6Remember that there are cases for which the concavity/convexity is strict and the Hessian is 0. For instance, f(x, y) = x4 + y4.
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Theorem (Sufficient conditions for a global max/min)
Let S be an open convex domain, and let (a, b) ∈ S be a stationary point for f(x, y). Then

• If f is concave on all of S, (a, b) is a global max for f over S.

• If f is convex on all of S, (a, b) is a global min for f over S.

As the previous Theorem shows, the concavity or convexity of f on an open convex domain determines imme-
diately the GLOBAL character of any stationary point in the domain.

Example. Find max/min for f(x, y) = x4 + y4.

This is one of the functions where the Hessian at the ONLY stationary point, (0, 0), was equal to 0 and we
could not tell whether the candidate was a max/min/Saddle Point. But now, we can determine the convexity of
x4 + y4 in all of its domain R2. This can be done in two ways:

• Using 12.4 above: By (e) x4 and y4 as one-variable functions are convex, and now, by (c) x4 + y4 is convex
as sum of two convex functions.

• Using (16): H(x, y) =
(

12x2 0
0 12y2

)
. We have

|H(x, y)| = 144x2y2 ≥ 0; f ′′xx = 12x2 ≥ 0; f ′′yy = 12y2 ≥ 0 for all (x, y) ∈ R2.

Therefore, f is convex on all of its domain.

Conclusion: As (0, 0) is the only stationary point of a convex function on all of its open and convex domain (R2),
the function has a global minimum equal to 0 at (0, 0). It has no max because x4 + y4 →∞ as x (or y or both)
→∞.

Answers to questions:

A37. Let us find the Hessian: f ′x = 3x2 − 6y; f ′y = 2y − 6x. So

H(x, y) =

(
6x −6

−6 2

)
and |H(x, y)| =

∣∣∣∣∣ 6x −6

−6 2

∣∣∣∣∣ = 12x− 36.

Now, if 12x− 36 ≥ 0, that is x ≥ 3 then |H(x, y)| ≥ 0 and 6x > 0. This implies that H(x, y) is positive on
the half-plane S = {(x, y) : x ≥ 3}. This is the largest set where f is convex. It is never concave because
f ′′yy = 2 > 0 for all (x, y). Back

A38. Let F (t) = et. It is increasing and convex. Now g(x, y) = F (f(x, y)) where f(x, y) = −x2 − y2. But
f(x, y) = −x2 − y2 is concave. We cannot use item (f) to determine conc/conv. One could think of using
F (t) = e−t. Then g(x, y) = F (f(x, y)) with f(x, y) = x2 + y2, which is convex. Unfortunately, F (t) = e−t

is decreasing and again (f) fails. Back

13 Day 13: Global Optimization.

The aim of the rest of the course will be to find GLOBAL max and min of a function on a set S. In order
to achieve that goal, we are going to study different strategies.

• Concavity/convexity of f on S. We have already seen how to use this powerful tool.

• The Extreme Value Theorem (EVT). A useful tool when set S is a compact set (see below).

• Finding max/min on the frontier of the domain. In combination of our previous tools, a way of establishing
possible global max/min at points which are not stationary. We will later use a technique, Lagrange’s
multipliers, that will also help us finding max/min on a curve (which may be the frontier of a set).

• Using SOLVER. SOLVER is an application of EXCEL (actually a macro) that helps us finding max/min
of any function on any set. We can also use other software (WolframAlpha, for instance), but SOLVER has
some special features that make it very useful for big problems (many variables, many constraints).

• Linear Programming. Special techniques to apply when our function is linear, f(x, y) = ax + by and the
domain is defined by linear constraints.

13.1 Compact sets in R2.

You surely remember interior points (see notes for Day 10), like point P in the figure below. Points like Q
that are not interior points and may or not belong to S, are called frontier or boundary points of S. For a
boundary point, any disk centered in the point has points of S and points that do not belong to S.
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A set in R2 that contains all its boundary points is called a closed set.

A set in R2 that can be enclosed in a disk of center (0, 0) and some finite radius, r, is called a bounded set.

A set in R2 that is simultaneously closed and bounded is called a compact.

P

Q

S

13.2 Sets defined by constraints.

Most of the sets we use are defined by conditions that have to be satisfied by their points. These conditions will
usually be of the form g(x, y) = c or g(x, y) ≤ (≥, <,>)c: equalities or inequalities involving a function. Each
one these constraints will delimit a part of the plane. The combination of all, will define our set.

For example, the set S = {(x, y) ∈ R2 : 2x+ 3y ≤ 6, x ≥ 0, y > 0} is the following

 2x+ 3y ≤ 6
x ≥ 0
y > 0

If g is a continuous function, the set defined by S = {(x, y) : g(x, y) = 0} is a curve in the xy-plane. All its
points are boundary points and belong to S: S is a closed set. If the curve is bounded, S is a compact. If the
curve has any branch going to infinity (like a parabola), then S is not a compact, obviously.

The set defined by g(x, y) ≥ (≤)0 is a closed set (on one “side” of the curve plus the curve itself), and if the
inequality is strict, an open set (not including the curve). Again, if the “side” considered is bounded, we have a
compact set.

13.3 The Extreme-Value Theorem (EVT)

If f(x, y) is a continuous function defined on a compact set S of R2, then f(x, y) has a global max and a global
min at points of S.

This is an extension of the same result for one-variable functions defined on a closed interval of R.

The result is completely clear from a naive point of view. It requires no explanation.

13.4 Global optimization on a compact set

If we are interested in max/min of a differentiable function f(x, y) defined on a compact set S, we can proceed
as follows:

(a) Find all stationary points of f which are interior to S.
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(b) Find the max/min of f on the frontier.

(c) Evaluate f at each one of the points found before.

(d) Max/min of f are the greatest and the smallest values in the list just made above.

13.5 Problems

SH problem 17.2.1 For the following functions find the global max/min (or prove it does not exist) by a direct
argument:

• f(x, y) = (x− 1)2 + (y + 2)2 − 10.

• f(x, y) = 3−
√

2− (x2 + y2).

14 Day 14: Problems

SH problem 17.3.1 Find the max/min for f(x, y) = 4x− 2x2 − 2y2 on S = {(x, y) : x2 + y2 ≤ 25}.
SH problem 17.3.2 c Max/min f(x, y) = 3 + x3 − x2 − y2 s.t. x2 + y2 ≤ 1, x ≥ 0.

Problem. Max/min of f(x, y) = 1 + xy − x− y on S = {(x, y) : y ≥ x2, y ≤ 4}.
Problem. If a differentiable function of one variable on an interval has only one stationary point, then a
local max has to be a global max. But this is not true for functions of two variables. Show that the function
f(x, y) = 3xey − x3− e3y has exactly one stationary point which is a local max that is not a global max. How do
you reconcile this with Theorem 12.5 (Sufficient conditions for a global max/min)?

Problem. A monopolist produces two commodities, with demand functions p1 = 12− x1; p2 = 36− 5x2, where
x1, x2 are the quantities produced of each commodity, and p1, p2 the corresponding prices per unit. If the cost
function is C(x1, x2) = 2x1x2 + 15, find the production of each commodity and the prices that maximize the
monopolist’s profit. Consider the domain where x1, x2, p1, p2 ≥.

15 Day 15: Constrained optimization. Lagrange’s method

Constrained optimization refers to the problem of finding max/min of a function f(x, y) where x, y are constrained
by having to satisfy a given equation, g(x, y) = c, called the constraint. When we find the max/min of a
function defined on a compact domain S, this is exactly what we do when we find candidates on the frontier of
the domain, ∂S.

15.1 Substitution method

In order to find max/min of a function f(x, y) subject to a constraint g(x, y) = c, we can solve g(x, y) = c for
x or y and replace in f(x, y). The problem becomes a one-variable problem. One has to be careful about the
domain of the new single variable function. This method is only possible if the solution of g(x, y) = 0 can be
found in terms of one of the variables.

Example. Find max/min of f(x, y) = xy s.t. x+ y = 6.

The constraint allows us to write y = 6− x and the function becomes g(x) = f(x, 6− x) = x(6− x) with R as
domain. Function g has x = 3 as a unique stationary point which is a global max since g(x) = −x2 + 6x is a
concave parabola.

The solution to our constrained problem is max f(x, y) = 9 at (3, 3).

In case that substitution is not easy, we may use:

15.2 Lagrange’s method

Let us examine the previous problem from another point of view. If we graph a few of f(x, y) = xy level curves
together with the constraint, we will have a map of the situation:
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2 4 6 8

2

4

6

8

0

−→
∇g

−→
∇f

(3, 3)

x·y = 16

x·y = 9

x·y = 4

x·y = 1

x+ y = 6

Imagine the graph of f(x, y) is a mountain and the red line is the general direction of a path on the mountain.
As we move from point (0, 6) towards point (6, 0) on the line x + y = 6, we cross many level curves. In the
figure, we only see two of those, xy = 1 and xy = 4. Clearly, there are points on the red line which are at a
greater “height” on the surface than 1 or 4. But when we draw the level curve xy = 9 we see that our path
“touches” (is tangent) the level curve xy = 9 at point (3, 3) and, consequently, at this point we reach the max
altitude on the path: 9. Continuing we descend again towards xy = 4, xy = 1, and eventually, xy = 0 (the axes).

What do we learn from that rationale we have just used? That at a max on the path, there must be a level
curve of our function, f(x, y) = b which is tangent to the given constraint, g(x, y) = c. Consequently, at this
point both gradients have to have the same direction! (See the two vectors with origin (3, 3)):

−→
∇f(a, b) = λ

−→
∇g(a, b) where (a, b) is the max (or min) point, and λ ∈ R.

This translates into
f ′x(a, b) = λg′x(a, b), and f ′y(a, b) = λg′y(a, b)

or, even better,
f ′x(a, b)− λg′x(a, b) = 0 and f ′y(a, b)− λg′y(a, b) = 0.

This suggests a method to solve a constrained problem: Lagrange’s method.

(a) Write down the Lagrangian (an auxiliary function):

L(x, y) = f(x, y)− λ·(g(x, y)− c).

(b) Find the solutions (x, y and λ) to the system
L′x(x, y, λ) = 0
L′y(x, y, λ) = 0

g(x, y) = c
(17)

(c) These points are candidates to max/min (in principle, local).

15.3 Classifying Lagrange’s method candidates

It is a grave error to assume that a candidate to max /min f(x, y) s.t. g(x, y) = c found by the
Lagrangian can be classified directly by f ’s Hessian!

There are different ways of deciding whether the candidates found are max or min, as well as deciding whether
they are local or global. There are examples, though, where all these ways fail. Each particular problem has to
be considered.

One possibility is the Extreme-Value Theorem. If we know that g(x, y) = c represents a closed and bounded
curve (for example a circle or an ellipse or a polygon), then we only need to list the value of f at each candidate
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to find the global max and the global min. Mind the corner points! These will be points where g is not
differentiable or where g’s graph has an endpoint. They have to be included always in the list. In our
problem above, there were two corner points we did not mention: (0, 2) and (2, 0). At these points f(x, y) = xy
has two local max = 0.

If substitution (see Section 15.1) is possible, with a careful control of the domain, we can decide on the character
of our candidates.

If this cannot be done, we can try representing the level curves of f alongside with g(x, y) = c and see if we can
decide graphically the character (max/min, global/local) of each of the candidates.

Question 39. Find the min of f(x, y) = x+ y subject to xy = 9. Answer to question 39.

Answers to questions:

A39. If we use substitution, the problem is simple enough. Let us use Lagrange. Let L(x, y) = x+y−λ·(xy−9).
We need to find the solutions (x, y and λ) to the system 1− λy = 0

1− λx = 0
xy = 9

⇒ x = y = 3;λ = 1/3.

We have only one candidate, (3, 3) with λ = 1/3.
The domain of f(x, y) is the whole of R2, which is not a compact. We cannot use EVT. But f(x, y) = x+y
is concave and convex on R2 (it is a linear function!) Thus f(3, 3) = 6 may be a min or a max. Let us
graph the situation:

2 4 6 8

2

4

6

8

0

x·y = 9

x+ y = 4

x+ y = 2 x+ y = 6

x+ y = 16

(3, 3)

We can see clearly that along the curve xy = 9, we diminish the value of x+ y until we reach the tangency
point (3, 3), after which we increase again the value of x+ y. We have a min at the tangency point. Back

16 Day 16: Global sufficiency in Lagrange problems

A good method to establish the global character of a max/min is to consider the concave/convex character of the
Lagrangian (for each candidate) in all of its domain. This has to be done for the Lagrangian that corresponds
to each candidate: Lλ0 .

If (a, b, λ0) is a candidate (solution to (17)) and we know that it is a global max for Lλ0 then it will also be a
global max for f restricted on g(x, y) = c since, on the constraint curve, all (x, y) satisfy

f(x, y) = f(x, y)− λ0· (g(x, y)− c)︸ ︷︷ ︸
=0

= Lλ0(x, y)≤Lλ0(a, b) = f(a, b)− λ0· (g(a, b)− c)︸ ︷︷ ︸
=0

= f(a, b).

This allows us to state:

SH Theorem 18.2 (Global sufficiency)

If (a, b, λ0) is a candidate of our problem (solution to (17)) and Lλ0(x, y) = f(x, y)− λ0(g(x, y)− c) is concave
(convex) then (a, b) is a global max (min).

Notice that Lλ0 ’s concavity/convexity can be studied by f ’s and −λ0·g’s concavity/convexity.
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16.1 Local sufficiency. Bordered Hessian.

We have already mentioned the local character of the candidates obtained by Lagrange’s method. We have also
highlighted that we cannot use f ’s Hessian to classify the candidates.

But we can try to use the local tools we have. We can study the sign of d2L(a, b, λ0) as a quadratic form
constrained by g(x, y) = c and, with its help, decide whether we have a max or a min. This is done in a
neighbourhood of point (a, b), therefore the result is only local.

As g(x, y) = c, dg(a, b) = g′x(a, b)·dx+ g′y(a, b)·dy = 0. The character (sign) of d2L(a, b) on the line of equation
g′x(a, b)·dx+ g′y(a, b)·dy = 0 can be found by the sign of the bordered hessian:

D(a, b, λ0) =

∣∣∣∣∣∣
0 g′x(a, b) g′y(a, b)

g′x(a, b) L′′xx(a, b, λ0) L′′xy(a, b, λ0)
g′y(a, b) L′′xy(a, b, λ0) L′′yy(a, b, λ0)

∣∣∣∣∣∣
If D(a, b, λ0) > 0 we have a local max at (a, b) and if D(a, b, λ0) < 0 we have a local min.

Question 40. Find max/min of f(x, y) = x2 + y2 s.t. x2 + 2y = 4. Answer to question 40.

Question 41. Find max/min of f(x, y) = x2 + y2 s.t. x+ 2y = 5. Answer to question 41.

Question 42. SH problem 18.3.2 Consider the problem

min f(x, y) = (x− 1)2 + y2 s.t. y2 − 8x = 0.

(a) Try to solve the problem by reducing it to a minimization problem in (i) the x variable; (ii) the y variable.
Comment.

(b) Solve the problem by using the Lagrangian method.
(c) Give a geometric interpretation of the problem.

Answer to question 42.

Answers to questions:

A40. The Lagrangian is L(x, y) = x2 + y2 − λ·(x2 + 2y− 4). The candidates to max/min will come from solving
L′x = 2x− 2λx = 0
L′y = 2y − 2λ = 0

x2 + 2y = 4
⇒ (0, 2), λ = 2 and (±

√
2, 1) with λ = 1.

Now,

Lλ=1(x, y) = x2 +y2−(x2 +2y−4) = y2−2y+4, clearly a convex function. (±
√

2, 1) GLOBAL MIN.

The value of the global min is f(±
√

2, 1) = 3. But,

Lλ=2(x, y) = x2 + y2 − 2(x2 + 2y − 4) = −x2 + y2 − 4y + 8, not convex, not concave.

In this last case, let us study the bordered Hessian. Now, (Lλ=2)′′xx = −2, (Lλ=2)′′xy = 0, and (Lλ=2)′′yy = 2.
Besides g′x = 2x and g′y = 2. At (0, 2), g′x(0, 2) = 0 and g′y(0, 2) = 2, thus

D(0, 2, 2) =

∣∣∣∣∣∣
0 0 2
0 −2 0
2 0 2

∣∣∣∣∣∣ = 4 > 0.

This tells us that (0, 2) is a local max. The value of the max is f(0, 2) = 4 . Back

A41. The Lagrangian is L(x, y) = x2 + y2 − λ·(x+ 2y − 5). The candidates to max/min will come from solving
L′x = 2x− λ = 0
L′y = 2y − 2λ = 0

x+ 2y = 5
⇒ (1, 2) with λ = 2.

Now, L′′xx = 2, L′′xy = 0, and L′′yy = 2.7 The Lagrangian is strictly convex for all (x, y). Consequently the
candidate found is a global min= 5.8 There is no max as x and y may tend to ∞ on the constraint and, in
this case, we clearly have x2 + y2 →∞.

Back

7In this case, the Lagrangian is independent of the value of λ.
8In this case, the convexity of the Lagrangian has solved our problem. But if that convexity would not have been possible to determine,

we can always check the bordered hessian to see if we can obtain local information. In this case, we have

D(a, b, λ0) =

∣∣∣∣∣∣
0 1 2
1 2 0
2 0 2

∣∣∣∣∣∣ = −8 < 0.

This tells us that the point is a local min.
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A42. (a) (i) Let us insert the constraint y2 = 8x in the function f :

k(x) = (x− 1)2 + 8x.

Taking the first derivative and equating to 0:

2(x− 1) + 8 = 0 ⇒ x = −3.

k(x) is a convex parabola so we have a minimum: k(−3) = −8 for x = −3.
(ii) Solving the constraint for x we have x = y2/8. Replacing in f we have the one variable function

h(y) = f(y2/8, y) =
(
y2

8
− 1
)2

+ y2.

Taking the first derivative and equating to 0

h′(y) =
y

2
·
(
y2

8
− 1
)

+ 2y = 0 ⇒ y

(
y2

16
+

3
2

)
= 0

The only solution is y = 0. Let us check the second derivative h′′(y):

h′′(y) =
3y2

16
+

3
2

⇒ h′′ > 0 for all y.

Thus, function h is convex throughout R and the minimum found at y = 0, h(0) = 1 is a global
minimum.

There seems to be a contradiction between (i) and (ii) but a closer inspection shows what happens. In
case (i), the domain for k(x) is not all R. The constraint y2 = 8x implies that x ≥ 0. This circumstance
has been overlooked in the resolution. We should have proceeded as follows.
We have to determine the minimum of k(x) = (x− 1)2 + 8x in the set [0,+∞). The stationary point
found, x = −3 does not belong to this set. Thus the minimum, if it exists, has to be found at one
endpoint. In this case x = 0 is the desired endpoint. k(0) = 1 and k′(x) > 0 for x > 0 thus proving
that 1 is the minimum value for k.

(b) The Lagrangian function is
L(x, y) = (x− 1)2 + y2 − λ(y2 − 8x).

The equations to consider are:
2(x− 1) + 8λ = 0

2y − 2λy = 0

y2 = 8x

⇒ x = 0; y = 0; λ = 1/4.

The Lagrangian Lλ=1/4(x, y) = (x−1)2+(3/4)y2+2x is the sum of three convex one-variable functions.
It is then convex for all (x, y). The candidate is a global min.9

(c) Geometrically, the problem can be stated as finding the point on the parabola y2 = 8x which is closer to
point (1, 0). Function f(x, y) is the square of the distance from (1, 0) to a point (x, y) on the parabola:

−1 1 2 3 4 5 6

−3

−2

−1

1

2

3

0

Back

9The local character of the candidate can also be checked by the bordered hessian at (0, 0, 1/4)

D(0, 0, 1/4) =

∣∣∣∣∣∣
0 −8 0
−8 2 0

0 0 3/2

∣∣∣∣∣∣ = −96 < 0 local min.
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17 Day 17: Lagrange multiplier’s economic interpretation.

What happens if constant c in g(x, y) = c changes a little bit? How does the solution max/min of our problem
depend on the value of c?

Let f∗ = f(x∗, y∗) be the max/min value (solution) to a Lagrange problem. If we consider that (x∗, y∗) satisfy
the equations 

f ′x(x∗, y∗)− λ·g′x(x∗, y∗) = 0
f ′y(x∗, y∗)− λ·g′y(x, y) = 0

g(x∗, y∗) = c

and we consider x∗(c) and y∗(c) functions of c, then

df∗

dc
= λ.

This is easy to prove by using the chain rule:

df∗

dc
=
df(x∗, y∗)

dc
= f ′x(x∗, y∗)

dx∗

dc
+ f ′y(x∗, y∗)

dy∗

dc
= λg′x(x∗, y∗)

dx∗

dc
+ λg′y(x∗, y∗)

dy∗

dc
= λ

since from g(x∗, y∗) = c we have (taking derivatives w.r.t. c on both sides):

dg

dc

∣∣∣∣
(x∗,y∗)

= g′x(x∗, y∗)
dx∗

dc
+ g′y(x∗, y∗)

dy∗

dc
= 1

.

Then, if g(x, y) = c represents a limitation in some resource, λ is the maximum “price” we are prepared to pay
for an additional unit of the resource in order to obtain a better value of f∗:

f∗(c+ 1)− f∗(c) ' λ,

and, from a more general point of view, if dc represents a small change in c,

f∗(c+ dc)− f∗(c) ' λ·dc.

The value of λ is called the shadow price of the constraint.

Sydsaeter & HammondProblem 18.2.5 Consider the problem max 10x1/2y1/3 s.t. 2x+ 4y = m.

(a) Solve the problem considering the solution for x, y and λ as functions of m.

(b) Check
df∗

dm
= λ(m).

17.1 Linear programming.

Let us consider a particular max/min problem where f(x, y) is a linear function and the domain is a polygon
delimited by straight lines (linear equations). This kind of problem is called a Linear Programming problem (LP
problem).

Actually, the basic ideas for solving a LP have already been explained. Consider the problem

max /min f(x, y) = 20x+ 30y s.t.


3x+ 6y ≤ 150
x+ 0.5y ≤ 22
x+ y ≤ 27.5
x, y ≥ 0.

This is a typical situation. We will limit ourselves to problems where x and y can take no negative values. Thus,
considering the constraints in the problem as the domain on which we want to optimize our function, this domain
is always contained in the first quadrant of the xy-plane. As we mentioned before, as all the constraints are
linear expressions, the domain will always be a closed convex polygon of the xy-plane. If the polygon is bounded,
it is a compact set and we can apply the EVT to the problem. If the polygon is unbounded, the problem may
have no solution.

If the solution exists, it will always be on the frontier of our polygon.

We can go somewhat further and as we are dealing with linear functions, when we restrict ourselves to one of
the lines of the frontier, the max/min of our function have to be on one of the corners.10 We can state:

10Eventually, a whole side may be formed of solution points if the function is constant on it. But in any case, the solution will be found
at a corner point.
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If the solution exists, it will always be on a vertex of our polygon.

These considerations lead to two very easy methods for solving a two-variable LP problem:

• Plot the domain (feasible region) in the xy-plane.

• EVT method: If you have a compact feasible region, the solution exists (by the EVT) and it is found
at one of the corners. List the value of the function (objective function) at each vertex and choose the
max/min among the list. Problem solved.

• The EVT method cannot be used in the case of an unbounded feasible region for obviuos reasons: the
solution might not exist.

• Sweeping method: If you have an unbounded feasible region, the best way to proceed is by drawing on
the same diagram a few level curves of the objective function (parallel lines). If there is a solution, one of
the level curves will just touch the vertex solution. If there is no solution, you will always be able to get
level curves inside the polygon with increasing/decreasing values.

• The sweeping method can always be used for either bounded or unbounded feasible regions.

This methods will not be explained in detail in the plenary sessions.

Read carefully, and understand completely, Section 19.1 of Sydsaeter & Hammond.

Example. Solve the LP problem

max /min f(x, y) = 20x+ 30y s.t.


3x+ 6y ≤ 150
x+ 0.5y ≤ 22
x+ y ≤ 27.5
x, y ≥ 0.

both graphically and using SOLVER (see next sub-section).

Solving the same problem with constraint number 1 changed to 3x + 6y ≤ 151 gives us the shadow price of
constraint 1, that is the extra value in the max/min of f obtained through an extra unit in the RHS of constraint
1:

Shadow price of constraint 1: new max/min − old max/min.

Similarly we would obtain the shadow prices of constraints 2 and 3.

Example. Use SOLVER to solve the three LP problems obtained by increasing one unit the RHS of constraints
1, 2, and 3 (one at a time). Get in this way the three shadow prices in this problem.

17.2 Use of SOLVER.

The same ideas apply to a many-variable linear function (more than 2 vars). But we do not have the help of the
graphical approach. The standard method to solve this larger problems is called the SIMPLEX method which
uses matrices and Gauss reduction. It is not difficult to explain but quite tedious to apply by hand. Computers
do the job for us.

EXCEL’s SOLVER is the ideal tool to solve large LP problems (many variables, many constraints).

Question 43. A firm has three different production plants and four warehouses. A study on next year’s pro-
duction estimates the production and its assignment to the different warehouses (unit= truck load). The table
shows the transport cost from each factory to each warehouse (in euros per unit)

Wareh. 1 Wareh. 2 Wareh. 3 Wareh. 4 Production
Plant 1 $464 $513 $654 $867 75
Plant 2 $352 $416 $690 $791 125
Plant 3 $995 $682 $388 $456 100
Assignment 80 65 70 85

The last row is the minimum amount that each warehouse must store and the last column shows each plant’s
estimated maximum production.
Establish the distribution plan from each plant to each warehouse in order to minimize the total transportation
cost.
Hint. The variables should be the amount that each plant must send to each warehouse, xij, where i indicates
Plant i and j Warehouse j.

45



18 Day 18: Dual problems.

Let us consider the primal problem

max c1x1 + . . .+ cnxn s.t. A·~x ≤ ~b

where A is a m× n matrix, A = (aij) and ~b = (b1, . . . , bm).

The dual problem consists of min b1u1 + . . .+ bmum s.t. At·~u ≥ ~c where At is a the transposed matrix of A, the
n×m matrix, At = (aji) and ~c = (c1, . . . , cn).

(As usual, in both problems the set of variables is non-negative.)

A max n-variable, m-constraints problem has as dual a min m-variable, n-constraints problem. It is also clear
that the dual’s dual is the primal.

The relationship between the solutions is not so direct:

Theorem [The Duality Theorem. Sydsaeter & Hammond 19.3] Suppose the primal problem has a (finite) optimal
solution. Then the dual problem has also a (finite) optimal solution and the corresponding values of the objective
functions are equal. If the primal is unbounded and has no optimum, the dual has no feasible solution (empty
feasible set).

We see then that either both primal and dual have a solution or none has. The value of the max/min is the
same but, unfortunately, there is no easy way of getting one solution point in terms of the other.

18.1 Complementary slackness

There is, though a (not easy) way of finding the solutions of the primal knowing the solutions of the dual. This
is thanks to the following result.

Theorem [Complementary slackness. Sydsaeter & Hammond 19.4] The shadow prices of the primal are the
solutions to the dual and viceversa. Let us suppose that (x∗i ) is the solution point to the primal and (u∗j ) the
solution point to the dual. If replacing the solution in constraint j of the primal, there is some slackness (the
result is a strict inequality, that is) then u∗j = 0. Reciprocally, if u∗j > 0, constraint j of the primal is an equality
(no slackness).

The typical situation where we will apply the previous Theorem is the case of a primal of 4 variables (say) and
2 constraints. We cannot solve the primal graphically. But the dual has 2 variables and 4 constraints. We know
how to solve that graphically. The dual’s solution will be something like (u∗1, u

∗
2). Imagine u∗1 > 0, u∗2 > 0. This

means that Constraints 1 and 2 in the primal (CP1, and CP2) are equations for the solution (=). And now
suppose, in the dual, that replacing u∗1 and u∗2 leads to the slackness of Constraints 3 and. Then x∗3 = 0 and
x∗4 = 0. The values of x∗1, x

∗
2 can be obtained by solving the equations CP1 and CP2.

Example. Sydsaeter & Hammond Problem 19.5.2. Solve graphically the problem:

min y1 + 2y2 s.t.


y1 + 6y2 ≥ 15
y1 + y2 ≥ 5
−y1 + y2 ≥ −5
y1 − 2y2 ≥ −20
y1, y2 ≥ 0

(a) Write down the dual and solve it.

(b) What happens with the optimal solution of the primal if constraint y1+6y2 ≥ 15 is changed to y1+6y2 ≥ 15.1?

(c) What if at the same time, y1 + y2 ≥ 5 is changed into y1 + y2 ≥ 5.2?

SOLUTION.

The solution is found at point (y∗1 , y
∗
2) = (3, 2) and the minimal value of the objective function is 7.
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(a) The dual is

max 15x1 + 5x2 − 5x3 − 20x4 s.t.

 x1 + x2 − x3 + x4 ≤ 1
6x1 + x2 + x3 − 2x4 ≤ 2

x1, x2, x3, x4 ≥ 0.

We will solve the dual by using the primal solution and complementary slackness. Let us replace the optimal
solution (3, 2) of the primal in the constraints in order to check the existing slackness:

3 + 6·2 = 15 active (binding) constraint;
3 + 2 = 5 active constraint;
−3 + 2 > −5 inactive (slack) constraint;
3− 2·2 > −20 inactive constraint.

The shadow prices of constraints 3 and 4 will be 0 (the constraints are slack). This means that the dual
solution will be (x∗1, x

∗
2, x
∗
3, x
∗
4) = (x∗1, x

∗
2, 0, 0).

Using the fact that x∗3 = 0, x∗4 = 0, the other values of the solution must be that of system{
x1 + x2 = 1

6x1 + x2 = 2 ⇒
{
x∗1 = 1/5
x∗2 = 4/5.

The value of the max is the same as the primal’s min: 15·(1/5) + 5·(4/5) = 7.

(b) Graphically we see that moving constraint 1 a little bit upwards will not alter the configuration of the
solution. The feasible set gets smaller so the value of the min can only increase. We can guess confidently
that, as the solutions to the dual are the shadow prices to the primal, y∗1 = 1/5, y∗2 = 4/5. Thus, if constraint
y1 + 6y2 ≥ 15 the “cost” of moving constraint 1 is 0.1·(1/5) = 0.02 and the new min is 7.02.

(c) Again the change in both constraints is very small . The solution will still be at the intersection of constraint
1 and 2. The new feasible region is even smaller and the new min will be:

7 + 0.1·(1/5) + 0.2·(4/5) = 7.18.
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