Economics Working Paper 120

Productivity and the Density of Economic Activity*

Antonio Ciccone†
and
Robert E. Hall‡

May 1995

Keywords: Productivity, externalities, increasing returns, agglomeration, density.

Journal of Economic Literature classification: E1, R3.

*This research was supported in part by the National Science Foundation and is part of the Economic Fluctuations Program of the National Bureau of Economic Research. We would like to thank Steve Davis for generously providing data and Chris Wilkins for outstanding research assistance.

†University of California, Berkeley and Universitat Pompeu Fabra.
‡Stanford University and National Bureau of Economic Research.
Abstract

To explain the large differences in average labor productivity across U.S. states we develop and estimate two different models—one based on local geographical externalities and the other on the diversity of local intermediate services—where spatial density is the source of aggregate increasing returns. Both models lead to an estimable relation between employment densities at the county level and productivity at the state level. Using data on gross state output for the U.S. we find that a doubling of employment density in a county increases average labor productivity by around 6 percent. More than half of the variance of output per worker across states can be explained by differences in the density of economic activity.
1. Introduction

Differences in average labor productivity across U.S. states are large: In 1988, output per worker in the most productive state was two thirds larger than in the least productive state, and output per worker in the top ten productive states was one third larger than in the ten states which ranked at the bottom. Our purpose in this paper is to look at data on the spatial dimension of externalities and increasing returns to examine how they relate to these differences in average labor productivity. To do so we develop two different models—one based on local geographical externalities and the other on the variety of local intermediate services—where the spatial density of economic activity is the source of aggregate increasing returns. By density we mean simply the intensity of labor, human, and physical capital relative to physical space. Density affects productivity in several ways. If technologies have constant returns themselves, but the transportation of products from one stage of production to the next involves costs that rise with distance, then the technology for the production of all goods within a particular geographical area will have increasing returns—the ratio of output to input will rise with density. If there are externalities associated with the physical proximity of production, then density will contribute to productivity for this reason as well. A third source of density effects is the higher degree of beneficial specialization possible in areas of dense activity. Although the idea that denser economic activity had advantages from agglomeration was implicit in a large earlier literature, there does not appear to be any earlier work in which density was an explicit element of the theory, nor has there been empirical work based on measures of density.

The finest level of geographical detail in the United States for which reliable data on value added have been assembled appears to be the state level. Thus the observations on output are for the 50 states and the District of Columbia. But the average density of activity for a state is a meaningless concept. Most of the area of the United States
supports essentially no economic activity at all. To get a meaningful measure of density, as well as a sensible specification for the geographical extent of the spillovers, we use much more detailed data by county. This work views the unit of production to be the labor, capital, and land present in a county. Estimation involves dealing with the aggregation from the county to the state level. In effect, we create an index of inputs for each state, adjusted for density at the county level. The index depends on the extent of increasing returns. The estimate of increasing returns is the one that generates a cross-sectional pattern of the input index that most closely matches the pattern of value added across states.

Our results can be summarized briefly. Capital accounts for some of the differences in productivity across U.S. states but leaves most of the variation unexplained. Estimation of our model of locally increasing returns reveals that accounting for the density of economic activity at the county level is crucial for explaining the variation of productivity at the state level. According to our estimates, a doubling of employment density in a county results in a 6 percent increase of average labor productivity. This degree of locally increasing returns can explain more than half of the variation of output per worker across states.

The paper starts by discussing the related literature. Then we develop the two models and the corresponding method of aggregation of county employment data to state levels. We then describe how differences in density and productivity can persist in equilibrium. Following a description of the county employment data and state value-added data, we discuss identification and estimation. The main results are summarized in section 7. Section 8 extends the models to account for differences in the availability of public capital, for externalities from density at the state level, and for externalities from output at the county level.

2. Related Literature

The economics of agglomeration began with Marshall [1920], who emphasized technological spillovers from one firm to another one nearby. Henderson [1974]
formalized Marshall's ideas and demonstrated—building on work by Mills [1967]—that, in an equilibrium, disamenities from agglomeration on the side of households may offset the productivity advantages on the side of firms. A second branch of the literature on agglomeration hypothesizes economies of scale internal to firms. Mills [1967] was an early contributor. An essential task with internal increasing returns is to offer a coherent theory of the firm and its market. Mills assumed that all goods are produced by monopolists. More recent papers use a monopolistically competitive market structure to study agglomeration with internal increasing returns to scale. Abdel-Rahman [1988], Fujita [1988 and 1989] and Rivero-Batiz [1988] employ the well known formalization of monopolistic competition due to Spence [1976] and Dixit and Stiglitz [1977] to demonstrate that non-transportable intermediate inputs produced with increasing returns imply agglomeration. In related models, Krugman [1991] demonstrates that agglomeration will result even when transportation costs are small, if most workers are mobile, and Ciccone [1992] argues that patterns of agglomeration are reinforced by endogenous technology adoption. The essence of these models is that local markets with more activity enable a larger number of producers of differentiated intermediate inputs to break even. The production of final goods has higher productivity when a greater variety of intermediate inputs is available.

Empirical studies of agglomeration have focused on city and industry size as determinants of productivity and on technological spillovers as a source of agglomeration economies. Sveikauskas [1975], Segal [1976] and Moomaw [1981 and 1985] estimated the effect of city population on productivity. Henderson [1986] found that the productivity of firms increases with the size of the industry as measured by industry employment. All of these studies are seriously flawed by their reliance on unsatisfactory measures of output from the Census of Manufactures. In addition—following past theoretical and empirical work—they focus on the return to city size. We are not aware of any studies that have examined spatial density directly. We believe that density is a more satisfactory concept. Close calls, such as whether San Francisco and Oakland are the same or different cities, have an important effect in empirical work based on city size, but none at all in our approach based on density. Finally, there appears to be little empirical work investigating
the role of geographically localized externalities and increasing returns for explaining the differences in labor productivity across U.S. states. The most closely related work is by Carlino and Voith [1992] who find that total factor productivity across U.S. states increases with urbanization.

An important branch of the empirical literature on agglomeration has studied geographic wage differentials. Wages are higher in cities and other dense areas. No study of wage differentials, so far as we know, has considered spatial density directly. We will not attempt to summarize this literature. Glaeser and Mare (1994) is an important recent contribution with many cites. U.S. data on the non-cash component wages and salaries are not available by state or other geographic breakdown, as far as we know, so differences in cash wages and salaries across states may reflect differences in state taxes and other policies that would affect the split between cash and non-cash compensation. Still, exploitation of the rich geographic detail available for cash compensation may be a promising area for future research.

2. Models

Increasing returns from externalities

The ideas of this paper are easiest to understand in models without capital. Land and labor are the factors of production. We begin with a model based on externalities. The purpose of our development of this model is to show how density affects productivity and how to aggregate across productive units. The model says nothing new about the sources of agglomeration effects. Let $f(n,q,a)$ be the production function describing the output produced in an acre of space by employing n workers (all space is considered equivalent). The acre is embedded in a larger area (a county, in our empirical work) with total output q and total acreage a. The last two arguments describe the density externality in a very general way. We make the further assumptions that the externality depends multiplicatively on a particular measure of density, namely output per acre, that the
elasticity of output with respect to density is a constant, \((\lambda - 1)/\lambda\), and that the elasticity of output with respect to employment is also a constant, \(\alpha\):

\[
f(n, q, a) = n^\alpha \left(\frac{q}{a} \right)^{(\lambda - 1)/\lambda}.
\]

The labor employed in a county, \(n_c\), is distributed equally among all the acres in the county. Thus total output in county \(c\) is \(q_c = a_c (n_c/a_c)^\alpha (q_c/a_c)^{(\lambda - 1)/\lambda}\). The county-wide joint technology is described by the production function obtained by solving this equation for output:

\[
\frac{q_c}{a_c} = \left(\frac{n_c}{a_c} \right)^\gamma.
\]

Here \(\gamma\) is the product of the production elasticity, \(\alpha\), and the elasticity of the externality, \(\lambda\): \(\gamma = \alpha \lambda\); \(\alpha\) measures the effect of congestion and \(\lambda\) measures the effect of agglomeration. Only the product, \(\gamma\), is identified in our data. Our empirical results show that the net effect favors agglomeration.

We turn now to aggregation to the state level. Let \(C_s\) be the set of counties covering state \(s\). Output in state \(s\) is \(Q_s = \sum_{c \in C_s} n_c a_c \gamma^{-(\gamma - 1)}\) and hence average labor productivity in the state is

\[
\frac{Q_s}{N_s} = \frac{\sum_{c \in C_s} n_c a_c \gamma^{-(\gamma - 1)}}{N_s},
\]

where we define the factor density index, \(D_s(\gamma)\):

\[
D_s(\gamma) = \frac{\sum_{c \in C_s} n_c a_c \gamma^{-(\gamma - 1)}}{N_s}.
\]

Letting \(d_c\) be employment per acre in county \(c\), \(D_s\) be employment per acre in state \(s\), and \(D\) be employment per acre in the United States, we can decompose the density index
into three components:

\[D_s(\gamma) = D^{\gamma-1} \left(\frac{D_s}{D} \right)^{\gamma-1} \sum_{c \in C_s} \frac{n_c (d_c / D_s)^{\gamma-1}}{N_s}. \]

(5)

That is, the state density effect is the product of a national effect, a state effect—which depends on the relation of average state density to national density—and a factor that depends on the inequality of density across counties within the state. The last factor is the sum of county density relative to state density raised to the power \(\gamma - 1 \), weighted by county employment. If, for example, average density in state \(s \) is identical to average density in the nation, \(D_s = D \), then, relative to the nation, productivity in the state depends on the distribution of employment within the state only.

Under neoclassical conditions, with \(\gamma \) less than one, the density factors would predict lower productivity in states with higher average density, and even lower productivity in states with some particularly dense, congested areas. But if agglomeration effects outweigh congestion effects, density has the opposite effect. States with higher average density and higher inequality of density will have higher levels of productivity.

Increasing returns from greater variety of intermediate products in denser areas

The second model hypothesizes increasing returns in the production of local intermediate goods, as in Abdel-Rahman [1988], Fujita [1988 and 1989], and Rivera-Batiz [1988]. Our development of this model gives density an explicit role. Let the production function for making the final good on an acre of land be

\[f(m, s) = \left[m^{\beta_s (1-\beta)} \right]^\alpha, \]

(6)

here \(m \) is the amount of labor used directly in making the final good, \(s \) is the amount of a composite service input which cannot be transported outside the acre, \(\alpha \) describes decreasing returns to the two variable inputs on the acre, and \(\beta \) is a distribution parameter. The service composite, \(s \), is produced from individual differentiated services.
\(x(t) \), indexed by type \(i \), according to the constant elasticity of substitution production function,

\[
s = \left(\frac{z}{\int_0^t x(t)^{1/\mu} \, dt} \right)^{\mu}. \tag{7}\]

Here \(z \) describes the variety of intermediate products produced—types 0 through \(z \) are available. The parameter \(\mu > 1 \) controls the substitutability of the intermediate products. The higher is \(\mu \), the less one product substitutes for others and the higher is the monopoly power of the producer of that product. Under standard Spence-Dixit-Stiglitz assumptions, \(\mu \) is the markup of price as a ratio to marginal cost that the producer will set in order to maximize profit.

We further assume that it takes \(x + v \) units of labor to produce \(x \). With labor paid \(w \), the intermediate product maker will charge a price of \(\mu w \) and make a profit of \((\mu - 1)w x - w v \). With free entry to the intermediate product business, this profit will be pushed down to zero—the fixed cost will just offset the operating profit from market power. The level of output at the zero-profit point is

\[
x = \frac{v}{\mu - 1}. \tag{8}\]

Putting this common value for all the service inputs into the production function for the service composite, equation (7), we have

\[
s = z^{1/\mu} x. \tag{9}\]

Production of \(s \) uses \(z x \) units of intermediate inputs, so the productivity of the \(s \)-making process is \(z^{\mu - 1} \). Because \(\mu > 1 \), productivity rises with the available variety of intermediate goods. Denser acres have greater variety, because more intermediate services producers can break even. The result is a positive relation between density and productivity.

The Cobb-Douglas specification of the final output technology implies that the share of final output paid to labor employed directly is \(\alpha \beta \); hence, \(w m = \alpha \beta f (m, s) \). The share
paid to land is \((1 - \alpha)\). In a free entry equilibrium all output not paid to land accrues to labor, either directly or indirectly through the intermediate service business. Therefore, \(wn = \alpha f(m, s)\), where \(n\), as before, is total labor employed in the acre. Combined, these relationships imply that the equilibrium allocation of labor to direct employment in final goods production is governed by the share parameter:

\[
m = \beta n. \tag{10}
\]

The remaining share \((1 - \beta)n\) of the labor makes intermediate services. Because we know the total amount of labor devoted to intermediate services and the amount of each one produced, we can solve for the variety of those services:

\[
z = (1 - \beta)\frac{n^{\mu - 1}}{n}, \tag{11}
\]

Intermediate product variety, as measured by \(z\), is proportional to density, as measured by the number of workers, \(n\), working on the acre.

Now we can insert the equilibrium value of \(z\) into equation (9) to determine \(s\), and then put \(m\) and \(s\) into the production function for final goods to get the consolidated production function,

\[
\phi n^\gamma. \tag{12}
\]

Here \(\phi\) is a complicated function of the other constants and the elasticity of the production function is

\[
\gamma = \alpha[1 + (1 - \beta)(\mu - 1)]. \tag{13}
\]

Again, the parameter \(\alpha\) describes congestion effects—lower productivity resulting from crowding more workers onto the same acre. To the extent that the differentiated intermediate goods are important \((\beta < 1)\) and they are not good substitutes for each other \((\mu > 1)\), there is a countervailing effect favoring higher density, because it makes possible a greater variety of the intermediate products. With a high enough \(\mu\) and a low enough \(\beta\),
the production function could have increasing returns, where the favorable effect of
density outweighs the congestion effect.

In this equilibrium the market provision of intermediate inputs is inefficient due to
distortions from monopoly pricing. We have worked out the alternative where the quantity
and variety of intermediate services is optimal, either because of government intervention
or vertical integration. The resulting elasticity of output with respect to total labor is the
same as for the monopolistic competition case.

If we normalize the measurement of the quantities to make $\phi = 1$ and assume, as
before, that labor is distributed uniformly across the acres of a county, we have the county
production function,

$$\frac{q_c}{a_c} = \left(\frac{n_c}{a_c} \right)^\gamma. \quad (14)$$

Aggregation to the state level proceeds exactly as before. There are no observational
distinctions between the externalities model and the intermediate-product variety model.
Both provide a theoretical foundation for the same estimation procedure in state data.

Capital and total factor productivity

Now let the production function describing output produced in an acre of space in
county c by employing n_c workers and k_c machines be:

$$A_s \left[(e_c n_c)^\beta k_c^{1-\beta} \right]^\alpha \left(\frac{q_c}{a_c} \right)^{(\lambda-1)/\lambda}, \quad (15)$$

where A_s is a Hicks-neutral technology multiplier for state s and e_c is a measure of the
efficiency of labor at the county level. As before, the elasticity α is less than one by the
amount of the share of land in factor payments. The quantities of labor and capital
employed in a county, n_c and k_c, are distributed equally among all the acres in the
county. Thus total output in county c is
\[q_c = a_c a_S \left[\left(\frac{e c n_c}{a_c} \right)^{\beta} \left(\frac{k_c}{a_c} \right)^{1 - \beta} \right]^\alpha \left[\frac{q_c}{a_c} \right]^{\frac{\lambda - 1}{\lambda}}. \]

(16)

Solving for output per acre, we get:

\[\frac{q_c}{a_c} = a_S^\lambda \left[\left(\frac{e c n_c}{a_c} \right)^{\beta} \left(\frac{k_c}{a_c} \right)^{1 - \beta} \right]^\gamma. \]

(17)

Again, \(\gamma \) is the product of the production elasticity, \(\alpha \), which is less than one, and the elasticity from the externality, \(\lambda \), which is greater than one. If \(\gamma \) exceeds one, agglomeration effects dominate congestion.

To deal with capital, we make the assumption that the rental price of capital, \(r \), is the same everywhere. Then we use the factor demand function to substitute the factor price for the factor quantity. That is,

\[\frac{k_c}{a_c} = \frac{\alpha (1 - \beta) q_c}{r} a_c. \]

(18)

Thus the county technology becomes

\[\frac{q_c}{a_c} = c_a \omega \left(\frac{e c n_c}{a_c} \right) \theta \]

(19)

where \(\phi \) is a constant that depends on the interest rate, and the two elasticities are:

\[\theta = \frac{\gamma \beta}{1 - \gamma (1 - \beta)} \]

(20)

and

\[\omega = \frac{\theta}{\alpha \beta}. \]

(21)

We assume that labor efficiency depends log-linearly on workers' average years of education \(h_c \), \(e_c = h_c^\eta \). Using this relationship in (19) and aggregating to the state level, we obtain
\[\frac{Q_s}{N_s} = \phi A_s^{\omega} D_s(\theta, \eta) \]

(22)

where

\[D_s(\theta, \eta) = \frac{\sum_{c \in C_s} (n_{chc})^\theta a_c^{1-\theta}}{N_s} \]

(23)

Under these alternative assumptions, the index of density has the same functional form as before with the elasticity \(\theta \) in place of \(\gamma \) and efficiency units of labor instead of raw labor. The underlying value of \(\gamma \) can be calculated from equation (20). The relation between \(\gamma \) and \(\theta \) for \(\beta = .7 \) is such that for values close to 1, as found in our empirical work, the overstatement of \(\gamma \) associated with the treatment of capital is small. The extension of the variety model is analogous.

Regarding the stochastic specification in equation (22), we assume that state productivity \(A_s \) is distributed lognormally around an underlying nationwide level. We also allow for mismeasurement in state productivity, assuming that the measurement error has a lognormal distribution with zero mean. Using this stochastic specification in equation (22) and taking logarithms yields:

\[\log \frac{Q_s}{N_s} = \log \phi + \log D_s(\theta, \eta) + u_s \]

(24)

Here \(u_s \) is a weighted sum of the measurement error and \(\omega \) times the deviation of state productivity from the underlying level in the nation. We assume that \(E u_s u_{\tau} = 0 \) for \(s \neq \tau \).

3. Equilibrium

How can states or counties be in equilibrium with different densities? This question arises if \(\theta \) exceeds 1. Under neoclassical assumptions, density should be equal everywhere. The marginal product of labor is lower in a denser area, and there are arbitrage profits or a higher standard of living available by moving a worker from a dense area to a less dense one. On the other hand, with \(\theta \) greater than one, the worker is more
productive when moved to a denser area. Absent other considerations, the only equilibrium is for employment to concentrate in a single county.

The simplest answer, and a realistic one, is that some workers prefer to live in areas that turn out to be less dense. These workers are willing to accept the lower wages in those locations. The preference could be, but need not be, a preference for lower density itself. The preference could also take the form of devotion to a location that is not an agglomeration point. Furthermore, as households value land, its price drives a wedge between the product wage and the consumption wage. In equilibrium, there are no incentives to move for either firms or households. The marginal cost of production is equalized across all counties as the decrease in marginal cost associated with higher density is offset by higher product efficiency wages and higher land prices. Households find that differing product wages are counterbalanced by any of the consideration described above.

4. Data

The data needed for estimation are available for the year 1988. The data cover the private non-proprietary economy. That is, data on labor input at the county level includes only employees, not the self-employed. The corresponding measure of output at the state level is Gross State Product less Proprietors' Income. We use GSP at sellers' prices; Indirect Business Taxes are excluded from the output measure. Data on employment by county are compiled by the Regional Economic Measurement Division of the Bureau of Economic Analysis at the U.S. Department of Commerce and are distributed as the Regional Economic Information System CD-ROM. Data on the area of each county are published by the Bureau of the Census in the County and City Data Book.

Data on Gross State Product and Proprietors' Income are compiled by the Bureau of Economic Analysis of the Department of Commerce and described in BEA Staff Paper 42, Experimental Estimates of Gross State Product by Industry. These data are conceptually far superior to those used in previous work on spatial differences in productivity. Moomaw [1985], Sveikauskas [1975], and Segal [1976] all measure output as the concept
of value added or total value of production used in the Census of Manufactures. This concept omits all services either purchased in the market or obtained from corporate headquarters. It is hard to see how Census of Manufactures value added could be used for any purpose in production economics, but it is a particularly unusable concept for agglomeration issues. Because there is likely to be less vertical integration in big cities or in dense areas, firms in those places are likely to purchase more services than do their counterparts in less dense areas. Moreover, a plant in a dense area is more likely to be close to its corporate headquarters and therefore more dependent on it for transferred services. For both reasons, studies using Census of Manufactures value added will overstate the productivity advantage of cities or dense areas. The research of Henderson [1986] uses total value of production, also from the Census of Manufacturers. Compared to the value added data this concept has the added disadvantage of double-counting inputs traded within an industry. Our data are based on a careful allocation of purchased and transferred services by industry at the state level. Gross State Output is a much more satisfactory measure of output than is the Census of Manufactures concept of value added. Our theoretical formulation assumes that all land is equivalent. Therefore, we use data on state output and county employment which exclude the agricultural and the mining sector. In some states, natural resources are sufficiently important for local economic activity to make our output measure unrealistic—despite our adjustment for mining output at the state level and mining employment at the county level. On this basis, we excluded all states where the mining contributes more than 15 percent of our output measure. These states are Alaska, Louisiana, West Virginia and Wyoming, on average mining stands at 21 percent of our output measure in these states compared to 1 percent in all other states.

Our data on education comes from two sources. At the state level, we have data from Annual Demographic File of the Current Population Survey for 1988 available from Bureau of the Census. Our education measure at the state level weighs the workers' years of education by the number of hours workers in 1988. At the county level, we have data from the 1990 Census of Population. Our education measure at the county level is average years of education.
5. Identification and estimation

We make two alternative identifying assumptions. First we assume that the random element of output per worker is uncorrelated with density and average education levels. This assumption amounts to saying that density and education are measured with little error and do not respond to the random element of productivity. Because it appears that much of the noise in productivity across states comes from measurement error, this assumption is not as strong as it may seem at first. Under this identifying assumption, we estimate the returns-to-scale parameter, θ, and the elasticity of average product with respect to education, η, by nonlinear least squares.

If there are true differences in the determinants of productivity across states, it is not realistic to assume that density is uncorrelated with those differences. States with natural features that may them more productive (for example, climate or geographic features suited to transportation) will attract workers because wages will be higher. Our alternative identifying assumption is that there is an exogenous characteristic of states that can function as an instrumental variable for the density index. The corresponding estimator is nonlinear instrumental variables. All of our candidate instruments rest on the hypothesis that the original sources of agglomeration in the United States have remaining influences only on the preferences of workers about where to live; they are not related to modern differences in productivity not explained by our model. The characteristics we use are:

1. Presence or absence of a railroad in the state in 1860, from Stover [1961]
2. Population of the state in 1850, from Historical Statistics of the U.S.
3. Population density of the state in 1880, from Historical Statistics of the U.S.
4. Distance from the eastern seaboard of the U.S., from "The New International Atlas" by Rand McNally [1993].

The direct measures of agglomeration—population and population density—are eligible as instruments if the main sources of agglomeration in the 18th and 19th centuries are not related to the residuals in our equation. Thus our hypothesis is that the early patterns of agglomeration in the U.S. did not reflect factors which significantly contribute
to productivity today but have a remaining influence mainly through the legacy of agglomeration. Railroads became an important historical factor in agglomeration in the second half of the nineteenth century. Our hypothesis is that the development of railroads was not driven by modern productivity differences not accounted for by our model. Finally, we include distance from the eastern seaboard as an exogenous determinant of agglomeration in the 18th and 19th centuries.

The nonlinear instrumental variables estimator is discussed by Amemiya (1983). The nonlinear model is

$$y_s = f_s(\beta) + u_s$$

(25)

where y is productivity, f describes our nonlinear specification, and β is the vector of parameters. Z is a matrix of values of the instrumental variables. The nonlinear instrumental variables estimator minimizes

$$\{y - f(\beta)\}'Z(Z'Z)^{-1}Z'y - f(\beta)\}$$

(26)

When the number of instruments is the same as the number of parameters, the estimator is just the solution to the orthogonality condition,

$$\{y - f(\beta)\}'Z = 0$$

(27)

When the instrument is a dummy variable, the estimator is based on grouping. For example, with our instrument for the presence of a railroad in 1860, the estimator of the density parameter is the value that explains the difference in the average level of productivity in states that did have railroads compared to states that did not.

The estimated covariance matrix of β is

$$s^2 \left[F'Z(Z'Z)^{-1}Z'F \right]^{-1}$$

(28)

where s is the standard error of the residuals and F is the matrix of derivatives of the model with respect to the parameters.
6. Results

Table 1 gives the results using the county level education data. The least squares estimate of \(\theta \) is 1.052 with a standard error of 0.008.\(^2\) The elasticity of labor efficiency with respect to education, \(\eta \), is 0.41 with a standard error of 0.40. The \(R^2 \) of the regression is 55 percent. Davis [1992], using data on individuals, estimates the elasticity of earnings with respect to education to lie between 0.80 and 1.35. Our estimate is one standard error away from Davis's lower estimate. The instrumental variable estimates for \(\theta \) is 1.06 making joint use of all instruments. This estimate implies that doubling the employment density in an county increase labor productivity by 6 percent. The estimated value for \(\gamma \) is about 1.04 which implies that doubling employment density in a county results in a 4 percent increase of total factor productivity. Using the education data available at the state level, the estimating equation in (24) simplifies to

\[
\log \frac{Q_s}{N_s} = \log \phi + \eta \log h_s + \log D_s(\theta) + u_s
\]

where \(D_s(\theta) \) is defined in equation (4). The nonlinear least squares estimate of \(\theta \) and \(\eta \) in equation (25) are 1.051 and 0.51, with standard errors of 0.008 and 0.45 respectively. Using instrumental variables, the estimates are 1.058 and 0.36 and the standard errors 0.011 and 0.49. Table 2 shows the factor density index \(D_s(\theta) \) evaluated at \(\theta = 1.058 \), average years of education of workers at the state level, and the private gross state product per worker in all sectors except farming and mining. The states are ranked in declining order of density. The densest area for which reliable output data is available is Washington, D.C. Not surprisingly, New York ranks second. It is the extreme concentration of employment in New York City that gives the high value of the density measure. In fact, New York City comprises the densest county in the U.S., New York County (with a factor density index

\(^2\) Some readers have been surprised at the small size of the standard error. It is much smaller, for example, than the standard error of the OLS regression of state productivity on our density index. The reason is that \(\theta \) predicts zero slope at \(\theta = 1 \). Small changes in \(\theta \) correspond to large changes in the density index, so the parameter is correspondingly well estimated.
of 1.94) and three of the 10 next densest counties (Bronx County, Kings County and Queens County).

Our estimated density index for New York County implies, for example, that workers in New York County are 22 percent more productive than workers in New York State, the state with the highest average productivity in our sample. The other dense states are the highly urbanized states of the northeast plus Illinois and California. The least dense states are the thinly populated states of northern New England, the south, and the southwest. It is important to note that density is not just a measure of the inequality of distribution of the work force across counties—it is also dependent on the actual density in the counties where employment is significant. The third column of Table 2 shows output per worker by state. Output per worker in New Jersey ($44,488), the most productive state, is two thirds higher than in South Dakota ($26,196), the least productive state. Average output per worker in the ten most productive states ($38,782) is one third higher than in the ten least productive states ($31,578). The positive partial correlation of density and productivity is immediately apparent from Table 2 and Figure 1. There are a number of outliers that call for further investigation: Most conspicuous is Rhode Island, which is just as dense as its neighbors but has productivity at the level of the very least dense state. Nevada, on the other hand, has a much higher productivity than its low densities would predict. Among the counties with the smallest density indices are Garfield County (Montana), Kimball County (Nebraska), Newton County (Arkansas) and La Paz County (Arizona). We estimate that workers in the 15 counties with lowest density produce on average less than half the output of a worker in New York City.

Figure 2 plots average years of education against productivity at the state level. We have estimated equation (29) without density effects ($\theta=1$). Using the education data at the state level, we find the elasticity of output per worker with respect to average education in equation (29) is 1.5 with a standard error of .5. The R^2 of the regression is .09. Using the education data at the county level to estimate equation (24) under the same hypothesis, $\theta=1$, results in an elasticity of labor efficiency with respect to education of 1.2 with a standard error of .6 and a R^2 of .1. Education is a significant determinant of
productivity in both cases and the estimate using data at the county level is within the range estimated by Davis [1992].

Figure 3 summarizes the results of our instrumental variables regression of equation (25). It plots estimated output per efficiency unit of labor at the state level against estimated density for $\theta = 1.058$. It is seen that Rhode Island remains an outlier despite the fact that its workers are significantly less educated than workers in neighboring states.

Table 3 decomposes the estimated density index $D_S(1.058)$ as defined in equation (4) into a state effect and a distribution effect along the lines described in equation (5). The column headed state effect gives the part of the state effect arising from the average density of the entire state. For example, if the density of employment in Massachusetts fell to the national level, while the distribution of employment over the counties remained unchanged, then this would result in a 15 percent drop in average product. The distribution effect measures the part of the state productivity effect attributable to an unequal distribution of employment over counties. For example, productivity in New York would fall by 19 percent if employment were to be allocated uniformly across the area of the state. Colorado, Nebraska, Missouri, Texas and Utah are examples of states with great inequality across counties but low overall density, because their major metropolitan areas have relatively low levels of employment per acre.

7. Extensions

Public capital

Some of the differences in average labor productivity across U.S. states may be due to differences in the available public capital. To consider this possibility, we extend the basic model to account for public capital. We assume that the services from the public capital available in state s, g_s, enter county level production with constant elasticity, δ.

18
Then, the county level production function in equation (1) becomes

\[f(n, q, a) = n^\alpha \left(\frac{q_c}{a_c} \right)^{\frac{\lambda - 1}{\lambda}} g^\delta. \]

(30)

Solving for state level productivity we get that

\[\frac{Q_s}{N_s} = g_s^{\lambda \delta} D_s(\gamma), \]

(31)

where \(D_s(\gamma) \) is defined in equation (4). Extending the model for exogenous differences in total factor productivity and differences in human and physical capital along the lines of Section 2, we get the following estimating equation:

\[\log \frac{Q_s}{N_s} = \psi + \omega \delta \log g_s + \log D_s(\theta, \eta) + u_s \]

(32)

where \(D(\theta, \gamma) \) and \(\omega \) are defined in equations (23) and (21) above. Table 4 shows the results of estimating equation (32) using the value of public capital in streets and highways in 1988 at the state level from Holtz-Eakin [1993]. The density elasticity falls somewhat, but public capital does not affect productivity at the state level significantly. We have also used other, more inclusive measures of public capital with the same results. Our negative results on public capital are in line with Garcia-Mila, McGuire, and Porter [1994].

State versus distribution effects

As a further exploration of the role played by the state and distribution effects in Table 3 for agglomeration in the U.S., we consider an extension of the basic model which allows for influences from density at the state level as well as at the county. The extended model provides a specification test for our earlier model. If there were important state effects not captured by our earlier model it would suggest that we need to consider
externalities that cross county boundaries. In the extended model, the production function in equation (1) for output produced in an acre of space becomes

$$f(n, q, a) = n^\alpha \left(\frac{q_c}{\alpha_c} \right)^{\lambda - 1} \left(\frac{Q_s}{A_s} \right)^\kappa,$$

(33)

where κ denotes the elasticity with respect to average output per acre in the state, Q_s/A_s.

Solving for state productivity along the lines of equations (2) and (3) yields

$$\frac{Q_s}{N_s} = D_s \frac{\lambda \kappa}{1 - \lambda \kappa} D_s(y) \frac{1}{1 - \lambda \kappa}.$$

(34)

State productivity is determined by average employment density in the state, D_s, and the density index, $D_s(y)$, as defined in equation (4). For $\kappa = 0$ the model reduces to the one discussed at the beginning of Section 2.

Extending the model along the lines in Section 2 results in the following estimating equation:

$$\log \frac{Q_s}{N_s} = \delta + \xi \log D_s + (\xi + 1) \log D_s(\theta, \eta) + u_s,$$

(35)

where δ is a common constant across states and

$$\xi \equiv \frac{\kappa \omega}{1 - \kappa \omega}.$$

(36)

Table 5 shows the results of estimating equation (35). With nonlinear least squares, we obtain an estimate for ξ of 0.005 with a standard error of .015 and an estimate for θ of 1.047 with a standard error of .018. With nonlinear instrumental variables, the estimates for ξ and θ are -0.19 and 1.084 respectively with standard errors of .023 and .028. Both estimates suggest that there is no state effect at all once the county effects are considered. Although we believe that a specification with some cross-county effects would be an improvement over our model, the absence of incremental state density effects indicates that our current specification captures most density effects. This issue is
investigated further in Wilkins [1994] who considers different specifications for the geographical extent of externalities.

Size versus density effects

Finally, our framework allows us to consider size versus density effects at the county level. To do so we consider a further extension of the basic model, where the production function (1) accounts for both an externality from output density in the county and output in the county. We assume that the elasticity of firm level output with respect to county output also enters as a constant, ν:

$$f(n, q, a) = n^\alpha \left(\frac{q_c}{a_c} \right)^{\frac{\lambda - 1}{\lambda}} q_c^\nu.$$ \hspace{1cm} (37)

Solving for state level productivity, we obtain

$$\frac{Q_s}{N_s} = \sum_{c \in C_s} \left(n_c a_c^{-(\gamma - 1)} \right) \frac{1}{1 - \nu \lambda},$$ \hspace{1cm} (38)

When $\nu = 0$, the framework reduces to the basic model with no size externalities at the county level. When $\gamma = 1$, the framework displays no density effects but only size effects. Extending the model for differences in physical and human capital and exogenous total factor productivity, we obtain

$$\log \frac{Q_s}{N_s} = \delta + \log D_s(\theta, \eta, \sigma) + \mu_s,$$ \hspace{1cm} (39)

where $D_s(\theta, \eta, \sigma)$ is defined analogous to equation (38) with efficiency units of labor, $n_c h_c^n$, in place of raw labor, n_c,

$$D_s(\theta, \eta, \sigma) = \frac{\sum_{c \in C_s} (n_c h_c^n a_c^{-(\theta - 1)})}{N_s} \sigma,$$ \hspace{1cm} (40)

where
\[\sigma = \frac{1}{1 - \nu \omega} \]

(41)

Table 6 shows the results of estimating equation (40). The nonlinear least squares estimate of \(\theta \) is 1.035 with a standard error of 0.013. The county size parameter \(\sigma \) is estimated to be 1.029 with a standard error of 0.019. The \(R^2 \) of the regression is 0.58. The nonlinear instrumental variables estimate of the density parameter is 1.046 with a standard error of 0.023 and the county size parameter is 1.026 with a standard error of 0.039. These estimates suggest that density externalities are more important than size externalities at the county level. This issue is investigated further in Wilkins [1994] for size externalities at the level of metropolitan statistical areas and standard metropolitan statistical areas.

8. Concluding Remarks

Increasing returns to density play a crucial role for explaining the large differences in average labor productivity across U.S. states. We estimate that doubling employment density in a county increases average labor productivity by 6 percent. This degree of locally increasing returns can explain more than half of the variation in labor productivity across U.S. states. Our instrumental variables estimates rest on the hypothesis that the patterns of agglomeration in the 18th and the middle of the 19th century did not reflect factors which significantly contribute to productivity today but have a remaining influence mainly through the legacy of agglomeration. Our estimates control for labor quality at the county level and for differences in the available public capital at the state level. We also compare increasing returns to density with increasing returns to size at the county level and we find that increasing returns to density describes the data better than increasing returns to size.

Our work can be extended in several directions. Because our data are available by industry it would be possible to distinguish between economies from localization—which arise from the co-location of firms in the same industry—and economies from urbanization—where favorable effects arise from the general diversity and scale of urban
areas. Our approach can also be used to examine dynamic externalities. Work by Glaeser, Kallal, Scheinkman, and Shleifer [1992] and Henderson [1994] quantifies dynamic externalities by looking at the behavior of industry employment. But small productive externalities may have large employment effects. This makes it difficult to infer the significance of spatial externalities for productivity from data on spatial concentration of industry employment. Because our data are available since 1962 our approach could be extended to examine the effect of dynamic spillovers on productivity. Our empirical work also suggests that rising density over time may be an important factor in growth. Large U.S. cities are denser now than in earlier centuries, and a much larger fraction of the population is employed in cities or other dense areas. Our estimates could be applied to historical data on the distribution of employment by county to measure the part of total growth that can be associated with rising density.
References

Henderson, J.V. [1994], "Externalities and Industrial Development" manuscript, Brown University.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Density Elasticity, θ (standard error)</th>
<th>Education Elasticity, η (standard error)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (NLLS)</td>
<td>1.052 (0.008)</td>
<td>0.410 (0.396)</td>
<td>0.551</td>
</tr>
<tr>
<td>Eastern Seabaord</td>
<td>1.055 (0.017)</td>
<td>0.460 (0.51)</td>
<td>0.548</td>
</tr>
<tr>
<td>Railroad in 1860</td>
<td>1.061 (0.011)</td>
<td>0.330 (0.450)</td>
<td>0.537</td>
</tr>
<tr>
<td>Population in 1850</td>
<td>1.060 (0.015)</td>
<td>0.350 (0.510)</td>
<td>0.539</td>
</tr>
<tr>
<td>Population density in 1880</td>
<td>1.051 (0.019)</td>
<td>0.530 (0.550)</td>
<td>0.549</td>
</tr>
<tr>
<td>All</td>
<td>1.06 (0.01)</td>
<td>0.060 (0.82)</td>
<td>0.536</td>
</tr>
</tbody>
</table>

Note: The equation estimated is (24). The data are value added for 46 states and Washington D.C. For the 46 states we have used data on employment and average years of education at the county level.
<table>
<thead>
<tr>
<th>State</th>
<th>Density Index</th>
<th>Years of Education</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>District of Columbia</td>
<td>1.67</td>
<td>14.0</td>
<td>43,164</td>
</tr>
<tr>
<td>New York</td>
<td>1.59</td>
<td>13.3</td>
<td>41,921</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1.48</td>
<td>13.4</td>
<td>44,488</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1.47</td>
<td>13.4</td>
<td>37,296</td>
</tr>
<tr>
<td>Illinois</td>
<td>1.46</td>
<td>13.2</td>
<td>39,150</td>
</tr>
<tr>
<td>Maryland</td>
<td>1.45</td>
<td>13.6</td>
<td>34,439</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1.43</td>
<td>12.7</td>
<td>30,055</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1.42</td>
<td>13.5</td>
<td>41,927</td>
</tr>
<tr>
<td>California</td>
<td>1.42</td>
<td>12.9</td>
<td>40,723</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1.40</td>
<td>13.2</td>
<td>34,661</td>
</tr>
<tr>
<td>TOP 10 AVERAGE</td>
<td>1.48</td>
<td>13.3</td>
<td>38,782</td>
</tr>
<tr>
<td>Ohio</td>
<td>1.40</td>
<td>13.1</td>
<td>36,553</td>
</tr>
<tr>
<td>Virginia</td>
<td>1.40</td>
<td>13.2</td>
<td>35,986</td>
</tr>
<tr>
<td>Delaware</td>
<td>1.40</td>
<td>13.3</td>
<td>35,223</td>
</tr>
<tr>
<td>Michigan</td>
<td>1.39</td>
<td>13.2</td>
<td>39,001</td>
</tr>
<tr>
<td>Missouri</td>
<td>1.38</td>
<td>13.1</td>
<td>34,520</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1.38</td>
<td>13.3</td>
<td>34,485</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1.37</td>
<td>13.2</td>
<td>35,494</td>
</tr>
<tr>
<td>Florida</td>
<td>1.36</td>
<td>13.1</td>
<td>30,808</td>
</tr>
<tr>
<td>Georgia</td>
<td>1.36</td>
<td>12.7</td>
<td>35,407</td>
</tr>
<tr>
<td>Texas</td>
<td>1.36</td>
<td>12.6</td>
<td>36,798</td>
</tr>
<tr>
<td>Colorado</td>
<td>1.35</td>
<td>13.6</td>
<td>33,342</td>
</tr>
<tr>
<td>Indiana</td>
<td>1.34</td>
<td>12.9</td>
<td>34,721</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1.34</td>
<td>13.2</td>
<td>33,495</td>
</tr>
<tr>
<td>State</td>
<td>Density Index</td>
<td>Years of Education</td>
<td>Productivity (1988 $)</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1.33</td>
<td>12.6</td>
<td>33,169</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1.32</td>
<td>12.8</td>
<td>32,677</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1.32</td>
<td>12.7</td>
<td>34,406</td>
</tr>
<tr>
<td>Utah</td>
<td>1.31</td>
<td>13.6</td>
<td>32,160</td>
</tr>
<tr>
<td>Washington</td>
<td>1.31</td>
<td>13.6</td>
<td>32,661</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1.30</td>
<td>13.2</td>
<td>30,323</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1.30</td>
<td>13.4</td>
<td>33,668</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1.29</td>
<td>13.0</td>
<td>33,567</td>
</tr>
<tr>
<td>Oregon</td>
<td>1.29</td>
<td>13.3</td>
<td>32,713</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1.28</td>
<td>12.8</td>
<td>29,623</td>
</tr>
<tr>
<td>Kansas</td>
<td>1.27</td>
<td>13.4</td>
<td>36,223</td>
</tr>
<tr>
<td>Alabama</td>
<td>1.27</td>
<td>12.4</td>
<td>32,980</td>
</tr>
<tr>
<td>Arizona</td>
<td>1.25</td>
<td>13.2</td>
<td>33,579</td>
</tr>
<tr>
<td>Iowa</td>
<td>1.25</td>
<td>13.1</td>
<td>32,318</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>1.33</td>
<td>13.1</td>
<td>34,071</td>
</tr>
<tr>
<td>Maine</td>
<td>1.24</td>
<td>13.1</td>
<td>33,097</td>
</tr>
<tr>
<td>Vermont</td>
<td>1.23</td>
<td>13.4</td>
<td>33,733</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1.23</td>
<td>12.5</td>
<td>32,150</td>
</tr>
<tr>
<td>Mississippi</td>
<td>1.21</td>
<td>12.8</td>
<td>32,707</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1.21</td>
<td>12.6</td>
<td>31,249</td>
</tr>
<tr>
<td>Nevada</td>
<td>1.20</td>
<td>12.9</td>
<td>36,234</td>
</tr>
<tr>
<td>Idaho</td>
<td>1.17</td>
<td>12.7</td>
<td>29,861</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1.15</td>
<td>13.0</td>
<td>26,196</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1.12</td>
<td>13.3</td>
<td>30,248</td>
</tr>
<tr>
<td>Montana</td>
<td>1.10</td>
<td>13.3</td>
<td>30,302</td>
</tr>
</tbody>
</table>

BOTTOM 10 AVERAGE | **1.19** | **13.0** | **31,578**

Note: Education at the state level. Density index as defined in equation (4), using raw employment at the county level, evaluated at $\theta=1.058$.
<table>
<thead>
<tr>
<th>State</th>
<th>State Effect</th>
<th>Distribution Effect</th>
<th>Productivity (1988 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>District of Columbia</td>
<td>36</td>
<td>0</td>
<td>43,164</td>
</tr>
<tr>
<td>New York</td>
<td>9</td>
<td>19</td>
<td>41,921</td>
</tr>
<tr>
<td>New Jersey</td>
<td>16</td>
<td>4</td>
<td>44,488</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>15</td>
<td>5</td>
<td>37,296</td>
</tr>
<tr>
<td>Illinois</td>
<td>6</td>
<td>13</td>
<td>39,150</td>
</tr>
<tr>
<td>Maryland</td>
<td>11</td>
<td>7</td>
<td>34,439</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>16</td>
<td>1</td>
<td>30,055</td>
</tr>
<tr>
<td>Connecticut</td>
<td>14</td>
<td>2</td>
<td>41,927</td>
</tr>
<tr>
<td>California</td>
<td>5</td>
<td>11</td>
<td>40,723</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>7</td>
<td>8</td>
<td>34,661</td>
</tr>
<tr>
<td>TOP 10 AVERAGE</td>
<td>8</td>
<td>12</td>
<td>38,782</td>
</tr>
<tr>
<td>Ohio</td>
<td>7</td>
<td>7</td>
<td>36,553</td>
</tr>
<tr>
<td>Virginia</td>
<td>4</td>
<td>11</td>
<td>35,986</td>
</tr>
<tr>
<td>Delaware</td>
<td>10</td>
<td>4</td>
<td>35,223</td>
</tr>
<tr>
<td>Michigan</td>
<td>4</td>
<td>10</td>
<td>39,001</td>
</tr>
<tr>
<td>Missouri</td>
<td>-1</td>
<td>14</td>
<td>34,520</td>
</tr>
<tr>
<td>Hawaii</td>
<td>4</td>
<td>9</td>
<td>34,485</td>
</tr>
<tr>
<td>Minnesota</td>
<td>-2</td>
<td>15</td>
<td>35,494</td>
</tr>
<tr>
<td>Florida</td>
<td>6</td>
<td>6</td>
<td>30,808</td>
</tr>
<tr>
<td>Georgia</td>
<td>2</td>
<td>10</td>
<td>35,407</td>
</tr>
<tr>
<td>Texas</td>
<td>-2</td>
<td>14</td>
<td>36,798</td>
</tr>
<tr>
<td>Colorado</td>
<td>-6</td>
<td>17</td>
<td>33,342</td>
</tr>
<tr>
<td>Indiana</td>
<td>4</td>
<td>6</td>
<td>34,721</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1</td>
<td>9</td>
<td>33,495</td>
</tr>
<tr>
<td>Tennessee</td>
<td>2</td>
<td>7</td>
<td>33,169</td>
</tr>
<tr>
<td>State</td>
<td>State Effect (percent)</td>
<td>Distribution Effect (percent)</td>
<td>Productivity (dollars/worker)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3</td>
<td>5</td>
<td>32,677</td>
</tr>
<tr>
<td>Kentucky</td>
<td>-1</td>
<td>9</td>
<td>34,406</td>
</tr>
<tr>
<td>Utah</td>
<td>-9</td>
<td>18</td>
<td>32,160</td>
</tr>
<tr>
<td>Washington</td>
<td>-1</td>
<td>9</td>
<td>32,661</td>
</tr>
<tr>
<td>Nebraska</td>
<td>-8</td>
<td>16</td>
<td>30,323</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3</td>
<td>3</td>
<td>36,688</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>-5</td>
<td>12</td>
<td>34,567</td>
</tr>
<tr>
<td>Oregon</td>
<td>-6</td>
<td>12</td>
<td>32,713</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1</td>
<td>3</td>
<td>29,623</td>
</tr>
<tr>
<td>Kansas</td>
<td>-6</td>
<td>11</td>
<td>36,223</td>
</tr>
<tr>
<td>Alabama</td>
<td>-1</td>
<td>5</td>
<td>32,980</td>
</tr>
<tr>
<td>Arizona</td>
<td>-6</td>
<td>9</td>
<td>33,579</td>
</tr>
<tr>
<td>Iowa</td>
<td>-3</td>
<td>6</td>
<td>32,318</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>-1</td>
<td>11</td>
<td>34,071</td>
</tr>
<tr>
<td>Maine</td>
<td>-4</td>
<td>6</td>
<td>33,097</td>
</tr>
<tr>
<td>Vermont</td>
<td>-2</td>
<td>2</td>
<td>33,733</td>
</tr>
<tr>
<td>Arkansas</td>
<td>-5</td>
<td>5</td>
<td>32,150</td>
</tr>
<tr>
<td>Mississippi</td>
<td>-4</td>
<td>4</td>
<td>32,707</td>
</tr>
<tr>
<td>New Mexico</td>
<td>-12</td>
<td>13</td>
<td>31,249</td>
</tr>
<tr>
<td>Nevada</td>
<td>-11</td>
<td>10</td>
<td>36,234</td>
</tr>
<tr>
<td>Idaho</td>
<td>-12</td>
<td>9</td>
<td>29,861</td>
</tr>
<tr>
<td>South Dakota</td>
<td>-13</td>
<td>9</td>
<td>26,196</td>
</tr>
<tr>
<td>North Dakota</td>
<td>-13</td>
<td>6</td>
<td>30,248</td>
</tr>
<tr>
<td>Montana</td>
<td>-16</td>
<td>7</td>
<td>30,302</td>
</tr>
</tbody>
</table>

Note: Density index as defined in equation (4), using raw employment at the county level, evaluated at \(\theta = 1.058 \) decomposed in a state effect and a distribution effect as described in equation (5).
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Density Elasticity, θ (standard error)</th>
<th>Education Elasticity, η (standard error)</th>
<th>Public Capital Elasticity, $\omega\delta$ (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (NLLS)</td>
<td>1.046 (0.010)</td>
<td>0.570 (0.430)</td>
<td>0.021 (0.015)</td>
</tr>
<tr>
<td>All</td>
<td>1.056 (0.012)</td>
<td>0.480 (1.040)</td>
<td>0.017 (0.023)</td>
</tr>
</tbody>
</table>

Note: The equation estimated is (32). The data are value added for 46 states and Washington D.C. For the 46 states we have used data on employment and education at the county level. The data for public capital at the state level is capital in streets and highways in 1988 from Holtz-Eakin [1993].
Table 5. Estimation Results with State Density Effects

<table>
<thead>
<tr>
<th>Instrument</th>
<th>County Density Elasticity, θ (standard error)</th>
<th>Education Elasticity, η (standard error)</th>
<th>State Density Elasticity, ξ (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (NLLS)</td>
<td>1.047 (0.018)</td>
<td>0.450 (0.420)</td>
<td>0.005 (0.015)</td>
</tr>
<tr>
<td>All</td>
<td>1.084 (0.028)</td>
<td>0.235 (0.498)</td>
<td>0.019 (0.023)</td>
</tr>
</tbody>
</table>

Note: Equation estimated is (35). The data are value added for 46 states and Washington D.C. For the 46 states we have used data on employment and education at the county level for the density index $D_j(\theta, \eta)$. Average density D_j is total employment in the state over its area.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>County Density Elasticity, θ (standard error)</th>
<th>Education Elasticity, η (standard error)</th>
<th>County Size Elasticity, σ (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (NLLS)</td>
<td>1.035 (0.013)</td>
<td>0.259 (0.398)</td>
<td>1.029 (0.019)</td>
</tr>
<tr>
<td>All</td>
<td>1.046 (0.023)</td>
<td>0.140 (0.82)</td>
<td>1.026 (0.039)</td>
</tr>
</tbody>
</table>

Note: Equation estimated is (39). The data used is value added for 46 states and Washington D.C. For the 46 states we have used data on employment and education at the county level.
Figure 1: State Productivity and Density for $\theta=1.058$
Figure 2: State Productivity and Average Years of Education

Percentage Deviation of State Productivity from the Mean

Percentage Deviation of Average Years of Education from the Mean
Figure 3: State Productivity per Efficiency Worker and Density for $\theta = 1.058$
1. Albert Marcet and Ramon Marimon
 Communication, Commitment and Growth. (June 1991) [Published in *Journal of Economic Theory* Vol. 58, no. 2, (December 1992)]

2. Antoni Bosch
 Economics of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in *European Economic Review* 35, (1991) 1589-1595]

3. Albert Satorra

4. Javier Andrés and Jaume García
 Wage Determination in the Spanish Industry. (June 1991) [Published as “Factores determinantes de los salarios: evidencia para la industria española” in J.J. Dolado et al. (eds.) *La industria y el comportamiento de las empresas españolas* (Ensayos en homenaje a Gonzalo Mato), Chapter 6, pp. 171-196, Alianza Economía]

5. Albert Marcet
 Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marcet

7. Xavier Calamigia and Alan Kirman
 A Unique Informationally Efficient and Decentralized Mechanism with Fair Outcomes. (November 1991) [Published in *Econometrica*, vol. 61, 5, pp. 1147-1172 (1993)]

8. Albert Satorra

9. Teresa García-Milió and Therese J. McGuire
 Industrial Mix as a Factor in the Growth and Variability of States’ Economies. (January 1992) [Forthcoming in *Regional Science and Urban Economics*]

10. Walter García-Fontes and Hugo Hopenhavn
 Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in *Moneda y Crédito* Vol. 196]

11. Guillem López and Adam Robert Wagstaff

12. Daniel Serra and Charles ReVelle

13. Daniel Serra and Charles ReVelle

14. Juan Pablo Nicolini
 Speed of Convergence of Recursive Least Squares Learning with ARMA Perceptions. (May 1992) [Forthcoming in *Learning and Rationality in Economics*]

15. Albert Marcet and Thomas J. Sargent

16. Special issue
 Vernon L. Smith
 Experimental Methods in Economics. (June 1992)

17. Albert Marcet and David A. Marshall
 Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations.

18. M. Antonia Monds, Rafael Salas and Eva Ventura
 Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)

19. Hugo A. Hopenhavn and Ingrid M. Werner
 Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)
20. Daniel Serra
The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Marimon, Stephen E. Spear and Shyam Sunder
Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgia Giovannetti, Albert Marcet and Ramon Marimon
Growth, Capital Flows and Enforcement Constraints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Marimon
Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Marimon and Ellen McGrattan

25. Ramon Marimon and Shyam Sunder
Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaume Garcia and José M. Labeaga
A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman
Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993:1]

29. Jeffrey Prisbrey
An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hopenhayn and Maria E. Muniguerría
Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Colera

32. Rafael Crespi i Cladera
Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hopenhayn
The Shakeout. (April 1993)

34. Walter Garcia-Fontes
Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Brocarrad
On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

The Effect of Public Capital in State-Level Production Functions Reconsidered. (February 1993)

37. Ramon Marimon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labeaga and Angel López
Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVelle
Market Capture by Two Competitors: The Pre-emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no.4 (1994)]

40. Xavier Cuadras-Morató

41. M. Antònia Monés and Eva Ventura
Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

42. Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]

43. Jordi Gali
Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]
44. Jordi Gali
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Gali
Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in Journal of Economic Theory]

46. Oriol Amut
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodríguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodríguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amut and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tilis
Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993)

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tilis
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín Viguera and Shinichi Suda

59. Ángel de la Fuente and José María Marín Viguera
Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994)

60. Jordi Gali
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argilés
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994)

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Irasema Alonso
Patterns of Exchange, Fiat Money, and the Welfare Costs of Inflation. (September 1993)

64. Rohit Rahi
Adverse Selection and Security Design. (February 1994)

65. Jordi Gali and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Gali and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]

67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

68. John Ireland
How Products' Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)
69. Fabrizio Zilibotti.
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra.
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovannetti.

72. Raffaele Giordano.

73. Jaime Puig i Junoy.
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Resnick and Charles ReVelle.
The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning A]

75. Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement-Experience in some Other Countries (March 1994)

Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

78. Xavier Sala-i-Martin.

79. Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cuadras-Morató.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martínez García.
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martín.

84. Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaele Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yuri Yegorov.
The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994)

88. Jose M. Bailen.
Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julià Clarke.
Bank Financial Analyst's Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting]

90. John Blake and Oriol Amat and Julia Clarke.
Management's Response to Finance Lease Capitalization in Spain (September 1994)

91. Antoni Bosch and Shyam Sundar.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (July 1994)

92. Sergi Jiménez-Martín.
The Wage Effect of an Indexation Clause: Evidence from Spanish Manufacturing Firms. (September 1994)

93. Albert Carreras and Xavier Tafunell.
National Enterprise: Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Fauli-Oller and Massimo Motta.
Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)
95. Marc Sáez Zafro and Jorge V. Pérez-Rodriguez.
Modelos Autoregressivos para la Varianza Condicionada Heterocedástica (ARCH) (October 1994)

96. Daniel Serr and Charles ReVelle.
Competitive Location in Discrete Space (November 1994) [Forbcoming in Zvi Drezner (ed.): Facility Location: a Survey of Applications and Methods. Springer-Verlag New York]

97. Alfonso Gambardella and Walter García-Fontes.
Regional Linkages through European Research Funding (October 1994) [Forbcoming in Economic of Innovation and New Technology]

98. Daron Acemoglu and Febrizio Zilibotti.
Was Prometheus Unbound by Chance? Risk, Diversification and Growth (November 1994)

99. Thierry Foucault.
Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (June 1994)

100. Ramon Marimon and Febrizio Zilibotti.
'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994)

101. Mario Sáez Martí.

102. Mario Sáez Martí.
An Evolutionary Model of Development of a Credit Market (December 1994)

103. Walter García-Fontes and Ruben Tansini and Marcel Vaillant.
Cross-Industry Entry: the Case of a Small Developing Economy (December 1994)

104. Xavier Sala-i-Martin.
Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Domènech and Joaquim Silvestre.
Credit Constraints in General Equilibrium: Experimental Results (December 1994)

106. Casey B. Mulligan and Xavier Sala-i-Martin.

Human Capital, Heterogeneous Agents and Technological Change (March 1995)

108. Xavier Sala-i-Martin.
A Positive Theory of Social Security (February 1995)

Interactive Local Bandwidth Choice (February 1995)

ARCH Patterns in Cointegrated Systems (March 1995)

111. Xavier Cuadras-Morató and Joan R. Rosés.
Bills of Exchange as Money: Sources of Monetary Supply during the Industrialization in Catalonia (1844-74) (April 1995)

112. Casey B. Mulligan and Xavier Sala-i-Martin.
Measuring Aggregate Human Capital (January 1995)

113. Fabio Canova.

114. Sergiu Hart and Andreu Mas-Colell.
Bargaining and Value (February 1995)

115. Teresa Garcia-Mila, Albert Marcet and Eva Ventura.
Supply Side Interventions and Redistribution (June 1995)

Technological Diffusion, Convergence, and Growth (May 1995)

117. Xavier Sala-i-Martin.
The Classical Approach to Convergence Analysis (June 1995)

118. Serguei Maliar and Vitali Perepelitsa.
LCA Solvability of Chain Covering Problem (May 1995)

119. Serguei Maliar, Igor' Kozin and Vitali Perepelitsa.
Solving Capability of LCA (June 1995)

120. Antonio Ciccone and Robert E. Hall.
Productivity and the Density of Economic Activity (May 1995)