Economics Working Paper 154

Unfolding a Symmetric Matrix

John C. Gower*
and
Michael Greenacre†

January 1996

* Department of Statistics, Open University, Milton Keynes, U.K.
† Department of Economics, Universitat Pompeu Fabra, Balmes 132, 08008 Barcelona, Spain.

Keywords: Dimensionality reduction, distances, graphics, multidimensional scaling, symmetric matrices, unfolding.

Journal of Economic Literature classification: C19, C88.
Abstract

Graphical displays which show inter-sample distances are important for the interpretation and presentation of multivariate data. Except when the displays are two-dimensional, however, they are often difficult to visualize as a whole. A device, based on multidimensional unfolding, is described for presenting some intrinsically high-dimensional displays in fewer, usually two, dimensions. This goal is achieved by representing each sample by a pair of points, say $R_i$ and $r_i$, so that a theoretical distance between the $i$-th and $j$-th samples is represented twice, once by the distance between $R_i$ and $r_j$ and once by the distance between $R_j$ and $r_i$. Self-distances between $R_i$ and $r_i$ need not be zero. The mathematical conditions for unfolding to exhibit symmetry are established. Algorithms for finding approximate fits, not constrained to be symmetric, are discussed and some examples are given.
1. Introduction

Many multivariate techniques are concerned with displaying data as points in a Euclidean space. Ideally, approximations to the data in two or three dimensions are sought, but such approximations may be poor. We shall be concerned mainly with $p$-dimensional representations of $n$ samples and show, in a certain quite simple sense, how some sets of $n$ points in $n - 1$ dimensions can be exactly represented in $p$ dimensions, where $p$ is a small integer, ideally two or three. In practice, we are also concerned with using these representations for approximations in a specified number of dimensions $p$. Conventional representations are a special case of our general class of representations and so our approximations must be at least as good as, and will usually be better than the former.

The basic idea can be illustrated by considering a regular simplex of $n$ vertices with common intervertex distance $d$, which is known to occupy $n - 1$ dimensions. For conventional Euclidean representations each self-distance, that is the distance between a point and itself, is zero. But if we are prepared to relax this condition we may consider a representation in which each vertex $i$ is displayed as 2 points, $(R_i, r_i)$, $i = 1 \ldots n$. Suppose that all the points labeled $R_i$ are coincident at a point $R$ and that all the points labeled $r_i$ are coincident at a point $r$, where $R$ and $r$ are distance $d$ apart. Then the distance between a point $R_i$ and a point $r_j$ is equal to $d$ for all $i,j$ including $i = j$. Thus by representing each vertex by two points and sacrificing the representation of the zero self-distances, we have represented the $(n - 1)$-dimensional simplex exactly using only one dimension.

In the following we explore representations of this type for irregular simplices. Thus a set of samples will be represented in a Euclidean space where each original sample has two positions, possibly coincident, and the representation of zero self-distances is forfeited. Throughout we use uppercase letters to denote the points in one set and corresponding lowercase letters in the other set. Notice that the
representation need not be unique, for the regular simplex could also be represented in one dimension by a central point \( R \), as before representing all the points of one set, and two points \( r_1, r_2 \) at a distance \( d \) either side of \( R \), to which the points of the other set are allocated arbitrarily. It will be shown that this arbitrariness can be conveniently resolved to give a unique representation.

By doubling the number of points per sample we do not wish to replace the curse of dimensionality by the "curse of profusion". Our results show that this danger is avoided because the two sets of points usually have some simple geometric relationship. Furthermore, the fundamental Euclidean property of closeness survives in our representations. This result can be seen by considering two identical samples represented by point-pairs \((A, a)\) and \((B, b)\) for which the distances \( Ab \) and \( aB \) must both be zero, so that \( A \) coincides with \( b \) and \( a \) with \( B \). Any third sample \((C, c)\) must be equidistant from the first two, so that \( aC = bC = Ac = Bc \) and if \( C \) is identical to the first two samples, then \( a, b, c, A, B, C \) must all coincide. If in the above "identical" is replaced by "similar", then "coincident" is replaced by "close", showing that groups will appear as groups in our representations.

The methodology that we use is a variant of that of multidimensional unfolding (Coombs 1964; see Muller 1988 for an introduction and origin of the name). Multidimensional unfolding is concerned with fitting the following model, including the residual term:

\[
d_{ij}^2 = \sum_{k=1}^{p} (x_{ik} - y_{jk})^2 + e_{ij} \quad i = 1 \ldots n, \quad j = 1 \ldots m
\]  

(1)

where \( d_{ij} \) is the \((i, j)\)-th element of a given \( n \times m \) matrix \( D \), whose elements are considered as approximate squared distances in \( p \)-dimensional Euclidean space, and \( e_{ij} \) is the residual term. Thus \( R_i \), with coordinates \( x_{i1} \ldots x_{ip} \), and \( r_j \), with coordinates \( y_{j1} \ldots y_{jp} \), may be considered as points representing the \( i \)-th row and \( j \)-th column of \( D \). This model, and variants of it, have been studied extensively by psychometricians, especially as a method for analyzing preference data (e.g.,
see Carroll 1980), but it has general interest as a technique for data analysis.

If we define the following notation:

- \( \mathbf{D} = \{d_{ij}^2\} \), the \( n \times m \) matrix of squared distances;
- \( \mathbf{X} = \{x_{ik}\} \), the \( n \times p \) matrix of coordinates of the rows;
- \( \mathbf{Y} = \{y_{jk}\} \), the \( m \times p \) matrix of coordinates of the columns;
- \( \mathbf{1} = \{1\} \), a column-vector of ones, whose length will be apparent from the context;
- \( \mathbf{U} = \mathbf{11}^T \), the \( n \times m \) matrix of ones;
- \( \mathbf{E} = \text{diag}(\mathbf{XX}^T) \), \( \mathbf{F} = \text{diag}(\mathbf{YY}^T) \);
- \( \mathbf{R} = \{e_{ij}\} \), the \( n \times m \) matrix of residuals;

then (1) may be written in matrix notation as:

\[
\mathbf{D} = \mathbf{EU} + \mathbf{UF} - 2\mathbf{XY}^T + \mathbf{R}. \tag{2}
\]

Henceforth the special case of a square symmetric matrix \( \mathbf{D} \) is considered, that is where \( n = m \) and \( \mathbf{D} = \mathbf{D}^T \). Now the rows and columns may represent different modes of the same row and column classifications. We call the unfolding of the non-diagonal values of this matrix symmetric unfolding. One of the main theoretical issues of interest is whether solutions of a symmetric unfolding are themselves geometrically symmetric, that is whether the best unfolding fit to a symmetric matrix \( \mathbf{D} \) is necessarily itself symmetric. In Section 2 we consider admissible configurations of \( n \) pairs of points in multidimensional space which exactly yield symmetric matrices of squared distances. However, in our examples we have allowed the possibility that solutions be geometrically asymmetric, i.e., the fitted distance between points \( R_i \) and \( r_j \) is not constrained to be equal to the fitted distance between \( R_j \) and \( r_i \), although in our experience solutions are generally close to symmetric. The existence of asymmetric solutions, which is counter-intuitive, is demonstrated in an example and discussed in the Appendix. In Section 3,
algorithms for unfolding a symmetric matrix are discussed. Section 4 presents some applications of the method and Section 5 gives a concluding discussion.

2. Symmetric Configurations

2.1 Introduction.

This section considers what forms of symmetric representation are admissible. Thus we are considering squared distances generated by the row and column coordinates \( X, Y \), which give the non-diagonal values of the symmetric \( n \times n \) matrix \( D \). Writing \( \Delta \) for the unknown and irrelevant diagonal values, with the previous notation, symmetry requires that

\[
D + \Delta = EU + UF - 2XY^T = UE + FU - 2YX^T. \tag{3}
\]

Double-centering \( D + \Delta \) by pre- and post-multiplying (3) by \((I - N)\), where \( N = \frac{1}{n} U \), and multiplying the result by \(-\frac{1}{2}\) gives the matrix of “quasi-scalar products” (Schönemann 1970):

\[
B \equiv -\frac{1}{2}(I - N)(D + \Delta)(I - N) = (I - N)XY^T(I - N). \tag{4}
\]

\( B \) is symmetric, and if it is positive semi-definite, it has real decompositions of the form \( B = ZZ^T \) where \( Z \) is \( n \times p \) and \( p = \text{rank}(B) \). The solutions \( Z = (I - N)X = (I - N)Y \), which are equivalent up to an arbitrary orthogonal transformation of \( Z \), would suffice for classical scaling where \( X = Y \). But they are too restrictive in the context of unfolding, where indeterminacy is expressed by an arbitrary non-singular \( p \times p \) matrix \( K \), say, and \( n \times q \) matrices \( L \) and \( M \) where \( LM^T = 0 \), to give:

\[
B = [ZK \ L][Z(K^T)^{-1} \ M]^T
\]

where \([ZK \ L]\) is an augmented matrix of order \( n \times (p + q) \).

The positive semi-definite condition is automatically satisfied if \( D \) is Euclidean. The effect of \( \Delta \), which has non-negative elements, is to extend the class of matrices
for which $B$ is positive semi-definite. Without loss of generality it may be assumed that one set of coordinates is centered at the origin so that $NX = 0$, giving the following general decomposition of $B$:

$$X = [ZK \ L] \quad \text{and} \quad (I - N)Y = [Z(K^T)^{-1} \ M].$$

Because $1^TZ = 0$, it follows that $1^TL = 1^TM = 0$.

This solution may be separated into its $p$- and $q$-dimensional components to give:

$$X_p = ZK, \quad Y_p = Z(K^T)^{-1} + 1\hat{y}_p^T$$

$$X_q = L, \quad Y_q = M + 1\hat{y}_q^T$$

(5)

where $\hat{y}_p, \hat{y}_q$ are the means of $[Y_p \ Y_q] = Y$ in the two spaces, and where it will be shown in Section 2.3 that $q \leq 2$. For the $p$-dimensional part of the solution we have:

$$Y_p = X_p(K^TK)^{-1} + 1\hat{y}_p^T$$

showing that $Y_p$ and $X_p$ are necessarily related by the affine transformation

$$Y_p = X_pS + 1\hat{y}_p^T$$

(6)

where $S$ is non-singular and symmetric.

Apart from the conditions $LM^T = 0, 1^TL = 0$ and $1^TM = 0$, the $q$-dimensional part of the solution is, so far, very general. In practice $L$ and $M$ may be chosen to have disjoint columns of zeros, i.e., the $i$-th column of $M$ is 0 if the $i$-th column of $L$ is not equal to 0 and vice versa.

Equation (6) is a necessary but not sufficient condition for admissible solutions. The above derivation of (6) has appealed only to the symmetry of $B$ and by imposing the stronger condition of the symmetry of $D$ in (3) the solution may be refined. This gives the vanishing skew-symmetric part of $D + \Delta$ (3) as:

$$(E - F)U - U(E - F) - 2(XY^T - YX^T) = 0.$$  

(7)
Substituting for $Y_p$ given by (6) gives:

$$(E - F)U = PU - (Y_p^T Y_p)U - 2X_p S Y_p 1^T$$

where $P \equiv \text{diag}(X_p(I - S^2)X_p^T)$ and $XY^T - YX^T = X_p Y_p 1^T - 1 Y_p^T X_p^T$, so that (7) may be written as:

$$(PU - UP) - 2X_p(I + S)Y_p 1^T + 21 Y_p^T (I + S) X_p^T = 0 \quad (8)$$

Similarly, substituting for $X_q$ and $Y_q$ into (3) gives:

$$(QU - UQ) - 2(L + M)Y_q 1^T + 21 Y_q^T (L + M)^T = 0. \quad (9)$$

where $Q \equiv \text{diag}(LL^T - MM^T)$. The full condition for the symmetry of $D$ is that the sum of the left sides of (8) and (9) is zero, but we first examine the two conditions separately.

2.2 The $p$-dimensional solution.

Post-multiplying (8) by 1 gives:

$$(P - \frac{1}{n}(1^T P 1) I) 1 - 2X_p(I + S)Y_p = 0$$

showing that for any $X_p$ which satisfies this equation, the points lie on the conic with quadratic form:

$$x^T (I - S^2) x - 2x^T (I + S) Y_p - \frac{1}{n}(1^T P 1) = 0. \quad (10)$$

Recalling that $1^T P 1$ is a function of $X_p$ shows that different $X_p$ which satisfy (8) for some $S$ and $Y_p$ give conics with the same centres and orientation of axes, but of different sizes. The points $y$ in the rows of $Y_p$ lie on conics whose axes' lengths are related to those of the points $x$ in the rows of $X_p$ by the transformation $y = Sx + \tilde{Y}_p$. 

The implication of (10) is that, given any $S$ and $\tilde{Y}_p$, then for $X_p$ whose rows $x$ satisfy (10), a corresponding $Y_p$ exists that preserves symmetry. Such $X_p, Y_p$ pairs
will generate certain symmetric distance matrices \( D \). Although it is interesting to note the existence of distance matrices with such solutions, it is more fruitful to search for general solutions which will be valid for any \( X_p \). Such general solutions of (8) exist when:

\[
(i) \quad (I + S)\tilde{y}_p = 0 \quad \text{and} \quad (ii) \quad S^2 = I. \quad (11)
\]

Here (ii) ensures that \( P \) is zero and shows that \( S \) must be orthogonal. The conditions (i) and (ii) ensure that each term of (8) vanishes independently of \( X_p \).

Note that (6) and (11) define the mutual inverse transformations:

\[
y = Sx + \tilde{y}_p
\]

and \( x = Sy + \tilde{y}_p \)

Since \( S \) is a symmetric orthogonal matrix and \( S^2 = I \), it has spectral form:

\[
S = \sum_{i=1}^{r} u_i u_i^T - \sum_{i=r+1}^{p} u_i u_i^T
\]

where \( u_i \) \((i = 1, 2, \ldots, p)\) are an orthogonal basis of unit vectors. Noting that \( I = \sum_{i=1}^{p} u_i u_i^T \), it follows that \( S \) may be written as:

\[
S = I - 2 \sum_{i=r+1}^{p} u_i u_i^T \quad (12)
\]

showing that \( S \) is a generalized form of the Householder transform \( S = I - 2uu^T \).

This transform represents a reflection in a plane, with normal \( u \), through the origin, and is of special interest in two-dimensional solutions where \( Y_p \) is the reflection of \( X_p \) in some line. The form (12) represents simultaneous reflections through planes with normals \( u_{r+1}, u_{r+2}, \ldots, u_p \) and hence a reflection through their intersection.

There exist scalars \( \mu_i \), not all zero, such that \( \tilde{y}_p = \sum_{i=1}^{p} \mu_i u_i \), so the condition (i) becomes:

\[
(I + S)\tilde{y}_p = 2 \sum_{i=1}^{r} (u_i u_i^T) \sum_{i=1}^{p} \mu_i u_i
\]

\[
= 2 \sum_{i=1}^{r} \mu_i u_i = 0, \quad (7)
\]
showing that $\tilde{y}_p$ must be chosen to satisfy:

$$\tilde{y}_p = \sum_{i=r+1}^{p} \mu_i u_i.$$  \hspace{1cm} (13)

The conditions (12) and (13) give the more detailed form of the admissible affine transformation for a general solution of the $p$-dimensional part of unfolding the symmetric matrix $D$.

The special case $r = p - 1$, $\tilde{y}_p = 0$ gives the simple Householder transform; the case $r = p$, $\tilde{y}_p = 0$ gives $S = I$. The case $r = 0$ gives $S = -I$ with arbitrary translation term $\tilde{y}_p$, which represents a reflection through a point $-\frac{1}{2} \tilde{y}_p$ expressed algebraically by $y - \frac{1}{2} \tilde{y}_p = -(x - \frac{1}{2} \tilde{y}_p)$. Similarly, the Householder transform with $\tilde{y}_p = \mu u$ is a reflection in a plane through $-\frac{1}{2} \mu u$ and orthogonal to $u$, expressed algebraically by $(y - \frac{1}{2} \mu u) = S(x - \frac{1}{2} \mu u)$.

It is instructive to exhibit the fitted symmetric matrix implied by the conditions (i) and (ii). Some algebraic manipulation gives:

$$\Delta + D = a1^T + 1a^T - 2X_pSX_p^T \hspace{1cm} (14)$$

where $a \equiv E1 - 2X_p \tilde{y}_p + \frac{1}{2} \tilde{y}_p^T \tilde{y}_p \cdot 1$. Substituting (12) for $S$ gives, after further manipulation:

$$\Delta + D = DX + vv^T + 4X_p \sum_{i=r+1}^{p} u_i u_i^T X_p^T - 4 \frac{X_p \tilde{y}_p \tilde{y}_p^T X_p^T}{\tilde{y}_p^T \tilde{y}_p} \hspace{1cm} (15)$$

where $D_X \equiv EU + UE - 2X_p X_p^T$ is the matrix of squared distances among the $X$-set and $v \equiv 2X_p \tilde{y}_p / \sqrt{\tilde{y}_p^T \tilde{y}_p} - \sqrt{\tilde{y}_p^T \tilde{y}_p} \cdot 1$. When $S$ is a simple Householder transform, (15) becomes:

$$\Delta + D = DX + vv^T \hspace{1cm} (16)$$

so that the elements of the vector $v$ are the self-distances for the $n$ points. Thus $\Delta + D$ deviates from a matrix of squared distances only by a rank one matrix; the special case $v = \lambda 1$ relates to the well-known additive constant problem of
multidimensional scaling. Note, however, that $D_X$ is not itself a matrix that optimally approximates $D$ and that $v$ has a special form. One could find $D^*$, say, by minimizing the criterion known as “SSTRESS”, that is the sum of squared residuals of (1) (Takane, Young, and de Leeuw 1977, Browne 1987), and then find the $D^* + vv^T$ that gave the best fit to $D$ conditional on the given $D^*$. This gives $\lambda^2 = 1^T(D - D^*)1/(n(n - 1))$ but this solution does not have a convenient geometrical representation and could give a poorer fit than (16).

2.3 The $q$-dimensional solution.

Turning now to the $q$-dimensional solution given by (9), it is convenient to return to the basic form (3) that $(D + \Delta)_q$, the $q$-dimensional component of $D + \Delta$, is:

$$(D + \Delta)_q = \text{diag}(LL^T)U + U \text{diag}(MM^T) - 2L\tilde{y}_q 1^T + 21\tilde{y}_q^T M^T + \tilde{y}_q^T \tilde{y}_q 11^T$$

which may be written

$$(D + \Delta)_q = a1^T + 1b^T + \tilde{y}_q^T \tilde{y}_q 11^T$$

where $a \equiv \text{diag}(LL^T)1 - 2L\tilde{y}_q$ and $b \equiv \text{diag}(MM^T)1 + 2M\tilde{y}_q$. Thus $(D + \Delta)_q$ is symmetric if and only if $b = a + \lambda 1$, for arbitrary $\lambda$, i.e., $\text{diag}(LL^T - MM^T)1 = 2(L + M)\tilde{y}_q - \lambda 1$. Then

$$(D + \Delta)_q = a1^T + 1a^T + (\lambda + \tilde{y}_q^T \tilde{y}_q)11^T$$

$$= (a + \rho 1)^T + 1(a + \rho 1)^T$$

(17)

where $2\rho \equiv \lambda + \tilde{y}_q^T \tilde{y}_q$, showing that the squared distance $d^2_{ij}$, for $i \neq j$, is given by

$$d^2_{ij} = a_i + a_j + 2\rho.$$

Equation (17) gives the fitted values for the $q$-space, which may be compared with (14), (15), and (16) which give the fitted values for the $p$-space. Geometrically (17) shows that only certain two-dimensional configurations can be represented and that therefore $q \leq 2$. When $a = \mu 1$, for any scalar $\mu$, then (17) has unit rank
and \( q = 1 \) with \( d_{ij} \) constant (cf. the regular simplex described in paragraph 2 of Section 1). The rank 2 solutions may be represented in several ways expressed by the following general form for the rows of \( \mathbf{X}_q \) and \( \mathbf{Y}_q \): 
\[ x_{qi} = [(a_i + \rho + \alpha)^{1/2} \quad 0] \]
and 
\[ y_{qi} = [0 \quad (a_i + \rho - \alpha)^{1/2}] \]. The square roots allow arbitrary signs for \( x_{qi} \) and \( y_{qi} \) which give different configurations all generating the same distances, so nothing is lost by excluding negative roots. Generally the relationship between \( \mathbf{X}_q \) and \( \mathbf{Y}_q \) is not affine, but it is affine when 

(i) \( a = \mu 1 \), and hence \( q = 1 \), and \( \alpha \) is chosen to be \( \mu + \rho \) which gives 
\[ \mathbf{Y}_q = \mathbf{X}_q - \sqrt{2(\rho + \mu)} \mathbf{1}, \]
a simple reflection in a point, and 

(ii) \( \alpha \) is chosen to be zero so that 
\[ \mathbf{Y}_q = \mathbf{X}_q S, \]
where 
\[ S = I - 2uu^T \] 
with 
\[ u^T = [1/\sqrt{2} - 1/\sqrt{2}], \]
representing a reflection in the 45° line.

So far no restriction has been put on the position of the origin of \( \mathbf{X}_q \) and \( \mathbf{Y}_q \), and indeed there is no need to impose any such restriction. However, just as for the \( p \)-dimensional solution, the origin may be chosen to be at the mean of \( \mathbf{X}_q \), without affecting distances. Translating to this new origin, \( \mathbf{X}_q \) and \( \mathbf{Y}_q \) become \( \mathbf{X}_q^* \) and \( \mathbf{Y}_q^* \) where:
\[ \mathbf{X}_q^* = (I - N)\mathbf{X}_q \quad \text{and} \quad \mathbf{Y}_q^* = (I - N)\mathbf{Y}_q. \]

Thus \( \mathbf{Y} = \mathbf{X}S \) becomes

\[ \mathbf{Y}_q^* = \mathbf{X}_q^* S + N\mathbf{X}_q^*(S - I) \]
\[ = \mathbf{X}_q^* S + 1\bar{y}_q^{*T} \tag{18} \]

where \( \bar{y}_q^* \equiv 1^T \mathbf{Y}_q^*/n \), the mean of \( \mathbf{Y}_q^* \). With this parameterization, \( L = X_q^* \) and \( M = X_q^* S \), thus complying with the condition \( 1^T L = 1^T M = 0 \) as well as with \( LM^T = 0 \). Thus, among the many ways of presenting the \( q \)-dimensional solution is included the symmetric orthogonal affine transform (18) just as for the \( p \)-dimensional case, but of less generality because here \( q = 2 \) and \( S \) is a fixed Householder transform. The different solutions all give the same distances and
are therefore equivalent; to resolve the arbitrariness, a single solution is needed and the affine solution is the obvious one to choose because of its similar form to the $p$-dimensional affine solution and because it gives the simplest representation. Because $S$ does not depend on $X_q$, the affine solution is always a general, rather than particular, solution.

2.4 The combined solution.

The full set of solutions requires that the sum of the left sides of (8) and (9) vanish. Both equations are quadratic in the $(p + q)$-dimensional vectors of $X, Y$, so that these will be particular conic solutions of rather more general form than was given by the $p$-dimensional solutions above. General solutions, however, are merely the combination of the separate general solutions already described in Sections 2.2 and 2.3 for the separate $p$-dimensional and $q$-dimensional cases, either one of which may be null.

Insert Figure 1 about here

2.5 Examples of representations.

Some examples of symmetric configurations are given in Figure 1. Figure 1a is a simple reflection in a line through the origin, expressed by $Y = X(I - 2uu^T)$. In Figure 1b, $Y = \lambda X$, and this is a particular solution because it depends on the $x$-values lying on a circle; it is a simple case of the concentric conics discussed in Section 2.2. Figure 1c is a non-affine representation given by (i) a $p = 1$-dimensional solution $Y_p = X_p$ and, in the notation of Section 2.3, (ii) a $q = 1$-dimensional solution with $x_{qi} = 0$ and $y_{qi} = \pm \lambda$, where $\lambda$ is the distance of the two outer parallel lines from the central line. As explained in Section 2.3, nothing is gained over the more simple affine solution $x_{qi} = 0$ and $y_{qi} = \lambda$, i.e., $Y = X + 1\tilde{y}^T$ where $\tilde{y}^T = [0 \ \lambda]$, which needs only two parallel lines. Furthermore the alternative affine representation with $q = 2$ described in Section 2.3 yields $x_{qi} = [\lambda/\sqrt{2} \ 0]$ and $y_{qi} = [0 \ \lambda/\sqrt{2}]$; together with the one-dimensional part, a total of three
dimensions is required. Figure 1d is again a non-affine transformation in which the two lines intersect at right angles. Here \( p = 0 \) and \( q = 2 \) and \( x_{qi} = [a_i \ 0] \); \( y_{qi} = [0 \ \pm a_i] \). The affine equivalent is \( Y_q = X_q S \), where \( x_{qi} = [a_i \ 0] \); \( y_{qi} = [0 \ a_i] \). Finally in Figure 1e, the two sets of points are not seen to be related in any clear way. This figure was constructed by trial and error and presumably represents one of the particular solutions given by (8) and (9).

3. Algorithms

The ways in which \( X, Y \) pairs having the symmetry property arise were discussed in Section 2. Just as \( Y = X \) leads to classical Young-Householder-Torgerson scaling, so could other forms of solution such as \( Y = -X + 1m^T \) or \( Y = X(I - 2uu^T) + 1m^T \) with \( m = \mu u \), generate their own class of algorithms. Indeed, (6), (10), (11), (14) and (16) give the forms of matrix to fit to \( D \). We have not followed this line of development because we are now concerned with approximation, and for given \( D \) and \( p \) there seems to be no a priori method for deciding which form of solution gives the best fit or indeed whether the best fit is necessarily given by a symmetric matrix (see Appendix). If one insisted on a symmetric solution then algorithms would have to be developed which handle the constraints implied by the solutions of Section 2. Most of these constraints are non-linear and are likely to lead to optimization problems whose solution requires further research. The exception is (6) when the symmetry of \( S \) implies a set of simple linear constraints \( s_{ij} = s_{ji} \) which could probably be handled algorithmically. Unfortunately (6) is only a necessary condition for symmetric solutions so these constraints do not necessarily lead to symmetric solutions. Accordingly, we have applied existing multidimensional unfolding algorithms to operate on square matrices, with appropriate modifications to exclude the fitting of the self-distances. The fitted values are not constrained to be symmetric but, in our limited experience, solutions generally turn out to be symmetric or incorporate a substantial
degree of symmetry.

One way to do multidimensional unfolding is to use standard nonmetric scaling techniques. The matrix $D$ may be regarded as the $n \times m$ corner of an $(n + m) \times (n + m)$ symmetric matrix with the two symmetric matrices of order $n \times n$ and $m \times m$ missing. Since nonmetric scaling readily copes with missing data, a solution is found giving the coordinates of $n + m$ points, $n$ representing the rows and $m$ the columns of $D$. Similarly the diagonal values of $D$ can be treated as missing so that the nonmetric scaling may permit non-zero self-distances. In the case considered here, every element of the distance matrix is tied with its symmetric counterpart and the treatment of ties in the nonmetric algorithm becomes an important issue. If a configuration with symmetric distances is to be encouraged, the so-called "secondary" treatment of ties would be preferable (Kruskal 1964); that is, the algorithm would result in a matrix of distances fitted to a set of "disparities" which are themselves symmetric and monotonically related to the original distances. However, an example given in the Appendix shows that non-symmetric fits may sometimes be preferable, in which case the primary treatment of ties would be applicable.

Metric least-squares criteria for fitting model (1) for a rectangular matrix $D$ have been studied by Schönemann (1970), Gold (1973), Greenacre (1978), Heiser (1981) and Greenacre and Browne (1986). In the following, we discuss a variant of the unfolding problem where $D$ is a conventional matrix of squared distances and hence approximation of the diagonal terms is not required. Any of the existing unfolding algorithms can be adapted to solve this specific problem and the choice is not crucial for obtaining the kinds of representation that we seek. For the purposes of this study we have chosen to minimize the sum of squared residuals of (1), or SSTRESS. We call the scaling method associated with this optimization criterion "least-squares squared scaling" (LSSS). There are, admittedly, some problems with this particular criterion, mainly the fact that the fitting of large
distances dominates the fitting of small distances, so that local structure may be poorly represented in the display. On the other hand, there are algebraic and computational advantages in using this form.

The criterion to be minimized is thus $\text{trace}(\mathbf{R} \mathbf{R}^T)$, which leads to the normal equations:

$$
\mathbf{RY} = \text{diag}(\mathbf{RU}^T)\mathbf{X} \quad \text{and} \quad \mathbf{R}^T\mathbf{X} = \text{diag}(\mathbf{R}^T\mathbf{U})\mathbf{Y}.
$$

This pair of equations may be used as the basis for an efficient least-squares algorithm which alternates between two equations. This algorithm was first described by Greenacre (1978) and is further discussed by Greenacre and Browne (1986). A further algebraic advantage is the ANOVA-like decomposition, obtained from (2) and (19):

$$
\text{trace}(\mathbf{DD}^T) = \text{trace}(\mathbf{RR}^T) + \text{trace}[(\mathbf{D} - \mathbf{R})(\mathbf{D} - \mathbf{R})^T]
$$

(Gower 1984). The fitted sum-of-squares, $\text{trace}[(\mathbf{D} - \mathbf{R})(\mathbf{D} - \mathbf{R})^T]$, may be further broken down into row and column components in the usual way, as for two-way tables.

There are two ways in which a metric unfolding algorithm may be adapted to ignore the diagonal of the symmetric distance matrix. First, weights $w_{ij}$ may be assigned to each term of the objective function and a weighted fit optimized. In the present case the objective function would thus be:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} e_{ij}^2.
$$

Our specific problem would then be solved by setting $w_{ii} = 0$ for all $i = 1, \ldots, n$, and $w_{ij} = 1$ for all $i \neq j$. In general, the introduction of differential weighting of the terms in the objective function would also allow compensation for the excessive emphasis on large distances; for example, if we set the off-diagonal weights to $w_{ij} = d_{ij}^{-4}$. The inclusion of weights, however, leads to an increase in computation.
per iteration and it is then doubtful whether the alternating least-squares algorithm still holds a substantial advantage over more familiar gradient techniques of optimization.

In the simpler case of a zero–one weighting scheme, the algorithm for general unfolding based on SSTRESS (Greenacre 1978, Greenacre and Browne 1986) can be adapted as follows for the particular problem where the diagonal terms are excluded. At a particular stage of the iterative process, we replace the existing values of the diagonal squared distances $d_i^2$ by the squared self-distances according to the solution at that stage. The contribution of the diagonal terms in the objective function is thus maintained at zero throughout the iterative process, and when the algorithm converges, the fitted self-distances themselves converge. This method can be thought of as unfolding the complete matrix of squared distances, including fitted diagonal values, as if these were known initially. While the weighted solution would be preferable, the present strategy entailed only a minor modification of our present algorithm and was thus much easier to implement. In the original testing of this adapted algorithm, it became clear that to replace the self-distances after each iteration sometimes led to numerical instability of the algorithm, because of instability in convergence of some of the fitted self-distances. This has led us to perform the iterations in a nested fashion, fixing the self-distances for a number of iterations until a convergent unfolding solution is obtained, and only then replacing the self-distances for a subsequent set of iterations. This strategy has definitely led to stabilization of the self-distances and to consequent convergence of the algorithm in most cases.

Because of the danger of local minima in unfolding solutions, it is advisable to try a number of different starting points. Our present algorithm uses a starting configuration based on the matrix $B$ given by (4). But before this initial solution can be computed, we have to select starting values for the self-distances $\Delta$ themselves. We have tried two ways of initializing these distances and we suggest
that both be tried and the ultimate solutions of the algorithm compared. The
first method is to set these distances equal to zero, implying that the algorithm
commences at the classical scaling solution. The second method initializes the di-
agonal squared distances $d_{ii}^2$ as the average of the non-diagonal squared distances
$(\sum_{i \neq j} d_{ij}^2)/(n-1)$. Thus, the first method can be imagined as the row and column
points initially close together and drifting apart to optimize the objective, and the
second method as the row and column points initially fairly far apart and drifting
either toward one other or even further apart to reach an optimum.

Insert Figures 2 and 3 about here

4. Examples

4.1 Galaxy data.

Nathanson (1971) gives the squared Mahalanobis distances between ten types
of galaxies, which he uses in a discriminant analysis of the galaxies. Figure 2
shows the metric scaling of these distances in two dimensions, using the metric
scaling algorithm of Browne (1987) which also minimizes residual sum-of-squares
(RSS) and gives a minimum value of 45.78 (SSTRESS=0.041). Figure 3 shows the
symmetric unfolding of the same data, using the algorithm described in Section
3. In this case the value of RSS is 9.71, with a corresponding SSTRESS of 0.009.
Since the decomposition is based on fourth powers of original and fitted distances,
these SSTRESS values are highly optimistic summaries of the errors incurred in the
respective displays. Another way of summarizing the quality of fit is to examine
the residuals in the respective analyses. In fact, the metric scaling results in a set of
residuals whose absolute values have mean 0.58 and standard deviation 0.41, while
the absolute residuals in the symmetric unfolding have mean 0.25 and standard
deviation 0.21. This improvement can be judged against the fact that the original
squared distances themselves have mean 3.15 and standard deviation 1.54.
The fitted distances given by Figure 3 are very nearly symmetric, although the representation is not one of the general types discussed in Section 2. However, a strong element of reflection is observable, albeit not reflections in a line or plane. In particular, galaxies H, I, and J have a different, curvilinear, axis of symmetry from the other galaxies. These three galaxies were also picked out in a three-dimensional nonmetric unfolding of these data (Gower and Digby 1981). It seems that the gain in accuracy of the two-dimensional metric unfolding compared with the two-dimensional scaling has been obtained by accommodating higher dimensional differences between H, I, J and the remaining galaxies.

---

Insert Figures 4 and 5 about here

---

4.2 Cultural distances between ethnic groups.

If the resultant display yields asymmetric fitted distances, one of the pair of distances will be fitted better than its counterpart. In this case we retain only half of the fitted values and call this a “reduced fit”. Some theoretical examples where a reduced solution is better than the full symmetric unfolding solution are given in an Appendix.

We consider a case arising in the symmetric unfolding of a set of distances originally in a study by Funk et al. (1974), relating to cultural distances between 13 ethnic groups. These data are also discussed and analyzed in a description of a metric scaling program by Heiser and de Leeuw (1977).

In a two-dimensional LSSS of these data, reproduced in Figure 4, there are quite clearly three groups of points, indicated by the symbols A, B and C, which lie roughly at the vertices of a triangle. In a one-dimensional scaling, not given here, the three groups are still separated but the smallest group (group B) is forced to lie between the other two and is thus displayed with large errors. In a one-dimensional symmetric unfolding the display turns out be highly asymmetric.

17
(Figure 5). One set of points (the rows, say) is bunched up at the origin, although the separation of the three groups is still apparent. The displayed distances with the most asymmetry are those between the points in cluster B and the other points. It appears that the displayed distances from the row points of cluster B to the other column points are fairly accurate, while the transposed distances are fairly inaccurate. This result can be seen clearly in Table 1, which shows percentage contributions to the RSS of the solution — about 87% of the RSS is contained in the columns labelled 3 and 8, i.e., the members of group B. Hence the column points 3 and 8 are useful only in their representation of the distance between 3 and 8, otherwise they should not be interpreted.

Insert Table 1 about here

This example demonstrates the existence of reduced fits as well as the ability of symmetric unfolding to represent higher-dimensional structures in a low-dimensional space.

5. Discussion

In a scaling of an $n \times n$ symmetric matrix in $p$ dimensions, the number of free parameters is $np - \frac{1}{2}p(p+1)$. Since we have not constrained the symmetric unfolding solution to be symmetric, its number of free parameters is theoretically $2np - \frac{1}{2}p(p+1)$, although the constraint of symmetry would considerably reduce this number. Referring to (6), (11), (12) and (13), we can deduce that the number of free parameters under this constraint would be $np - \frac{1}{2}p(p+1)$ plus the number of free parameters in $S$ and $\tilde{y}_p$ which define the affine transformation between the two sets of coordinates. This number depends on $r$, where $p - r$ is the number of orthonormal vectors in the generalized Householder transform (12), and is equal to $p(p - r) - \frac{1}{2}(p - r)(p - r + 1)$ in the case of $S$, and $(p - r)$ in the case of $\tilde{y}_p$, the sum of which simplifies as $\frac{1}{2}p(p + 1) - \frac{1}{2}r(r + 1)$. Thus, the number of free
parameters under the symmetry constraint would be at most $np - \frac{1}{2}r(r + 1)$. For example, in a $p = 2$-dimensional solution which is constrained to be a reflection in a line (cf. Figure 1a), i.e. the simple Householder transform with $r = 1$ and $\hat{y}_p = 0$, the number of free parameters would be $np - \frac{1}{2}r(r + 1) - 1 = np - 2$, just one more than the scaling solution. The analysis of Section 2 has shown that most useful unfolding solutions giving symmetry are subsumed in the class of symmetric affine transformations, but it is not clear how such a constraint could be imposed in the unfolding algorithm. Indeed it is not clear that any such constraint is necessary, as many of the unconstrained solutions so far constructed have turned out to be symmetric.

Since symmetric unfolding offers more free parameters for representing a space of given intrinsic dimensionality but includes conventional scaling representations as special cases, it must lead to an approximation which fits the distance matrix at least as well as does conventional scaling, in a prescribed number of dimensions. Thus, symmetric unfolding extends the class of data that can be represented in a low-dimensional space, especially in two dimensions which are the most convenient for viewing distances. Apart from ignoring self-distances in the display, the interpretation of a symmetric unfolding is usually only slightly more difficult than the intuitively simple interpretation of a conventional multidimensional scaling display. For those already familiar with conventional unfolding, there is little to learn. The interpretation of the displayed self-distances themselves also needs further investigation, as these seem to be related to the dimensionality of different groups of points. For example, when symmetric unfolding in two dimensions leads to a display where two sets of points are the same, an intrinsic two-dimensional set of distances is indicated. Other types of symmetry would indicate higher intrinsic dimensionality. It is important to point out that the presence of patterns in the pairs of points in symmetric unfolding solutions effectively compensates for the expense of increasing the number of parameters in the model. If the two sets
of points were randomly related, the price paid for the extra parameters might be considered too high. However, the Euclidean concept of closeness survives in our representations and we have shown that often, but not necessarily always, the two sets of points may show some simple geometric relationship. When this happens, the extra complexity is much reduced, making the price affordable and interpretation easier.

Based on some initial results given in the Appendix, the occurrence of asymmetric solutions does not necessarily appear to be a disadvantage. The reduced fits described there can be very satisfactory, but the complexity of interpretation is admittedly increased. The few reduced fits which we have examined have been obtained from an inspection of full fits; a possibility for further work is to examine the possibility of obtaining reduced fits by direct methods.
References


Heiser, W.J. (1981), Unfolding analysis of proximity data, Department of Data Theory, Leiden University, The Netherlands.

Heiser, W.J., and de Leeuw, J. (1977), How to use SMACOF-1A, Department of Data Theory, Leiden University, The Netherlands.


Appendix

We give a simple example intended to elucidate the existence of optimal asymmetric approximations when unfolding a symmetric matrix. With asymmetric solutions, one of the pair of approximations to each \( d_{ij} \) must be better than the other, thus leading to reduced symmetric unfolding solutions. We use the term "reduced fit" when a distance matrix is fitted by symmetric unfolding, followed by a selection of half the fitted values: for each fitted pair \((d_{ij}, d_{ji})\) the one is discarded which has the bigger residual. Thus, only one of each pair of fitted values is used for interpretation – one might say that the unfolding diagram is interpreted as a restricted directed graph (i.e., restricted to the better of each pair). Thus we could refer more specifically to a "conditional reduced fit", the conditioning being with respect to a subset of the complete fit. A true reduced fit would attempt to fit the directed graph \( \text{ab initio} \), which we have not done. In the following examples, however, it will be seen that many, often all, of the selected residuals are zero, so these conditional reduced fits cannot be improved and therefore must also be true reduced fits. Clearly, reduced fits must be better than full asymmetric solutions. In the following, the residuals from the fitted distances retained in a reduced fit are denoted by an asterisk, as are the associated fitted sums-of-squares.

Consider a simplex \( A, B, C, D \) which is regular (side unity) except that \( C \) and \( D \) coincide. Thus we have two equilateral triangles \( ABC \) and \( ABD \) where \( C \) and \( D \) are different labels for the same point; alternatively the point pair \( C, D \) may be regarded as a single point with weight two. The distance matrix is

\[
D = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix}.
\]

The four points occupy a two-dimensional Euclidean space, but we shall investigate various forms of one-dimensional approximation. The best classical fit minimizing
SSTRESS ($S_1$, say) is a line of length $2v$ with $A$ and $B$ at either end, and with $C, D$ coincident at the centre. Here $v^2 = \frac{2}{5}$ and $S_1 = 3\frac{3}{5}$, corresponding to a reduced fit of $S_1^* = 1\frac{4}{5}$ when only the upper (lower) triangular fit is considered.

Now consider symmetric unfolding solutions. First take the classical solutions just described augmented by a second set of points $a, b, c, d$ all coinciding with $C$, and hence also with $D$. The fitted matrix of squared distances is asymmetric with values:

\[
\begin{pmatrix}
a & b & c & d \\
A & v & v & v & v \\
B & v & v & v & v \\
C & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

with $v = 1$ and residual sum-of-squares $S_2 = 4$, where diagonal contributions have been ignored. This solution is clearly worse than the classical solution so cannot be the best unfolding solution. However the off-diagonal residuals are:

\[
\begin{pmatrix}
a & b & c & d \\
A & - & 0^* & 0^* & 0^* \\
B & 0 & - & 0^* & 0^* \\
C & 1 & 1 & - & 0^* \\
D & 1 & 1 & 0 & - \\
\end{pmatrix}
\]

and if fitted values are taken only for asterisked residuals, an exact one-dimensional reduced fit is found (i.e., now $S_2^* = 0$).

The best symmetric fit seems to be that described in the second paragraph of Section 1, where a regular simplex is represented by two points, distance $v$ apart, with $A, B, C, D$ coinciding at one point and $a, b, c, d$ at the other. Because the matrix $D$ is not quite a regular simplex the best fit is not when $v = 1$ but turns out to be when $v^2 = \frac{5}{8}$. This situation gives a full fit with $S_3 = 1\frac{2}{3}$ which is better even than the reduced classical solution of $S_1^* = 1\frac{4}{5}$. However the best symmetric unfolding solution we have found, and which we believe to be globally optimal, is
not symmetric. This solution is given by consecutive points $A, C, D, B$ on a line with inter-distances $v, 2u, v$ and where $a, b, c, d$ coincide at the center, i.e., distance $u + v$ from $A$ and $B$ and distance $u$ from $C$ and $D$. The values of $u$ and $v$ which minimize SSTRESS are $u + v = 1, u^2 = \frac{5}{3}$ giving a full fit with $S_4 = 1\frac{1}{3}$. In this case the fitted squared distances and residuals are:

\[
\begin{align*}
A & = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \\
B & = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \\
C & = \begin{pmatrix} u^2 & u^2 & u^2 & u^2 \end{pmatrix} \\
D & = \begin{pmatrix} u^2 & u^2 & u^2 & u^2 \end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
A & = \begin{pmatrix} - & 0^* & 0^* & 0^* \end{pmatrix} \\
B & = \begin{pmatrix} 0 & - & 0^* & 0^* \end{pmatrix} \\
C & = \begin{pmatrix} 1 - u^2 & 1 - u^2 & - & -u^2^* \end{pmatrix} \\
D & = \begin{pmatrix} 1 - u^2 & 1 - u^2 & -u^2 & - \end{pmatrix}
\end{align*}
\]

By taking the reduced fit associated with the asterisked values, we obtain $S_4^* = \frac{4}{9}$ but this result is not so good as $S_2^*$. Thus $S_2^*$ is the best reduced, $S_3$ the best symmetric fit, and $S_4$ the best (unconstrained) full fit found by one-dimensional symmetric unfolding, and all are substantial improvements on the classical solution.
FIGURE LEGENDS

Figure 1: Some two-dimensional solutions of symmetric unfolding. (a) Two sets of points, symmetric with respect to a straight line. (b) Two sets of points on concentric circles. (c) Two sets of points on three equidistant parallel lines, with one set exclusively on the central line. (d) Two sets of points on two perpendicular straight lines. (e) Two sets of points in no apparent pattern of symmetry.

Figure 2: Two-dimensional metric scaling of the galaxy data of Nathanson (1971), using least-squares squared scaling (LSSS).

Figure 3: Two-dimensional symmetric unfolding by LSSS of the galaxy data.

Figure 4: Two-dimensional LSSS scaling of the ethnic group data of Funk et al. (1978).

Figure 5: One-dimensional symmetric unfolding by LSSS of the ethnic group data.

TABLE LEGENDS

Table 1: Percentage contributions to sum of squared residuals (RSS) by each element of the distance matrix, showing row and column totals. A dot (.) represents a contribution of less than 0.1%. The contributions of the diagonal elements are zero by construction of the algorithm.
Figure 1 (e)

c
A
B

d
•a

b
C

D
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>42</td>
<td>3.09</td>
<td>3.77</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>010</td>
<td>3.72</td>
<td>3.66</td>
</tr>
<tr>
<td>6</td>
<td>024</td>
<td>015</td>
<td>010</td>
<td>3.76</td>
</tr>
<tr>
<td>7</td>
<td>0.017</td>
<td>010</td>
<td>0.013</td>
<td>2.62</td>
</tr>
<tr>
<td>9</td>
<td>0.18</td>
<td>024</td>
<td>0.015</td>
<td>3.59</td>
</tr>
<tr>
<td>12</td>
<td>0.013</td>
<td></td>
<td>0.013</td>
<td>3.45</td>
</tr>
<tr>
<td>3</td>
<td>0.018</td>
<td>024</td>
<td>0.015</td>
<td>0.18</td>
</tr>
<tr>
<td>8</td>
<td>0.021</td>
<td>010</td>
<td>0.027</td>
<td>4.26</td>
</tr>
<tr>
<td>2</td>
<td>0.013</td>
<td></td>
<td>0.020</td>
<td>4.47</td>
</tr>
<tr>
<td>10</td>
<td>0.010</td>
<td></td>
<td>0.036</td>
<td>5.03</td>
</tr>
<tr>
<td>11</td>
<td>0.038</td>
<td></td>
<td>0.051</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
</tr>
</tbody>
</table>

0.83 0.92 1.26 0.93 0.72 0.65 61.70 65.90 1.74 0.74 1.39 1.99 1.22 100.00
1. Albert Marci and Ramon Mariñon
Communication, Commitment and Growth. (June 1991) [Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

2. Antonio Bosch
Economies of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in European Economic Review 35, (1991) 1589-1595]

3. Albert Satorra

4. Javier Andrés and Jaume Garcia
Wage Determination in the Spanish Industry. (June 1991) [Published as "Factores determinantes de los salarios: evidencia para la industria española" in J.J. Dolado et al. (eds.) La industria y el comportamiento de las empresas españolas (Ensayos en homenaje a Gonzalo Mateo), Chapter 6, pp. 171-196; Alianza Economia]

5. Albert Marci
Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marci

7. Xavier Calsamiglia and Alan Kirman
A Unique Informationally Efficient and Decentralized Mechanism with Fair Outcomes. (November 1991) [Published in Econometrica, vol. 61, 5, pp. 1147-1172 (1993)]

8. Albert Satorra

9. Teresa Garcia-Milk and Therese J. McGuire

10. Walter García-Fontes and Hugo Hopenhayn
Entry Restrictions and the Determination of Quality. (February 1992)

11. Guillen López and Adam Robert Wagstaff
Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in Moneda y Crédito Vol. 196]

12. Daniel Serra and Charles ReVelle
The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part I (April 1992) [Published in Location Science, Vol. 1, no. 4 (1993)]

13. Daniel Serra and Charles ReVelle

14. Juan Pablo Nicolini

15. Albert Marci and Thomas J. Sargent
Speed of Convergence of Recursive Least Squares Learning with ARMA Perceptions. (May 1992) [Forthcoming in Learning and Rationality in Economics]

16. Albert Satorra

Special issue

Vernon L. Smith
Experimental Methods in Economics. (June 1992)

17. Albert Marci and David A. Marshall
Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations.

18. M. Ambrosio Monés, Rafael Salas and Eva Ventura
Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)

19. Hugo A. Hopenhayn and Ingrid M. Werner
Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)
20. Daniel Serra
The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Mariñon, Stephen E. Spear and Shyam Sunder
Expectational-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgio Giovannetti, Albert Marcet and Ramon Mariñon
Growth, Capital Flows and Enforcement Constraints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Mariñon
Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Mariñon and Ellen McGrattan

25. Ramon Mariñon and Shyam Sunder
Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaume Garcia and José M. Labeaga
A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman
Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993:1]

29. Jeffrey Prisbrey
An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hopenhayn and María E. Muniagurria
Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Colera

32. Rafael Crespi i Cladera
Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hopenhayn
The Shakeout. (April 1993)

34. Walter Garcia-Fontes
Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Brucart
On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

36. Teresa Garcia-Milk, Therese J. McGuire and Robert H. Porter

37. Ramon Mariñon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labeaga and Angel López
Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVelle
Market Capture by Two Competitors: The Pre-Emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no.4 (1994)]

40. Xavier Cuadrás-Morató

41. M. Ambínia Monés and Eva Ventura
Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

42. Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]
43. Jordi Gali
Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]

44. Jordi Gali
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Gali
Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in Journal of Economic Theory]

46. Oriol Amat
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodríguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodríguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amat and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tilis
Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993) [Forthcoming in Journal of Economic Dynamics and Control]

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tilis
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín Viguera and Shinichi Suda

59. Ángel de la Fuente and José María Marín Viguera
Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994) [Finance and Banking Discussion Papers Series (10)]

60. Jordi Gali
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argilés
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994) [Published in Revista de Estudios Europeos no 8 (1994) pp. 21-36]

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Inesma Alonso

64. Rohit Rahi

65. Jordi Gali and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Gali and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]
67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

68. John Ireland
How Products’ Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)

69. Fabrizio Zilibotti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovannetti.

72. Raffaele Giordano.

73. Jaume Puig i Junoy.
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Ratck and Charles ReVelle.
The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning B]

75. Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement—Experience in some Other Countries (March 1994) [Forthcoming in Revista Española de Financiación y Contabilidad]

76. Albert Marcet and David A. Marshall.
Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

78. Xavier Sala-i-Martin.

79. Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cusó-Durán.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martínez García.
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martin.

84. Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaele Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov.
The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994) [Forthcoming in Revista Española de Economía]

88. Jose M. Bailen.
Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julia Clarke.
Bank Financial Analyst’s Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting]

90. John Blake and Oriol Amat and Julia Clarke.
Management’s Response to Finance Lease Capitalization in Spain (September 1994) [Published in International Journal of Accounting, vol. 30, pp. 331-343 (1995)]

91. Antoni Bosch and Shyam Sunder.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (Revised: July 1994)

93. Albert Carreras and Xavier Tafunell.
National Enterprise. Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Faulí-Oller and Massimo Motta.
Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)

95. Marc Sáez Zafra and Jorge V. Pérez-Rodríguez.
Modelos Autorregresivos para la Varianza Condicional Heteroscedástica (ARCH) (October 1994)

96. Daniel Serra and Charles Revell.
Compositive Location in Discrete Space (November 1994) [Forthcoming in Zvi Drezner (ed.): Facility Location: a Survey of Applications and Methods. Springer-Verlag New York.]

97. Alfonso Gambardella and Walter García-Fontes.
Regional Linkages through European Research Funding (October 1994) [Forthcoming in Economic of Innovation and New Technology]

98. Daron Acemoglu and Fabrizio Zilibotti.
Was Prometheus Unbound by Chance? Risk, Diversification and Growth (November 1994)

99. Thierry Foucault.
Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (Revised: June 1994) [Finance and Banking Discussion Papers Series (2)]

100. Ramon Marimon and Fabrizio Zilibotti.
'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994)

101. María Sáez Martí.

102. María Sáez Martí.
An Evolutionary Model of Development of a Credit Market (December 1994)

103. Walter García-Fontes and Ruben Tarsini and Marcel Vaillant.
Cross-Industry Entry: the Case of a Small Developing Economy (December 1994)

104. Xavier Sala-i-Martin.
Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Domènech and Joaquim Silvestre.
Credit Constraints in General Equilibrium: Experimental Results (December 1994)

106. Casey B. Mulligan and Xavier Sala-i-Martin.

Human Capital, Heterogeneous Agents and Technological Change (March 1995)

108. Xavier Sala-i-Martin.

Interactive Local Bandwidth Choice (February 1995)

ARCH Patterns in Cointegrated Systems (March 1995)

111. Xavier Cuadras-Morató and Joan R. Rosés.
Bills of Exchange as Money: Sources of Monetary Supply during the Industrialization in Catalonia (1844-74) (April 1995)

112. Casey B. Mulligan and Xavier Sala-i-Martin.
Measuring Aggregate Human Capital (October 1994, Revised: January 1995)

113. Fabio Canova.

114. Sergiu Hart and Andreu Mas-Colell.
Bargaining and Value (July 1994, Revised: February 1995) [Forthcoming in Econometrica]

115. Teresa Garcia-Milk, Albert Marcat and Eva Ventura.
Supply Side Interventions and Redistribution (June 1995)

Technological Diffusion, Convergence, and Growth (May 1995)
117. Xavier Sala-i-Martin.
The Classical Approach to Convergence Analysis (June 1995)

118. Serguei Maliar and Vitali Perepelitsa.
LCA Solvability of Chain Covering Problem (May 1995)

Solving Capability of LCA (June 1995)

120. Antonio Ciccone and Robert E. Hall.
Productivity and the Density of Economic Activity (May 1995) [Forthcoming in *American Economic Review*]

121. Jan Werner.
Arbitrage, Bubbles, and Valuation (April 1995)

122. Andrew Scott.
Why is Consumption so Seasonal? (March 1995)

123. Oriol Amat and John Blake.
The Impact of Post Industrial Society on the Accounting Compromise-Experience in the UK and Spain (July 1995)

124. William H. Dow, Jessica Holmes, Tomas Philipson and Xavier Sala-i-Martin.
Death, Tetanus, and Aerobics: The Evaluation of Disease-Specific Health Interventions (July 1995)

125. Tito Cordella and Manjira Datta.
Intertemporal Cournot and Walras Equilibrium: an Illustration (July 1995)

126. Albert Satorra.
Asymptotic Robustness in Multi-Sample Analysis of Multivariate Linear Relations (August 1995)

127. Albert Satorra and Heinz Neudecker.
Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors (August 1995)

128. Marta Gómez Puig and José G. Montalvo.
Bandwidth, Credibility and Exchange Risk: Lessons from the EMS Experience (December 1994, Revised: June 1995) [*Finance and Banking Discussion Papers Series (1)*]

129. Marc Sáez.
Option Pricing under Stochastic Volatility and Stochastic Interest Rate in the Spanish Case (August 1995) [*Finance and Banking Discussion Papers Series (3)*]

130. Xavier Freixas and Jean-Charles Rochet.

131. Heinz Neudecker and Albert Satorra.
The Algebraic Equality of Two Asymptotic Tests for the Hypothesis that a Normal Distribution Has a Specified Correlation Matrix (April 1995)

132. Walter García-Fontes and Aldo Geuna.
The Dynamics of Research Networks in Brite-Euram (January 1995, Revised: July 1995)

133. Jeffrey S. Simonoff and Frederic Udina.
Measuring the Stability of Histogram Appearance when the Anchor Position is Changed (July 1995) [Forthcoming in *Computational Statistics and Data Analysis*]

134. Casey B. Mulligan and Xavier Sala-i-Martin.
Adoption of Financial Technologies: Implications for Money Demand and Monetary Policy (August 1995) [*Finance and Banking Discussion Papers Series (5)*]

135. Fabio Canova and Morten O. Ravn.
International Consumption Risk Sharing (March 1993, Revised: June 1995) [*Finance and Banking Discussion Papers Series (6)*]

136. Fabio Canova and Gianni De Nicolo'.
The Equity Premium and the Risk Free Rate: A Cross Country, Cross Maturity Examination (April 1995) [*Finance and Banking Discussion Papers Series (7)*]

137. Fabio Canova and Albert Marcet.
The Poor Stay Poor: Non-Convergence across Countries and Regions (October 1995)

138. Etsuro Shinji.
Regional Growth in Japan (January 1992, Revised: October 1995)

139. Xavier Sala-i-Martin.
Transfers, Social Safety Nets, and Economic Growth (September 1995)

140. José Luis Pinto.
Is the Person Trade-Off a Valid Method for Allocating Health Care Resources? Some Caveats (October 1995)
141. Nir Dagan.

142. Antonio Ciccone and Kininori Matsuyama.
Start-up Costs and Pecuniary Externalities as Barriers to Economic Development (March 1995) [Forthcoming in *Journal of Development Economics*]

143. Etuoro Shioji.
Regional Allocation of Skills (December 1995)

144. José V. Rodríguez Mora.
Shared Knowledge (September 1995)

145. José M. Marín and Rohit Rahi.
Information Revelation and Market Incompleteness (February 1996) [*Finance and Banking* Discussion Papers Series (8)]

146. José M. Marín and Jacques P. Olivier.
On the Impact of Leverage Constraints on Asset Prices and Trading Volume (November 1995) [*Finance and Banking* Discussion Papers Series (9)]

147. Massimo Motta.
Research Joint Ventures in an International Economy (November 1995)

148. Ramon Fauli-Oller and Massimo Motta.
Managerial Incentives for Mergers (November 1995)

149. Luis Angel Medrano Adán.
Insider Trading and Real Investment (December 1995) [*Finance and Banking* Discussion Papers Series (11)]

150. Luisa Fuster.
Altruism, Uncertain Lifetime, and the Distribution of Wealth (December 1995)

Consistency and the Walrasian Allocations Correspondence (January 1996)

152. Nir Dagan.
Recontracting and Competition (August 1994, Revised: January 1996)

Implicit Collusion on Wide Spreads (December 1995) [*Finance and Banking* Discussion Papers Series (12)]

Unfolding a Symmetric Matrix (January 1996)