Economics Working Paper 118

LCA Solvability of Chain Covering Problem

Serguei Maliar*
and
Vitali Perepelitsa†

May 1995

Keywords: Graph theory, multicriteria optimization, linear convolution algorithm, solvability.

Journal of Economic Literature classification: C44.

* Universitat Pompeu Fabra.
† Zaporozhye State University.
Abstract

The aim of this research is to study the question of solvability of chain covering problem given on \(n \)-vertex \(N \)-weighted graphs with multicriteria Vector Objective Function (\(VOF \)) by means of Linear Convolution Algorithms (\(LCA \)). In the paper we show that \(LCA \) do not guarantee finding the solution to the considered class of problems. We proved unsolvability of chain covering problem only for \(VOFs \) consisting of \(MAXMIN \) and \(MAXSUM \) criteria. However, following the same approach it is possible to research solvability of chain covering problem for other types of \(VOFs \).
1 Introduction

The aim of this research is to study the question of solvability of chain covering problem given on n-vertex N-weighted graphs with multicriteria Vector Objective Function (VOF) by means of Linear Convolution Algorithms (LCA). In the paper we show that LCA do not guarantee finding the solution to the considered class of problems.

The solvability by means of LCA has been researched for many problems of mathematical programming. To prove that some instance problem is unsolvable by means of LCA it is sufficient to give a particular example of this instance problem that can not be solved by mean of LCA. Such examples have been already provided by [1], [2], [3], [4] for N-criteria statements of spanning trees problem, chains (paths) between a pair of vertexes problem, travelling salesman problem, perfect matching problem. Unfortunately, this approach does not allow to study the question of solvability of chain covering problem in general. There is an infinite set of instance problems belonging to the class of chain covering problem. To deal with this complication in the paper we suggest a method that allows us to construct for each instance chain covering problem an example that has non-empty set of solutions and still is unsolvable by means of LCA.

In the paper we research solvability of chain covering problem for VOFs consisting of $MAXMIN$ and $MAXSUM$ criteria. However, following the same approach it is possible to study solvability of chain covering problem for other types of VOFs.

2 Notations and statement of the problem

A multicriteria problem is said to be defined if for every solution x of Feasible Set of Solutions (FSS) $X = \{x\}$ the value of VOF is given

$$F(x) = (F_1(x), ..., F_v(x), ..., F_N(x)).$$

Criteria of VOF are to be optimized (minimized or maximized)

$$F_v(x) \rightarrow \min, \quad v = 1, ..., N.$$

A feasible solution $\tilde{x} \in X$ is called Pareto Optimum (PO) if there is no element $x^* \in X$ such that $F(x^*) \geq F(\tilde{x})$ and $F(x^*) \neq F(\tilde{x})$. The set \tilde{X} of all PO is called Pareto Set (PS).

Subset $\hat{X} \subseteq \tilde{X}$ is called a Complete Set of Alternatives (CSA) if it's cardinality $|\hat{X}|$ is minimum and equality $F(X^*) = F(\hat{X})$ is satisfied, $F(X^*) = \{F(x) : x \in X^*\}, \forall X^* \subseteq X$.

The Mass Multi-Objective Problem (MMOP) is an arbitrary problem where CSA is to be found in explicit form. The term "instance MOP" is used for denoting a particular MOP defined by a pair (X, F), where $X = \{x\}$ is FSS and $F = F(x)$ is VOF.
For any vector
\[\lambda \in \Lambda_N \left\{ \lambda = (\lambda_1, \ldots, \lambda_N) : \sum_{\nu=1}^{N} \lambda_\nu = 1, \lambda_\nu > 0 \right\} \]
and element \(x^* \) minimizing on the FSS \(X \) linear convolution
\[F^\lambda(x) = \sum_{\nu=1}^{N} \lambda_\nu F_\nu(x) \]
of \(VOF \) is \(PO \).

This fact is laid in the basis of \(LCA \) approach used for solving multicriteria problems in mathematical programming. However, for some instance \(MOPs \) \(PS \) cannot be found by means of \(LCA \). Therefore such instance \(MOPs \) are called unsolvable.

More precisely \(N \)-criteria mass \(MOP \) is called unsolvable by means of \(LCA \) if there is an instance problem of this \(MOP \) such that
\[\exists \widetilde{x} \in \widetilde{X} : F^\lambda(\widetilde{x}) > \min \{ F^\lambda(x) : x \in X \}, \forall \lambda \in \Lambda_N, \]
where \(F^\lambda(x) \) is the linear convolution of the criteria.

Let us now precisely formulate the statement of the problem studied in the paper. Let \(G = (V, E) \) be a graph given by the set of vertex \(V = VG \) and the set of edges \(E = EG \). For every edge \(e \in E \) of the graph \(G \) the vector of weights \(w(e) = (w_1(e), \ldots, w_n(e), \ldots, w_N(e)) \) is given.

Let also the set \(H \) be such that \(H = \{ h \} \subseteq \{ 2, \ldots, n \} \). A subgraph \(x = (V, E_x) \) is called a covering of the graph \(G \) by chains of the set \(H \) if every connected component of subgraph \(x \) is a simple chain that covers \(h \) vertices of the graph \(G \) (the length of such chain is \(h - 1 \)) and \(h \)-chain belongs to \(H \).

In all problems studied in the paper, \(FSS \) \(X = \{ x \} \) consists of the coverings of the graph \(G \) by the chains of the set \(H \) and for each element \(x \) of the set \(X \) the value of \(VOF \) \(F(x) \) is defined. The solution to the problem is to be given in the form of \(CSA \).

Slightly abusing notations we denote instance \(MOP \) of the \(MMOP \) described above by \((X(G, H), F) \), where \(X(G, H) \) is \(FSS \) of the problem of covering of the graph \(G \) by chains of the set \(H \).

In addition we also found convenient to use the following notations:
- \(G_n \) to denote an arbitrary \(n \)-vertices graph \(G \);
- \(G_n^c \) to denote a complete \(n \)-vertices graph \(G \), i.e. the graph \(G = (V, E) \), with the cardinality of the set of edges is \(|E| = \frac{n(n-1)}{2} \);
- \(x = \bigcup_{j=1}^{n} h_j \), to denote a covering \(x \) of the graph \(G \) by chains of the set \(H \), \(h_j \in H \);
- \(x = \emptyset \), to denote a covering \(x \) of an empty graph \(G = (V, E), V = \{ \emptyset \} \), \(E = \{ \emptyset \} \).
3 General results

Lemma 3.1
If $X(G_n^*, H) = \{\emptyset\}$, then $(X(G_n, H), F)$ is unsolvable by means of LCA.

Proof:
Suppose that $X(G_n^*, H) = \{\emptyset\}$ and that using some LCA algorithm we found CSA \hat{X} for some problem $(X(G_n, H), F)$ such that $\hat{X} = \{\hat{x}\} \neq \{\emptyset\}$. By definition of CSA any element $\hat{x} \in \hat{X}$ can be written as $\hat{x} = \bigcup_{j=1}^{m} h_j$, $h_j \in H$.

Then, it directly follows from definition of covering that $\hat{x} \in X(G_n^*, H)$. But this implies that $X(G_n^*, H) \neq \{\emptyset\}$, a contradiction.

Consider FSS $X(G_n^*, H)$ of an arbitrary problem $(X(G_n^*, H), F)$, $n \geq 4$. If $X(G_n^*, H) \neq \{\emptyset\}$, then $X(G_n^*, H)$ can be written as $X(G_n^*, H) = \{x_i\}$, $i = 1, \ldots, I$, where I is the number of the coverings in the set $X(G_n^*, H)$. Each solution $x_i \in X(G_n^*, H)$ is a combination of chains that covers n vertices of the graph G_n^*, i.e. $x_i = \bigcup_{j=1}^{m_i} h_{ij}$, $h_{ij} \in H$, $i = 1, \ldots, I$, where m_i is the number of chains in the solution x_i. Let $x_{\text{max}}(G_n^*, H) = \bigcup_{j=1}^{m} h_j$, $h_j \in H$ be any of the solutions x_i for which $m = \max_i (m_i)$, $i = 1, \ldots, I$. In subsequent part of the paper we extensively use the properties of the chosen covering x_{max}.

Definition: Let the elements c_p, $p = 1, \ldots, n$, be such that:
- $c_1 = 2 \cup 2$, i.e. c_1 is a pair of 2-chains.
- $c_2 = 2 \cup 3$, i.e. c_2 is a 2-chain and 3-chain.
- $c_3 = 3 \cup 3$, i.e. c_3 is a pair of 3-chains.
- $c_p = p$, $\forall p \geq 4$, i.e. c_p is p-chain.

Lemma 3.2
For $\forall n \geq 4$ and $\forall H$ such that $X(G_n^*, H) \neq \{\emptyset\}$ the solution $x_{\text{max}}(G_n^*, H)$ and the set H satisfy at least one of the following conditions:
1. $2 \in H$ and $c_1 \in x_{\text{max}}(G_n^*, H)$;
2. $2, 3 \in H$ and $c_2 \in x_{\text{max}}(G_n^*, H)$;
3. $3 \in H$ and $c_3 \in x_{\text{max}}(G_n^*, H)$;
4. $p \in H$, $c_p = p \in x_{\text{max}}(G_n^*, H)$, $p \geq 4$ and $X(G_p, H \setminus p) = \{\emptyset\}$.

Proof:
Suppose that $c_p = p \notin x_{\text{max}}$, $p \geq 4$. Then the covering x_{max} consists only of 2-chains and 3-chains. If also $2 \cup 2 \notin x_{\text{max}}$, $2 \cup 3 \notin x_{\text{max}}$, and $3 \cup 3 \notin x_{\text{max}}$ then there exist only two nonempty sets x_{max}, namely, $x_{\text{max}} = 2$, and $x_{\text{max}} = 3$. For $\forall n \geq 4$ neither of these sets satisfies the definition of the solution to the problem $(X(G_n^*, H), F)$ and thus $X(G_n^*, H) = \{\emptyset\}$. However, this result contradicts to the assumption stated in Lemma 3.2 that $X(G_n^*, H) \neq \{\emptyset\}$. Consequently,
Lemma 3.2.

Note, that from the definition of covering and the definition of FSS X immediately follows that h-chain belongs to the covering $x_{\text{max}}(G_n^H, H) \in X(G_n^H, H)$ only if the h-chain belongs to the set H. Consequently, the restrictions imposed on the set H in Lemma 3.2 are precise.

Let us prove that if $c_p = p \in x_{\text{max}}(G_n^H, H)$, then the set H is necessarily such that $X(G_p, H \setminus p) = \{\emptyset\}$. Suppose not, i.e. that $X(G_p, H \setminus p) \neq \{\emptyset\}$ without a loss of generality let $x_{\text{max}}(G_n^H, H)$ be such that $x_{\text{max}} = p \cup \bigcup_{j=2}^{m} h_j, h_j \in H$. Take any element $x_v = \bigcup_{k=1}^{w} h_k, h_k \in H$ from FSS $X(G_p, H \setminus p) = \{x_v\}, v = 1, \ldots, V$. If $w = 1$, then from the definition of covering directly follows that $h_k = p$ which contradicts to the assumption that the chain p was excluded from the set H. Consequently, we conclude that $w > 1$. Consider the element

$$\tilde{x} = x_v \cup \bigcup_{j=2}^{m} h_j = \bigcup_{k=1}^{w} h_k \cup \bigcup_{j=2}^{m} h_j,$$

Note, that from the fact that \tilde{x} is the combination of chains that covers n-vertices and both $h_k, h_j \in H$ follows that $\tilde{x} \in X(G_n^H, H)$. The number of chains in \tilde{x} is $m = w + m - 1 > m$. However, the last result contradicts to the condition of choice of the solution x_{max}, that was chosen such that $m = \max_{i=1}^{m} (m_i), i = 1, \ldots, i, \emptyset$.

Definition: Define the set $\mathbb{N} \equiv \{X(G^1, \{2\}), X(G^1, \{2, 4\}), X(G^2, \{2, 3\}), X(G^2, \{2, 3, 5\}), X(G^3, \{3\}), X(G^p, \{p\})\}$

where $G^1, G^2, G^3, G^p, (p \geq 4)$ are the graphs shown on figure 1.

Definition: Define the set \mathbb{R} be such that $Y \in \mathbb{R}$ iff $Y = \{z_k \cup y\}, \text{where } \{z_k\} = Y \in \mathbb{N}$ and $y = \bigcup_{i=1}^{f} h_i, h_i \in \{2, 3, \ldots\}$.

Lemma 3.3

For all h, $n \geq 4$ s.t. $X(G_n^H, H) \neq \{\emptyset\} \ni (X(G_n^H, H), F), X(G_n^H, H) \in \mathbb{N} \cup \mathbb{R}$.

Proof:

Consider FSS $X(G_n^H, H)$ of the problem $(X(G_n^H, H), F), n \geq 4$. If the set $X(G_n^H, H) \neq \{\emptyset\}$, then according to Lemma 3.2 we can write the solution $x_{\text{max}}(G_n^H, H)$ as $x_{\text{max}} = \bigcup_{j=2}^{m} h_j = c_p \cup y$, where the element y is such that if $x_{\text{max}}(G_n^H, H) = c_p$, then $y = \emptyset$ and if $x_{\text{max}}(G_n^H, H) \neq c_p$, then $y = \bigcup_{i=1}^{f} h_i, h_i \in H$. On the combination of chains c_p that belongs to the solution $x_{\text{max}}(G_n^H, H)$ construct the graph $G^p, p = 1, \ldots, n$ as it is shown on figure 1.

Case 1). If $y = \emptyset$ let the graph $\overline{G}_n \equiv G^p$.

Consider the problem $(X(G_n^H, H), F)$, where graph $\overline{G}_n = G^1$. Note, that if the set H is such that

a). $2 \in H, 4 \notin H$, then $X(\overline{G}_n, H) = X(G^1, \{2\})$;
b). \(2 \in H, 4 \in H\), then \(X(\overline{G_n}, H) = X(G^1, \{2, 4\})\);

c). \(2 \notin H, 4 \in H\), then \(X(\overline{G_n}, H) = X(G^1, \{4\})\);

d). \(2 \notin H, 4 \notin H\), then \(X(\overline{G_n}, H) = \emptyset\).

From the way we constructed the graph \(\overline{G_n}, x_{\text{max}}(\overline{G_n}, H) \in X(\overline{G_n}, H)\). Thus \(X(\overline{G_n}, H) \neq \emptyset\), so the set \(H\) does not satisfy requirement d).

Note that we constructed the graph \(\overline{G_n} = G^1\) on the combination of chains \(c_1\) and thus from Lemma 3.1 follows that if \(c_1 \in x_{\text{max}}(\overline{G_n}, H)\), then the set \(H\) necessarily includes 2-chain, so it does not satisfy requirement c) either.

Consequently, for the constructed problem \((X(\overline{G_n}, H), F)\) FSS \(X\) is necessarily such that either \(X(\overline{G_n}, H) = X(G^1, \{2\})\) or \(X(\overline{G_n}, H) = X(G^1, \{2, 4\})\). Thus, \(X(\overline{G_n}, H) \in \mathbb{N}\).

In the same way we can prove that for the problem \((X(\overline{G_n}, H), F), \overline{G_n} = G^2\) FSS \(X(\overline{G_n}, H)\) is such that either \(X(\overline{G_n}, H) = X(G^2, \{2, 3, 5\})\) or \(X(\overline{G_n}, H) = X(G^2, \{2, 3\})\) and for the problem \((X(\overline{G_n}, H), F), \overline{G_n} = G^3\) FSS \(X(\overline{G_n}, H)\) is such that \(X(\overline{G_n}, H) = X(G^3, \{3\})\). Consequently, for these problems \(X(\overline{G_n}, H) \in \mathbb{N}\).

Consider the problem \((X(\overline{G_n}, H), F), \overline{G_n} = G^p, p \geq 4\) it follows from Lemma 3.2 that if \(c_p = p \in x_{\text{max}}(\overline{G_n}, H)\), then the set \(H\) necessarily includes a \(p\)-chain and \(X(\overline{G_n}, H \setminus p) = \emptyset\). Consequently, \(X(\overline{G_n}, H) = X(G^p, \{p\})\) and thus \(X(\overline{G_n}, H) \in \mathbb{N}\).

Case 2). If \(y \neq \emptyset\), then define the graph \(G\) as \(G \equiv y = \bigcup_{j=1}^{l} h_i, h_i \in H\), and let the graph \(\overline{G_n}\) be such that \(\overline{G_n} \equiv G^p \cup G\).

In the case 1), we had already shown that for each of the constructed graphs \(G^p\) \(X(G^p, H) \in \mathbb{N}\). Consider the problem \((X(\overline{G_n}, H), F) = (X(G^p \cup G, H), F), G^p = (VG^p, EG^p), G = (VG, EG).\) From the fact that \(VG^p \cap VG = \emptyset\) and \(VG^p \cap VG = \emptyset\) and from the definition of covering follows that only the elements \(\{z_k \cup y_l\} \in FSS X(\overline{G_n}, H)\), then \(\{z_k\} = X(G^p, H) \in \mathbb{N}\) and \(\{y_l\} = X(G, H)\). Note, that from the way we constructed the graph \(G\) follows that \(y \in X(G, H)\), where \(y \equiv G = \bigcup_{j=1}^{l} h_i, h_i \in H\) and thus FSS \(X(G, H) \neq \emptyset\). Let us prove that the element \(y\) is the unique solution to the problem \((X(\overline{G_n}, H), F)\). Write the graph \(G\) as \(G = \bigcup_{i=1}^{2} G_{h_i}\), where \(G_{h_i} \equiv h_i\). Assume that \(\exists \overline{y}, \overline{y} \neq y\), then \(\overline{y} \in X(G, H)\). Then, the element \(\overline{y}\) can be written as \(\overline{y} = \bigcup_{i=1}^{2} \overline{y}_{h_i}, h_i \in H\), i.e. each graph \(G_{h_i}\) is covered by the combination of chains \(\bigcup_{i=1}^{2} h_i, h_i \in H\). From the assumption \(\overline{y} \neq y\) follows that
3: \bigcup_{v=1}^{i} h_{iv} \neq G_{h_i}, and \bigcup_{v=1}^{i} h_{iv} \neq h_i. Consequently, X(G_{h_i}, H \setminus h_i) \neq \{\emptyset\} that contradicts to the result obtained in Lemma 3.2. The contradiction allows us to conclude that the FSS \(X(G, H) = y = \bigcup_{i=1}^{I} h_i, h_i \in H \). Thus \(X(G_n, H) \in \mathbb{R} \).

According to the fact that \(\mathbb{R} \cap \mathbb{R} = \{\emptyset\} \) Lemma 3.3 is proved. \(\square \)

Theorem 3.1

If VOF \(F(x) \) is such that \(N \)-criteria problem \((X, F) \) is unsolvable by the mean of LCA for any \(X \in \mathbb{R} \cup \mathbb{R} \), then for given VOF the \(N \)-criteria problem of covering \((X(G_n, H), F) \) is also unsolvable by mean of LCA for \(\forall n \).

Proof:

The proof of Theorem 3.1 directly follows from the results obtained in Lemmas 3.1-3.3. From Lemmas 3.1 follows that for every \(n \) and \(H \) for which FSS \(X(G_n^c, H) = \emptyset \), FSS and thus CSA of any problem \((X(G_n, H), F) \) is also empty \(X(G_n, H) = \emptyset \). Consequently, by definition this problem is unsolvable by means of LCA.

From Lemmas 3.2, 3.3 follows that for \(\forall n, H \) for which \(X(G_n^c, H) \neq \emptyset \) there exist the problem \((X(G_n^c, H), F) \) such that \(X(G_n^c, H) \in \mathbb{R} \cup \mathbb{R} \). According to the assumption of Theorem 3.1 the VOF \(F(x) \) is such that for any \(X \in \mathbb{R} \cup \mathbb{R} \) \(N \)-criteria problem \((X, F) \) is unsolvable by mean of LCA. Consequently, Theorem 3.1 is proved. \(\square \)

Thus, we can summarize the main result of this chapter in the following way:

To prove that for given VOF \(N \)-criteria chain covering problem is unsolvable by mean of LCA it is sufficient to show that the problem \((X, F) \) is unsolvable for each \(X \in \mathbb{R} \cup \mathbb{R} \).

In the next chapter this result is used for proving unsolvability of chain covering problem for VOFs consisting of \(MAXMIN \) and \(MAXSUM \) criteria.

4 \(MAXMIN \) and \(MAXSUM \) VOFs

In the following part of the paper we study solvability by means of LCA only for \(N \)-criteria chain covering problem \((X(G, H), F) \), \(N \geq 2 \) with VOF \(F(x) \) consisting at least of one \(MAXMIN \) and at least of one \(MAXSUM \) criterion:

\[
F_{oi}(x) = \min_{e \in E_x} w_i(z) \rightarrow \max, \\
F_{oi}(x) = \min_{e \in E_x} \sum_{i} w_i(x) \rightarrow \max.
\]

By \(2 \)-criteria problem we call a chain covering problem \((X, F) \) with VOF consisting of one \(MAXMIN \) and of one \(MAXSUM \) criteria.

Lemma 4.1

For \(2 \)-criteria problems \((X, F) \), \(X \in \mathbb{R} \cup \mathbb{R} \) it is possible to define the weights \(w_1 \) and \(w_2 \) of the edges of the relevant graph such that the CSA \(\hat{X} \) of this problem consists of the elements \(\{x_1, x_2, x_3\} \) and \(F(x_1) = (4, 1), F(x_2) = (1, 4), F(x_3) = (2, 2) \).
Proof:

The proof of Lemma 4.1 is quite straightforward i.e. we show that for each problem \((X, F)\) where \(X \in \mathbb{R} \cup \mathbb{R}\) we can define the weights of the edges of the relevant graph in such a way that we obtain the values of the criteria stated in Lemma 4.1.

Note, that for every subsequently studied problem we define the weights of the relevant graph such that CSA \(\tilde{X}\) of the problem consists of the first 3 elements \(\{x_1, x_2, x_3\}\).

Part 1. Let us study the case when \(X \in \mathbb{R}\).

1.1). The problem \((X(G^1, \{2\}), F)\).

Define the weights of edges of the graph \(G^1\):
\[
\begin{align*}
 w_1(e_1) &= w_1(e_3) = 4; & w_2(e_1) &= w_2(e_3) = \frac{1}{2}; \\
 w_1(e_2) &= w_1(e_4) = 1; & w_2(e_2) &= w_2(e_4) = 2; \\
 w_1(e_5) &= w_1(e_6) = 2; & w_2(e_5) &= w_2(e_6) = 1.
\end{align*}
\]

FSS \(X\) of this problem consists of the solutions \(\{x_1, x_2, x_3\}\), on which VOF takes the following values:
\[
\begin{align*}
 F(x_1 = \{e_1, e_3\}) &= (4, 1) \\
 F(x_2 = \{e_2, e_4\}) &= (1, 4) \\
 F(x_3 = \{e_5, e_6\}) &= (2, 2)
\end{align*}
\]

1.2). The problem \((X(G^1, \{2, 4\}), F)\).

\[
\begin{align*}
 w_1(e_1) &= w_1(e_2) = w_1(e_3) = 4; & w_2(e_1) &= w_2(e_3) = \frac{1}{3}; \\
 w_1(e_4) &= 2; & w_2(e_4) &= \frac{3}{4}; \\
 w_1(e_5) &= w_1(e_6) = 1; & w_2(e_5) &= \frac{7}{3}; & w_2(e_6) &= \frac{1}{3}.
\end{align*}
\]

FSS of the given problem consists of the solutions \(\{x_1, ..., x_{15}\}\), on which VOF takes the following values:
\[
\begin{align*}
 F(x_1 = \{e_1, e_2, e_3\}) &= (4, 1) \\
 F(x_2 = \{e_1, e_2, e_4\}) &= (1, 4) \\
 F(x_3 = \{e_2, e_3, e_4\}) &= (2, 2) \\
 F(x_4 = \{e_1, e_3, e_4\}) &= (2, 2) \\
 F(x_5 = \{e_1, e_5, e_6\}) &= (1, 3) \\
 F(x_6 = \{e_1, e_5, e_3\}) &= (1, 3) \\
 F(x_7 = \{e_1, e_6, e_3\}) &= (1, 1) \\
 F(x_8 = \{e_1, e_6, e_5\}) &= (2, 2) \\
 F(x_9 = \{e_2, e_3, e_6\}) &= (1, 3) \\
 F(x_{10} = \{e_2, e_6, e_4\}) &= (1, 2) \\
 F(x_{11} = \{e_3, e_5, e_6\}) &= (1, 3) \\
 F(x_{12} = \{e_4, e_5, e_6\}) &= (1, 4) \\
 F(x_{13} = \{e_6, e_4\}) &= (2, 4) \\
 F(x_{14} = \{e_1, e_3\}) &= (4, 4) \\
 F(x_{15} = \{e_5, e_6\}) &= (1, 3)
\end{align*}
\]

1.3). The problem \((X(G^2, \{2, 3\}), F)\).

\[
\begin{align*}
 w_1(e_1) &= w_1(e_2) = w_1(e_4) = 4; & w_2(e_1) &= w_2(e_2) = w_2(e_3) = \frac{1}{3}; \\
 w_1(e_4) &= 2; & w_2(e_4) &= \frac{4}{3}; \\
 w_1(e_5) &= w_1(e_6) = 1; & w_2(e_5) &= \frac{7}{3}; & w_2(e_6) &= \frac{1}{3}.
\end{align*}
\]
\(\mathcal{FSS} \) of the given problem consists of the solutions \(\{z_1, \ldots, z_7\} \), on which \(\mathcal{VOF} \) takes the following values:

\[
\begin{align*}
F(x_1 = \{e_4, e_1, e_2\}) &= (4, 1) \\
F(x_2 = \{e_5, e_3, e_2\}) &= (1, 4) \\
F(x_3 = \{e_1, e_4, e_3\}) &= (2, 2) \\
F(x_4 = \{e_4, e_2, e_6\}) &= (1, 1) \\
F(x_5 = \{e_4, e_6, e_1\}) &= (1, 1) \\
F(x_6 = \{e_2, e_4, e_3\}) &= (1, 3) \\
F(x_7 = \{e_3, e_5, e_1\}) &= (1, 4) \\
\end{align*}
\]

1.4. The problem \((X(G^2, \{2, 3, 5\}), F)\).

\[
\begin{align*}
w_1(e_1) &= 2; \ w_2(e_1) = \frac{3}{2}; \\
w_1(e_2) &= w_1(e_3) = w_1(e_4) = w_1(e_5) = 4; \\
w_2(e_2) &= w_2(e_3) = w_2(e_4) = w_2(e_5) = \frac{1}{4}; \\
w_1(e_6) &= 1; \ w_2(e_6) = \frac{3}{2};
\end{align*}
\]

\(\mathcal{FSS} \) of the given problem consists of the solutions \(\{x_1, \ldots, x_{14}\} \), on which \(\mathcal{VOF} \) takes the following values:

\[
\begin{align*}
F(x_1 = \{e_2, e_3, e_4, e_5\}) &= (4, 1) \\
F(x_2 = \{e_1, e_6, e_3, e_4\}) &= (1, 4) \\
F(x_3 = \{e_1, e_2, e_3, e_4\}) &= (2, 2) \\
F(x_4 = \{e_3, e_4, e_5, e_1\}) &= (2, 2) \\
F(x_5 = \{e_4, e_5, e_1, e_2\}) &= (2, 2) \\
F(x_6 = \{e_5, e_1, e_2, e_3\}) &= (2, 2) \\
F(x_7 = \{e_2, e_6, e_3, e_4\}) &= (1, 3) \\
F(x_8 = \{e_1, e_2, e_4\}) &= (2, \frac{7}{2}) \\
F(x_9 = \{e_2, e_3, e_4\}) &= (4, \frac{3}{2}) \\
F(x_{10} = \{e_3, e_4, e_1\}) &= (2, \frac{7}{2}) \\
F(x_{11} = \{e_4, e_5, e_2\}) &= (4, \frac{3}{2}) \\
F(x_{12} = \{e_5, e_1, e_3\}) &= (2, \frac{7}{2}) \\
F(x_{13} = \{e_1, e_6, e_4\}) &= (1, \frac{7}{2}) \\
F(x_{14} = \{e_2, e_6, e_4\}) &= (1, \frac{7}{4})
\end{align*}
\]

1.5. The problem \((X(G^3, \{3\}), F)\).

\[
\begin{align*}
w_1(e_1) &= w_1(e_2) = w_1(e_4) = w_1(e_5) = 4; \\
w_2(e_1) &= w_2(e_2) = w_2(e_4) = w_2(e_5) = \frac{1}{4}; \\
w_1(e_3) &= 2; \ w_2(e_3) = \frac{5}{2}; \\
w_1(e_6) &= 1; \ w_2(e_6) = \frac{3}{2};
\end{align*}
\]

\(\mathcal{FSS} \) of the given problem consists of the solutions \(\{x_1, \ldots, x_9\} \), on which \(\mathcal{VOF} \) takes the following values:

\[
\begin{align*}
F(x_1 = \{e_1, e_2, e_4, e_5\}) &= (4, 1) \\
F(x_2 = \{e_2, e_3, e_4, e_6\}) &= (1, 4) \\
F(x_3 = \{e_1, e_3, e_4, e_5\}) &= (2, 2) \\
F(x_4 = \{e_2, e_3, e_4, e_6\}) &= (2, 2) \\
F(x_5 = \{e_1, e_2, e_5, e_6\}) &= (1, 3) \\
F(x_6 = \{e_2, e_3, e_5, e_6\}) &= (1, 4) \\
F(x_7 = \{e_1, e_2, e_4, e_6\}) &= (1, 3)
\end{align*}
\]
\[F(x_8 = \{e_1, e_3, e_4, e_6\}) = (1, 4) \]
\[F(x_9 = \{e_1, e_5, e_6\}) = (1, 4) \]

1.6. The problem \((X(G^p, \{p\}), F)\).

\[w_1(e_1) = 2; \ w_2(e_1) = 2 - \frac{p-3}{p-2}; \]
\[w_1(e_2) = ... = w_1(e_p) = 4; \ w_2(e_2) = ... = w_2(e_p) = \frac{1}{p-2}; \]
\[w_1(e_{p+1}) = 1; \ w_2(e_{p+1}) = 2 + \frac{1}{p-2}; \]

FSS of the given problem consists of the solutions \(\{x_1, ..., x_{p+1}\}\), on which VOF takes the following values:

\[F(x_1 = \{e_2, e_3, ..., e_p\}) = (4, 1) \]
\[F(x_2 = \{e_1, e_{p+1}, e_3, ..., e_{p-1}\}) = (1, 4) \]
\[F(x_3 = \{e_3, e_4, ..., e_p\}) = (2, 2) \]
\[F(x_4 = \{e_2, e_{p+1}, e_4, ..., e_6\}) = (1, 3) \]
\[F(x_i = \{e_1, e_2, ..., e_{i-3}, ..., e_{i-1}, ..., e_p\}) = (2, 2) \]

Thus, we proved **Lemma 4.1** for each problem \((X, F)\), where \(X \in \mathbb{N}\).

Part 2. We will obtain the same results for the set of problems \((X, F)\), where \(X \in \mathbb{N}\).

By the definition \(Y \in \mathbb{N}\) if \(Y = \{z_k \cup y\} \), where \(\{z_k\} = Y \in \mathbb{N}\) and \(y = \bigcup_{i=1}^{n} h_i, h_i \in \{2, ..., \} \). Thus, each set \(Y \in \mathbb{N}\) is FSS of the chain covering problem given on the graph \(\overline{G}^p = G^p \cup G\) that was constructed in **Lemma 3.3**.

Define the first weights \(w_1\) of the edges of the graph \(G^p\) as we did when we proved **part 1 of Lemma 4.1** and prescribe the first weight \(w_1 = 4\) to each edge of the graph \(G\). Let the second weights \(w_2\) of the edges of the graph \(G^p\) be equal to \(\frac{1}{4}\) of the weights that we prescribed to the edges of the graph \(G^p\) in **part 1 of Lemma 4.1**.

Prescribe the second weights \(w_2 = \frac{1}{2n_2}\) to each edge of the graph \(G\), where \(n_2\) is the total number of edges in the graph \(G\). The CSA \(X(G_n, H)\) of constructed problem \((X(\overline{G}_n, H), F)\) consists of the elements \(\{x_1, x_2, x_3\} = \{z_1 \cup y, z_2 \cup y, z_3 \cup y\}\) with the meanings of criteria that satisfy to the condition of **Lemma 4.1.**

Lemma 4.2

If the values of criteria on the elements of CSA \(\{x_1, x_2, x_3\}\) of 2-criteria problem are such that \(F(x_1) = (1, 4), F(x_2) = (4, 1),\) and \(F(x_3) = (2, 2),\) then the \(N\)-criteria problem is unsolvable by mean of LCA.

Proof:

Let VOF of \(N\)-criteria problem consists of \(k \ MAXMIN\) criteria and \(N - k\ \MAXSUM\) criteria. Define the weights of the edges \(w_i, i = 3, ..., N\) of \(N\)-criteria problem that corresponds to the 2-criteria problem such that \(w_i = w_1\) if the criterion is \(MAXMIN\) and \(w_i = w_2\) if the criterion is \(MAXSUM\) and consider the criteria convolutions. By the definition of LCA we obtain:

\[F^3(x_1) = (\lambda_1 + ... + \lambda_k) + 4 \left(\lambda_{k+1} + ... + \lambda_{N-k-1} \right) + 4 \left(1 - \lambda_1 - ... - \lambda_{N-k-1} \right) = 4 - 3 \sum_{i=1}^{k} \lambda_i \]

\[F^3(x_2) = 4 \left(\lambda_1 + ... + \lambda_k \right) + \left(\lambda_{k+1} + ... + \lambda_{N-k-1} \right) + \left(1 - \lambda_1 - ... - \lambda_{N-k-1} \right) \]
\[F^\lambda(z_3) = 2(\lambda_1 + \ldots + \lambda_k) + 2(\lambda_{k+1} + \ldots + \lambda_{N-k-1}) + 2(1 - \lambda_1 - \ldots - \lambda_{N-k-1}) = 2 \]

It is easy to see that

\[\max\{F^\lambda(z_1), F^\lambda(z_2)\} > F^\lambda(z_3) \text{ for } \sum_{i=1}^{k} \lambda_i, 0 \leq \sum_{i=1}^{k} \lambda_i \leq 1. \]

Consequently, the solution \(z_3 \) that by the definition belongs to CSA can not be found by means of LCA.

On the basis of Lemmas 4.1-4.2 we obtain the following result:

For any \(n \geq 4 \), \(N \)-criteria problem of covering with VOF consisting of MAXMIN and MAXSUM criteria is unsolvable by means of LCA.

In conclusion we should mention that taking into account the fact that if applied LCA algorithms do not guarantee finding the Pareto Set it would be also interesting to study statistical properties of LCA algorithms in terms of "almost all graphs" i.e. to obtain theoretical estimates characterizing expected efficiency of LCA algorithms.

5 References:

Figure 1.
20. Daniel Serra
The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Marimon, Stephen E. Spear and Shyam Sunder
Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgia Giovannetti, Albert Marcet and Ramon Marimon
Growth, Capital Flows and Enforcement Constraints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Marimon
Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Marimon and Ellen McGratian

25. Ramon Marimon and Shyam Sunder
Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaume García and José M. Labeaga
A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman
Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993:1]

29. Jeffrey Fristhey
An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hoppenhuy and Maria E. Muniaigurria
Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Colera

32. Rafael Crespi i Cladera
Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hoppenhuy
The Shakeout. (April 1993)

34. Walter Garcia-Fontes
Price Competition in Segmented Industries. (April 1993)

35. Albert Satorn i Brucart
On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

36. Teresa García-Milk, Therese J. McGuire and Robert H. Porter
The Effect of Public Capital in State-Level Production Functions Reconsidered. (February 1993)

37. Ramon Marimon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labeaga and Angel López
Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVelle
Market Capture by Two Competitors: The Pre-Emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no. 4 (1994)]

40. Xavier Cuadras-Morató

41. M. Antònia Monés and Eva Ventura
Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

42. Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]

43. Jordi Gali
Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]
44. Jordi Galf
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Galf
Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in Journal of Economic Theory]

46. Oriol Amat
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodríguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodríguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amat and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Titis
Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993)

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Titis
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín Viguera and Shinichi Suda

59. Ángel de la Fuente and José María Marín Viguera
Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994)

60. Jordi Galf
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argilés
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994)

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Inésena Alonso
Patterns of Exchange, Fiat Money, and the Welfare Costs of Inflation. (September 1993)

64. Rohit Rahi
Adverse Selection and Security Design. (February 1994)

65. Jordi Galf and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Galf and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]

67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counta. (February 1994)

68. John Ireland
How Products' Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)
69. Fabrizio Zilibotti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovannetti.

72. Raffaella Giordano.

73. Jaume Puig i Junoy.
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Ratick and Charles Revelle.
The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning B]

75. Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement—Experience in some Other Countries (March 1994)

76. Albert Marce i and David A. Marshall.
Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

78. Xavier Sala-i-Martin.

79. Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cuadras-Morató.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martínez García.
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martín.

84. Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaella Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov.
The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994)

88. José M. Bailen.
Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julia Clarke.
Bank Financial Analyst’s Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting;]

90. John Blake and Oriol Amat and Julia Clarke.
Management’s Response to Finance Lease Capitalization in Spain (September 1994)

91. Antoni Bosch and Shyam Sunder.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (July 1994)

92. Sergi Jiménez-Martín.
The Wage Effect of an Indexation Clause: Evidence from Spanish Manufacturing Firms. (September 1994)

93. Albert Carreras and Xavier Tafunell.
National Enterprise. Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Fauli-Oller and Massimo Motta.
Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)
95. Marc Sáez Zafra and Jorge V. Pérez-Rodríguez. Models Autoregresivos para la Varianza Condicionada Heterocedástica (ARCH) (October 1994)

97. Alfonso Gambardella and Walter García-Fontes. Regional Linkages through European Research Funding (October 1994) [Forthcoming in Economic of Innovation and New Technology]

100. Ramon Marimon and Fabrizio Zilibotti. ‘Actual’ versus ‘Virtual’ Employment in Europe: Why is there Less Employment in Spain? (December 1994)

104. Xavier Sala-i-Martin. Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Domènech and Joaquim Silvestre. Credit Constraints in General Equilibrium: Experimental Results (December 1994)

115. Teresa García-Milà, Albert Marcat and Eva Ventura. Supply Side Interventions and Redistribution (June 1995)

117. Xavier Sala-i-Martin. The Classical Approach to Convergence Analysis (June 1995)

118. Serguei Maliar and Vitali Perepelitsa. LCA Solvability of Chain Covering Problem (May 1995)