Economics Working Paper 127

Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors

Albert Satorra†
and
Heinz Neudecker‡

August 1995

Keywords: Chi-squared test, distribution-free, ellipticity, moment vectors, multinomial distribution, normal-theory, scaled test statistic, variance and correlation matrices, wald test.

Journal of Economic Literature classification: C12, C40, C63.

* Paper presented at the 50th. Session of the International Statistical Institute, Beijing, 21-29 August 1995. Work supported by the Spanish DGICYT grant PB91-0814 and PB93-0403. Moral support from ARC is kindly mentioned.

† Universitat Pompeu Fabra.
‡ Universiteit van Amsterdam.
Abstract

Asymptotic chi-squared test statistics for testing the equality of moment vectors are developed. The test statistics proposed are generalized Wald test statistics that specialize for different settings by inserting and appropriate asymptotic variance matrix of sample moments. Scaled test statistics are also considered for dealing with situations of non-iid sampling. The specialization will be carried out for testing the equality of multinomial populations, and the equality of variance and correlation matrices for both normal and non-normal data. When testing the equality of correlation matrices, a scaled version of the normal theory chi-squared statistic is proven to be an asymptotically exact chi-squared statistic in the case of elliptical data.
1 Introduction

Testing the equality of population moments is of wide generality in multivariate analysis. Specific examples are the test of equality of variance or correlation matrices and the test of the hypothesis of equality of means and variances across populations. In the present paper a family of generalized Wald test statistics will be considered. The tests to be developed share a common general formulation that is easily adapted to different settings by just inserting an appropriate asymptotic variance matrix of sample moments. The test statistics will be specialized to the test of equality of variance or correlation matrices, for the cases of normality, ellipticity and also in distribution-free settings. Testing the equality of moments arises also in meta-analysis studies, where the results of independent studies have to be compared (Hedges and Olkin, 1985).

The test of equality of variance matrices is usually carried out under the assumption that the variables are normally distributed (Anderson, 1987, Chapter 10). Under the normality assumption also, a very common test for the equality of variance matrices is Bartlett's modified likelihood ratio test (Muirhead, 1982, pp. 298-309). Tests for equality of correlation matrices have also been considered under the normality assumption by Jennrich (1970). In practice, however, data deviate often from the normality assumption and it is of interest to develop methods that are free of the normality assumption. The test statistics developed in the present paper apply also to the case of non-normal data. Recently, bootstrap techniques have been introduced for testing equality of variance matrices when data can be non-normal (Zhang and Boos, 1992). Such techniques, however, require intensive computations. In contrast, our test statistics are fairly simple to cal-
pute. A robust test for comparing correlation matrices was also investigated recently by Modarres and Jernigan (1993), though they did not provide a general formulation for the statistic.

The plan of the paper is as follows. Section 2 develops the general expressions for the test statistics. Section 3 specializes the test statistics to different testing settings.

With regard to notation, D and D^+ will denote respectively the "duplication" and "elimination" matrices for symmetry, so that $\text{vec } A = D \text{vec } (A)$ for symmetric matrix A, where "vec" is the usual columnwise vectorization operator and $\text{vec } (A)$ is obtained from vec A after eliminating the duplicated elements due to the symmetry of A. It holds that $\text{vec } (A) = D^+ \text{vec } A$ where $D^+ \equiv (D'D)^{-1}D'$ is the Moore-Penrose inverse of D (see Magnus and Neudecker, 1988). In the present paper the matrices D will be of varying orders to be determined by the context. We denote by E_{gs} the gth unit matrix of order G, by $1_G \equiv (1, \ldots, 1)'$ the G-dimensional column vector of ones, by $E \equiv 1_G 1'_G$ the $G \times G$ matrix of ones, and by e_g the gth unit column vector of order G (note that $E_{gs} = e_g e'_g$). Further $A \succeq 0$ indicates that A is a positive semidefinite matrix and $M(A)$ denotes the column space of A. The matrix A^- will be any generalized inverse of A (i.e. satisfying $AA^-A = A$), whereas A^+ will be the Moore-Penrose inverse. We use the notation of $A_d \equiv I \times A$ with I denoting an identity matrix and \times denoting the Hadamard product of matrices. We also introduce the duplication and elimination matrices for zero-axial symmetry \hat{D} and \hat{D}^+, respectively, where $\text{vec } A = \hat{D}w(A)$ and $w(A)$ is obtained from vecA after eliminating the zero diagonal and upper triangular elements. Clearly $w(A) = \hat{D}^+ \text{vec } A$, where $\hat{D}^+ = \frac{1}{2} \hat{D}'$. Given a set of vectors $a_i, i = 1, \ldots, 1$, we denote by vec$[a_i, i = 1, \ldots, I]$ the column vector formed by stacking the vectors a_i one below the
other. Finally, the notation \(\xrightarrow{P} \) will be used for convergence in probability and \(\xrightarrow{L} \) for convergence in distribution.

2 General test for equality of population moments

Let \(r_g, g = 1, \ldots, G, \) be \(p \times 1 \) vectors of sample moments based on independent samples from \(G \) populations. Assume \(r_g \xrightarrow{P} \rho_g, \) where \(\rho_g \) is a \(p \times 1 \) vector of population moments, and

\[
\sqrt{n_g}(r_g - \rho_g) \xrightarrow{L} N(0, \Gamma_g),
\]

where the \(p \times p \) matrix \(\Gamma_g \geq 0 \) is the asymptotic variance matrix of \(\sqrt{n_g}r_g \) and \(n_g \) is the sample size for group \(g. \)

Consider the multi-sample vectors of sample and population moments \(r \equiv \text{vec}[r_g | g = 1, \ldots, G] \) and \(\rho \equiv \text{vec}[\rho_g | g = 1, \ldots, G] \) respectively. Clearly, from (1) and the independence of the \(G \) samples, follows

\[
\sqrt{n}(r - \rho) \xrightarrow{L} N(0, \Gamma),
\]

where \(n \equiv \sum_{g=1}^{G} n_g \) is the overall sample size and \(\Gamma \) is the block-diagonal matrix

\[
\Gamma = \sum_{g=1}^{G} \frac{n}{n_g} (E_{gg} \otimes \Gamma_g).
\]

We will assume that the fractions \(\frac{n_g}{n} \) do not vary when \(n \to +\infty. \)

Often the following assumption of the equality of the \(\Gamma_g \) can be made.

Assumption A. It holds that \(\Gamma_g = \bar{\Gamma}, g = 1, \ldots, G, \) with \(\bar{\Gamma} \) a \(p \times p \) positive semidefinite matrix.

Under assumption A, we have

\[
\Gamma = \Lambda^{-1} \otimes \bar{\Gamma},
\]

2
where

\[\Lambda \equiv \sum_{g=1}^{G} \frac{n_g}{n} E_{gg}. \]

(5)

In the present paper we are concerned with the test of the following hypothesis of equality of population moments

\[H_0 : \rho_g = \vartheta; \quad g = 1, 2, \ldots, G, \]

(6)

where \(\vartheta \) is an unknown \(p \)-dimensional parameter vector. Generalized Wald test statistics (Moore, 1977) will be developed to test this hypothesis.

It will be convenient to write \(H_0 \) as the following multiple-group moment structure:

\[H_0 : \rho = \Delta \vartheta, \]

(7)

where \(\Delta \equiv 1_G \otimes I_p \) is a \(Gp \times p \) matrix of full column rank, and \(\vartheta \) is a \(p \)-vector of unknown parameters.

Consider now the weighted least-squares (WLS) estimation of the moment structure (7), with weight matrix \(W \) of the following general form:

\[W \equiv \sum_{g=1}^{G} \frac{n_g}{n} (E_{gg} \otimes \bar{W}) = \Lambda \otimes \bar{W}, \]

(8)

where \(\bar{W} \) is a \(p \times p \) positive definite matrix. Note that \(1_G' \Lambda 1_G = 1 \) and hence \(E \Lambda E = E \).

This yields the WLS estimator

\[\hat{\vartheta} \equiv (\Delta' W \Delta)^{-1} \Delta' W r = (1_G' \Lambda \otimes I_p)r = \sum_{g=1}^{G} \frac{n_g}{n} r_g, \]

(9)

of the parameter vector \(\vartheta \), and the estimator

\[\hat{\varphi} \equiv \Delta \hat{\vartheta} = \Delta (\Delta' W \Delta')^{-1} \Delta W r = (1_G \otimes I_p)(1_G' \Lambda \otimes I_p)r \]

(10)
\[(E \Lambda \otimes I_p)r = \sum_{g=1}^{G} \frac{n_g}{n} (I_G \otimes r_g)\]
of \(\rho\). The vector of residuals \(e \equiv r - \Delta \hat{\theta}\) clearly satisfies

\[e = [(I_G - E \Lambda) \otimes I_p]r = Qr, \quad (11)\]

where \(Q \equiv (I_G - E \Lambda) \otimes I_p\) is an idempotent matrix of rank \(p(G - 1)\). Note that \(Q \Delta = 0\) and that the estimators \(\hat{\theta}\) and \(\hat{\rho}\) do not depend on the choice of \(\tilde{W}\).

In some instances we will need to consider the case where the null hypothesis \(H_0\) holds only approximately. The following alternative hypothesis will then be considered

\[H_1 : \rho = \Delta \hat{\theta} + n^{-1/2} \eta, \quad (12)\]

where \(\eta\) is a \(pG\)-dimensional vector. This is an alternative hypothesis of a sequence of local alternatives that is typically used to investigate the asymptotic non-null distribution of test statistics (e.g., Foutz and Srivastava, 1977). Clearly, \(\eta = 0\) under \(H_0\).

Using (2), we obtain

\[
\sqrt{n}Q(r - \rho) \overset{L}{\to} N(0,Q\Gamma Q').
\]

(13)

Thus, under \(H_1\), we have the distributional result

\[
\sqrt{n}e \overset{L}{\to} N(Q\eta, Q\Gamma Q'),
\]

(14)
as \(Q \Delta = 0\).

Let \(Y\) be a positive semidefinite matrix of the same rank as \(\Gamma\) and such that \(Y \overset{P}{\to} \Gamma\).

We will consider the following generalized Wald test statistic (Moore, 1977)

\[T \equiv ne'(QYQ')^+e = nr'(QYQ')^+r. \quad (15)\]
We used (11) to derive the right-hand side of (15). We note that when \(r \in \mathcal{M}(Y) \), then \(T \) of (15) is equal to

\[
T = nr'Q'(QYQ')^{-1}Qr,
\]

as

\[
r'Q'(QYQ')^{-1}Qr = n\ell YQ'(QYQ')^{-1}QY\ell
= n\ell Y^{1/2}Y^{1/2}Q'(QYQ')^{-1}QY^{-1/2}Y^{-1/2}\ell,
\]

where \(r = Y\ell \) and \(Z'(ZZ')^+Z = Z'(ZZ')^{-1}Z \) for any matrix \(Z \).\(^2\)

Given the distributional result (14), the following theorem is obtained

Theorem 1. When \(H_1 \) holds, \(T \) of (15) satisfies

\[
T \overset{L}{\rightarrow} \chi^2(k, \lambda),
\]

where \(k = \text{rank}(Q\Gamma Q') \) and

\[
\lambda = \eta'Q'(Q\Gamma Q')^+Q\eta.
\]

When \(\Gamma \) is non-singular, then \(k = p(G - 1) \). When \(r \in \mathcal{M}(Y) \) and \(\eta \in \mathcal{M}(\Gamma) \) then the Moore-Penrose inverse in (18) can be replaced by a generalized inverse, \(T \) and \(\lambda \) being invariant with respect to the choice of generalized inverse. Under \(H_0 \), \(\lambda = 0 \), since \(\eta = 0 \).

Proof: Consider the spectral decomposition \(Q\Gamma Q' = CUC' \), where \(C'C = I_k \), and \(U = U_d > 0 \). By premultiplying both sides of (14) by \(C' \), we obtain

\[
\sqrt{n}C'e \overset{L}{\rightarrow} N(C'Q\eta, U),
\]

\(^1\)Note that \(Q'(QYQ')^{-1}Q \) is a g-inverse of \(QYQ' \).

\(^2\)Let \(A = Z'(ZZ')^+Z - Z'(ZZ')^{-1}Z = Z'(ZZ')^+ - (ZZ')^{-1}Z \). Since \(\sum_{ij}a_{ij}^2 = \text{trace}AA' = 0 \), \(A = 0 \).
since $C'Q\Gamma Q'C = U$. Hence,

$$n e'(Q\Gamma Q')^+ e = n e'C U^{-1} C' e \xrightarrow{L} \chi^2(k, \lambda).$$

The proof concludes by noting that $(QYQ')^+ \xrightarrow{P} (Q\Gamma Q')^+$ since $Y \xrightarrow{P} \Gamma$ and generally $\text{plim} A^+ = (\text{plim} A)^+$ from the four defining equations for the Moore-Penrose inverse.

Note that the stated theorem would hold also in the case of Q being a stochastic matrix that converges to a finite probability limit \hat{Q}. See also Andrews (1987) for some key remarks concerning conditions for the construction of generalized Wald test statistics in the case of singular variance matrices.

Some alternative expressions for the test statistic T will now be developed.

Since Γ is a block-diagonal matrix, we take

$$Y \equiv \sum_{g=1}^{G} \frac{n_g}{n} (E_{gg} \otimes Y_g), \quad (20)$$

where the $Y_g \geq 0$ are $p \times p$ positive semidefinite matrices. When Assumption A holds, then

$$Q\Gamma Q' = (\Lambda^{-1} - E) \otimes \bar{\Gamma}.$$

Inspired by Assumption A the matrix Y will be taken to be of the form

$$Y = \Lambda^{-1} \otimes \bar{Y}, \quad (21)$$

where $\bar{Y} \geq 0$ and $\bar{Y} \xrightarrow{P} \bar{\Gamma}$.

If we partition Q as

$$Q = [Q_1, Q_2, \ldots, Q_G], \quad (22)$$

Suppose $Q \to \bar{Q}$, then $k = \text{rank}(\bar{Q}\Gamma \bar{Q}')$ and $\lambda = n'\bar{Q}'(\bar{Q}\Gamma \bar{Q}')^+ \bar{Q}\eta$
comformably with the partition of Y, the test statistic of (15) will have the alternative expression

$$T = n(\sum_{g=1}^{G} Q_g r_g)'(\sum_{g=1}^{G} \frac{n_g}{n} Y_g Q_g)'(\sum_{g=1}^{G} Q_g r_g).$$

(23)

The following two lemmas will be of use.

Lemma 1. Under the definitions given above, when Y is positive definite, we have

$$Q'(QYQ')^{-1}Q = Y^{-1} - Y^{-1} \Delta(\Delta'Y^{-1}\Delta)^{-1}\Delta'Y^{-1} = \Delta_\perp(\Delta_\perp'Y\Delta_\perp)^{-1}\Delta_\perp',$$

(24)

where Δ_\perp denotes an orthogonal complement of the matrix Δ (i.e. a matrix of full column rank such that $\Delta_\perp'\Delta = 0$).

Proof: It is easy to see that the matrix

$$Y^{1/2}Q'(QYQ')^{-1}QY^{1/2} + Y^{-1/2}\Delta(\Delta'Y^{-1}\Delta)^{-1}\Delta'Y^{-1/2}$$

$$= Y^{1/2}Q'(QYQ')^+QY^{1/2} + Y^{-1/2}\Delta(\Delta'Y^{-1}\Delta)^+\Delta'Y^{-1/2}$$

is symmetric idempotent of full rank, hence it equals I_{pG}. This yields the first part of the Lemma. Further, we have

$$Q'(QYQ')^{-1}Q = Q'(QYQ')^+Q = ZC'(CZ'YZC')^+CZ' =$$

$$ZC'C(Z'YZ)^+C'CZ' = Z(Z'YZ)^+Z' = Z(Z'YZ)^-Z',$$

due to the singular-value decomposition $Q = CZ'$, with $C'C = I_{p(G-1)}$. Clearly, Z is an orthogonal complement of Δ, as $Q\Delta = 0$. ■

The Lemma can be adapted to the case of positive semidefinite Y, when further $M(Q') \subset M(Y)$. This yields
LEMMA 2. Under the definitions given above, when Y is singular and $M(Q') \subset M(Y)$, we have

$$Q'(QYQ')^{-1}Q = Y^+ - Y^+\Delta(\Delta' Y^+\Delta)^{-1}\Delta' Y^+ = \Delta_1'(\Delta_1' Y \Delta_1)^{-1}\Delta_1'$$ \hspace{1cm} (25)

PROOF: We use the spectral decomposition $Y = \tilde{Z}M\tilde{Z}'$, where $\tilde{Z}' \tilde{Z} = I_q$, q is the rank of Y and $M = M_d > 0$. By Lemma 1 we have

$$\tilde{Z}'Q'(Q\tilde{Z}M\tilde{Z}'Q')^{-1}Q\tilde{Z} = M^{-1} - M^{-1}\tilde{Z}'\Delta(\Delta' \tilde{Z}M^{-1}\tilde{Z}'\Delta)^{-1}\Delta' \tilde{Z}M^{-1}$$

as $Q\tilde{Z}\tilde{Z}' = L'Y^+ \tilde{Z}\tilde{Z}' = L'Y^+ = Q$. (We used $Q' = Y^+L$ and $Y^+ = \tilde{Z}M^{-1}\tilde{Z}'$). Hence

$$\tilde{Z}\tilde{Z}'Q'(QYQ')^{-1}Q\tilde{Z}\tilde{Z}' = Y^+ - Y^+\Delta(\Delta' Y^+\Delta)^{-1}\Delta' Y^+$$

or

$$Q'(QYQ')^{-1}Q = Y^+ - Y^+\Delta(\Delta' Y^+\Delta)^{-1}\Delta' Y^+.$$

Furthermore, since $Q' = Y^+L$ we can write

$$Q'(QYQ')^{-1}Q = Q'(QYQ')^+Q = ZC'(CZ'YZC')^+CZ'$$

$$= ZC'C(Z'YZ)^+C'CZ' = Z(Z'YZ)^+Z' = Z(Z'YZ)^{-1}Z',$$

as $Z = Y^+LC$. \(\Box\)

An explicit form for Δ_1' can easily be seen to be given by $\Delta_1' \equiv J' \otimes I_p$, where J' denotes the Helmert matrix of order G with the first row omitted.\(^4\) Partitioning J' as

$$J' = ((J'_{1}), \ldots, (J'_{G})) = \begin{pmatrix} (J'_{1})_1. \\ \vdots \\ (J'_{G-1})_1. \end{pmatrix}$$

\(^4\)Helmert matrices have been described in Searle (1982, p. 71). We have available the Matlab function Helmert(G) that produces the Helmert matrix of order G. 8
where \((J')_g\) and \((J')_i\), denote respectively the \(g\)th column and \(i\)th row of \(J'\), we have
\[
(J')_{i} = \left(\frac{1}{i\sqrt{(i + 1)}} \right)^{1/2} \left(\frac{-1}{\sqrt{(i + 1)}} \right)^{0} G_{-i-1},
\]
(26)

Note that \(\Delta' = (\Delta_1', \ldots, \Delta_{G}', \ldots, \Delta_{G})\) where \(\Delta_{G} = (J')_g \otimes I_{p}\).

Consequently, when \(Y\) is nonsingular, we can use Lemma 1 to write the test statistic \(T\) of (15) as
\[
T = n \left(\sum_{g=1}^{G} \Delta_{g} r_g' \right) \left(\sum_{g=1}^{G} \frac{1}{n} \Delta_{g} Y_g \Delta_{g}' \right)^{+/} \left(\sum_{g=1}^{G} \Delta_{g} r_g \right),
\]
(27)

and, by virtue of Lemma 2, the same expression holds when \(Y\) is singular but \(\mathcal{M}(Q') \subset \mathcal{M}(Y)\). Note that in the above expression for \(T\) the matrix to be inverted is of dimension \(p(G - 1) \times p(G - 1)\), which is slightly less than the dimension \(pG \times pG\) as encountered in (15).

We are now able to state the following theorem which provides a simple expression for the test statistic \(T\) of (15).

Theorem 2. When \(Y = \Lambda^{-1} \otimes \tilde{Y}\) and \(r \in \mathcal{M}(Y)\), then \(T\) of (15) equals
\[
T = nr' (H \otimes \tilde{Y}^{-}) r.
\]
(28)

where \(H \equiv \Lambda - \Lambda E \Lambda\), \(E = 1_{G} V_{G}\) and \(\Lambda\) was defined in (5).

Proof:

\[
T = nr' \left[(I - \Lambda E) \otimes I \right] \left[(\Lambda^{-1} - E) \otimes \tilde{Y}^{+} \right]^{+} \left[(I - E \Lambda) \otimes I \right] r
\]
\[
= nr' \left[(I - \Lambda E) \otimes I \right] \left[(\Lambda^{-1} - E)^{+} \otimes \tilde{Y}^{+} \right] \left[(I - E \Lambda) \otimes I \right] r
\]
\[
= nr' \left[(I - \Lambda E) (\Lambda^{-1} - E)^{+} (I - E \Lambda) \otimes \tilde{Y}^{+} \right] r
\]
\[
= nr' (H \otimes \tilde{Y}^{+}) r = nr' (H \otimes \tilde{Y}^{+}) Y \ell
\]

9
\[= n\ell'(\Lambda^{-1} \otimes \bar{Y})(H \otimes \bar{Y}^*)(\Lambda^{-1} \otimes \bar{Y})\ell = n\ell'(\Lambda^{-1} H \Lambda^{-1} \otimes \bar{Y} \bar{Y}^* \bar{Y})\ell \]
\[= n\ell'(\Lambda^{-1} H \Lambda^{-1} \otimes \bar{Y} \bar{Y}^- \bar{Y})\ell = n\ell'(\Lambda^{-1} \otimes \bar{Y})(H \otimes \bar{Y}^-)(\Lambda^{-1} \otimes \bar{Y})\ell \]
\[= n\ell'Y(H \otimes \bar{Y}^-)Y\ell = nr'(H \otimes \bar{Y}^-)r, \]

where \(r = Y\ell \) and the equality \(^5\)
\[H = \Lambda - \Lambda E\Lambda = \Lambda(\Lambda^{-1} - E)\Lambda \]
\[= \Lambda(\Lambda^{-1} - E)(\Lambda^{-1} - E)^+(\Lambda^{-1} - E)\Lambda = (I - \Lambda E)(\Lambda^{-1} - E)^+(I - E\Lambda) \]
was used. \(^6\) \(\blacksquare\)

In some applications one may be using a misspecified expression for \(\bar{Y} \), i.e. a test statistic of the general form
\[T_V \equiv nr'(H \otimes \bar{V}^+)r, \] \((29) \)

where \(V \overset{p}{\to} \Omega \) with \(\Omega \geq 0 \) a \(p \times p \) matrix with possibly \(\bar{\Omega} \neq \bar{\Omega} \). We define \(\bar{V} = \Lambda^{-1} \otimes \bar{V} \) and \(\Omega = \Lambda^{-1} \otimes \bar{\Omega} \). Note that \(V \overset{p}{\to} \Omega \). Following the line of proof of Theorem 2, it can easily be seen that when \(r \in \mathcal{M}(V) \) then
\[T_V \equiv nr'(H \otimes \bar{V}^-)r. \] \((30) \)

The following theorem establishes the limit distribution of this general class of test statistics.

Theorem 3. Let \(T_V \) denote the quadratic form statistic given in (29). Then, under \(H_1 \)

\(^5\)We are indebted to Anna Cuxart of Universitat Pompeu Fabra for providing the proof of this equality involving a g-inverse instead of the Moore-Penrose inverse.

\(^6\)We note the properties of \(H \geq 0 \), \(\text{rank}(H) = G - 1 \) and \(H1_G = 0 \).
a) \(T_V \xrightarrow{L} \sum_{i=1}^{k} \alpha_i (u_i + \omega_i)^2 \), where the \(u_i \)'s are independent standard normal variables, the \(\omega_i \)'s are the components of \(\omega \equiv A^{-1} R' \Gamma^{1/2} (H \otimes \bar{\Omega}^+) \eta, \Gamma^{1/2} (H \otimes \bar{\Omega}^+) \Gamma^{1/2} = RAR', R'R = I_k, A = A_d \), the \(\alpha_i \)'s are the diagonal (positive) elements of \(A \) and \(k \equiv \text{rank} \{ \Gamma^{1/2} (H \otimes \bar{\Omega}^+) \Gamma^{1/2} \}; \)

b) when \(\Gamma = \Lambda^{-1} \otimes \bar{\Gamma} \) and \(\bar{\Omega} = \bar{\Gamma} \) then \(T_V \) is the statistic \(T \) of (15) and thus the result (17) applies.

Note that under \(H_0 \) we have \(\eta = 0 \), and hence \(\omega = 0 \). When \(r \in \mathcal{M}(V) \) then the Moore-Penrose inverse can be replaced by a generalized inverse.

Proof. Note that

\[
T_V \equiv nr' (H \otimes \bar{V}^+) r = n(r - \Delta \theta)' (H \otimes \bar{V}^+) (r - \Delta \theta),
\]

(31)
since \(H1_{G} = 0 \). Consequently, since under \(H_1 \)

\[
\sqrt{n}(r - \Delta \theta) \xrightarrow{L} \mathcal{N}(\eta, \Gamma),
\]

we obtain that

\[
T_V \xrightarrow{L} z'(H \otimes \bar{\Omega}^+) z,
\]

(32)

where \(z = \mathcal{N}(\eta, \Gamma) \). The theorem now follows by straightforward application of standard results on quadratic forms in normal variables (see Dik and Gunst, 1985; also Neudecker, 1994), applied to the right-hand side of (32).

2.1 Scaled chi-squared test statistics

As in Rao and Scott (1984), when the asymptotic chi-squaredness of the test statistic is not guaranteed, it may be of interest to consider a first order adjustment of the non
necessarily asymptotic chi-squared test statistic. Consider the scaled statistic

$$T_V = T_V/a,$$ \hfill (33)

where T_V is defined in (29) and a is a consistent estimator of

$$\alpha \equiv \frac{1}{k} \text{tr} Q'(Q\Omega Q')^+Q\Gamma,$$

where k is given in Theorem 3. Note that Theorem 3 implies that under H_0, the asymptotic mean of T_V is equal to $\text{tr} \{Q'(Q\Omega Q')^+Q\Gamma\}$, thus under H_0 the asymptotic mean of the scaled statistic T_V is the same as the mean of the the χ_k^2; this suggest the use of T_V as an approximately chi-squared statistic when T_V is not exactly chi-squared (Rao and Scott, 1984).

Generally, we have

$$\alpha = \frac{\text{tr}\{(Q\Omega Q')^+(Q\Gamma Q')\}}{k} = \frac{\text{tr}(\Theta'Q\Gamma Q\Theta)}{k} = \sum_{y=1}^{G} \frac{n}{n_g} \frac{\text{tr}(\Theta'Q_g\Gamma_g Q_g'\Theta)}{k},$$

where $\Theta\Theta' = (Q\Omega Q')^+$. A consistent estimator of α can thus be constructed as

$$a = \sum_{y=1}^{G} \frac{n}{n_g} \frac{\text{tr}\{B'Q_gY_gQ_g'B\}}{k},$$ \hfill (34)

where $BB' = (QVQ')^+$. Often, sample moments are of the form

$$r_g \equiv \frac{1}{n_g} \sum_{i=1}^{n_g} d_{gi}, \quad g = 1, \ldots, G,$$ \hfill (35)

where the $\{d_{gi}\}_{i=1}^{n_g}$, $g = 1, \ldots, G$, are mutually independent iid (independent and identically distributed) sequences of p-dimensional random vectors. In this set-up a (distribution-free) consistent estimator of Γ_g will be

$$Y_g = \frac{1}{n_g} \sum_{i=1}^{n_g} (d_{gi} - \bar{d}_g)(d_{gi} - \bar{d}_g)'$$ \hfill (36)
where \bar{d}_g denotes the sample mean of $\{d_{gi}\}_{i=1}^{n_g}$. Further, under assumption A, the corresponding "pooled" estimator of the common matrix $\bar{\Gamma}$ will be $Y = \Lambda^{-1} \otimes \bar{Y}$ with

$$\bar{Y} = \sum_{g=1}^{G} \frac{n_g}{n} Y_g.$$ \hspace{1cm} (37)

Thus in the case of iid sampling, we can write (34) as

$$a = \frac{1}{k} \sum_{g=1}^{G} \frac{n}{n_g} \left(\frac{1}{n_g} \sum_{i=1}^{n_g} b_{gi} b_{gi} \right),$$

where $b_{gi} \equiv B^T Q_d (d_{gi} - \bar{d}_g)$. Further, when $\Gamma = \Lambda^{-1} \otimes \bar{\Gamma}$ holds, then

$$Q'(Q \Omega Q')^+ Q \Gamma = (H \otimes \bar{\Omega}^+)(\Lambda^{-1} \otimes \bar{\Gamma}) = H \Lambda^{-1} \otimes \bar{\Omega}^+ \bar{\Gamma},$$

hence

$$\alpha = \frac{G - 1}{k} \text{tr} \bar{\Omega}^+ \bar{\Gamma},$$

since $\text{tr} \ H \Lambda^{-1} = G - 1$. Thus a consistent estimator of α in that case will be

$$a = \frac{G - 1}{k} \text{tr} \bar{V}^+ \bar{Y}.$$

Note that the scaling correction will be automatically inactive when $\text{tr} \bar{\Omega}^+ \bar{\Gamma} = p$ and $k = (G - 1)p$. Note also that $\text{tr} \bar{\Omega}^+ \bar{\Gamma} = p$ when $\bar{\Omega}^+ = \bar{\Gamma}^{-1}$. When also $r \in M(V)$ the Moore-Penrose inverse can be replaced by a g-inverse.

In the case of non-iid sampling, as for example in multi-stage clustered sampling, the estimator a of α would have the same expression as above, but with the expression Y_g of (36) modified so that the new Y_g is a consistent estimator of Γ_g.

3 Applications to specific testing settings

The above described test statistics will now be applied to different cases of equality of moment matrices.
3.1 Equality of multinomial populations

Consider the problem of

\[H_0 : \rho_g = \bar{\rho}, \quad g = 1, \ldots, G, \]

where \(\rho_g \) is a \(p \)-dimensional vector of positive numbers (proportions) satisfying \(1_p' \rho = 1 \).

Let \(r_g \) be the \(p \)-vector of sample proportions for which \(1_p' r_g = 1, \quad g = 1, \ldots, G, \) and \(r_g \) converges to \(\rho_g \) in probability. In the case of a multinomial distribution the variance matrix of \(r_g \) is known to be

\[\Gamma_g = P_g - \rho_g \rho_g', \]

where \(P_g = \text{dg}(\rho_g) \). Here \(\text{dg}(a) \) for a vector \(a \) denotes the diagonal matrix with the elements of \(a \) on the diagonal. Note that \(\Gamma_g \) is of rank \(p - 1 \). We define the pooled estimator of the common matrix \(\Gamma_g \) as

\[\hat{Y} = \bar{R} - \bar{r} \bar{r}', \]

where \(\bar{r} = \sum_{g=1}^{G} \frac{n_g}{n} r_g \) and \(\bar{R} = \text{dg}(\bar{r}) \), and we let \(Y = \Lambda^{-1} \otimes \hat{Y} \). We have that under \(H_0, Y \xrightarrow{D} \Gamma \). Note that in the present testing setting, the null hypothesis \(H_0 \) implies Assumption A of equality of the variance matrices \(\Gamma_g \).

Note that \((r - \frac{1}{p}1) \in \mathcal{M}(Y)\), since \(\hat{Y} \) is of rank \(p - 1 \), \(1_p' \hat{Y} = 0 \) and \(1_p' r_g = 1 \). Thus, the test statistic of (28) will be

\[T = nr'(H \otimes \bar{R}^{-1})r, \quad (38) \]

as \(nr'(H \otimes \bar{R}^{-1})r = n((r - \frac{1}{p}1)'(H \otimes \bar{R}^{-1})(r - \frac{1}{p}1) \) (we use again \(1'H = 0 \)) and \(\bar{R}^{-1} \) is a generalized inverse of the variance matrix \(\hat{Y} = \bar{R} - \bar{r} \bar{r}' \). Further, it is easy to see that
\(k = \text{rank} (\mathbf{Q} \Gamma \mathbf{Q}') = (G - 1)(p - 1) \), since \(\text{rank} (\mathbf{\Gamma}) = p - 1 \). \(^7\)

In the case of non-iid sampling, the scaled statistic \(\mathbf{T} = a^{-1} \mathbf{T} \) provides an approximate chi-squared test statistic. Under Assumption A, we have \(a = \frac{G - 1}{k} \text{tr} \tilde{\mathbf{R}} \tilde{\mathbf{Y}} = \text{tr} \tilde{\mathbf{R}} \tilde{\mathbf{Y}} / p \), where \(\tilde{\mathbf{Y}} \) is a consistent estimator of the true common variance matrix of the \(\mathbf{r}_g \).

3.2 Equality of variance and augmented moment matrices

Consider \(H_0 : \Sigma_g = \Sigma, \quad g = 1, \ldots, G \), where \(\Sigma_g \) is the \(h \times h \) variance matrix of the \(g \)th group (population). Consider \(\{z_{gi}\}_{i=1}^{n_g}, g = 1, \ldots, G \), to be mutually independent iid sequences of \(h \times 1 \) vectors, and

\[
S_g = \frac{1}{n_g} \sum_{i=1}^{n_g} (z_{gi} - \bar{z}_g)(z_{gi} - \bar{z}_g)',
\]

be the usual sample variance matrix for the \(g \)th group. Here \(\bar{z}_g \) denotes the sample mean of \(\{z_{gi}\}_{i=1}^{n_g} \). We define the pooled sample variance matrix \(\bar{S} = \sum_{g=1}^{G} \frac{n_g}{n} S_g \). Define \(s = \text{vec}[s_g \mid g = 1, \ldots, G] \) and \(\sigma = \text{vec}[\sigma_g \mid g = 1, \ldots, G] \), where \(s_g = D^\top \text{vec}S_g \) and \(\sigma_g = D^\top \text{vec}\Sigma_g \). Note that \(s \) and \(\sigma \) are \(pG \)-dimensional vectors where \(p = 2^{-1}h(h + 1) \).

Denote by \(\Phi_g \) the asymptotic variance matrix of \(\sqrt{n_g} s_g \), and by \(\bar{\Phi} \) the same variance matrix when it is common to all groups. Clearly, regardless the distribution of the \(z_i \), consistent estimators of \(\Phi_g \) and \(\bar{\Phi} \) are respectively

\[
W_g = \frac{1}{n_g} \sum_{i=1}^{n_g} v_{gi},
\]

and

\[
\bar{W} = \sum_{g=1}^{G} \frac{n_g}{n} W_g,
\]

\(^7\)

\[
\quad \quad Q\Gamma Q' = \left[(I - E\Lambda) \otimes \mathbf{I}_p \right] \left(\Lambda^{-1} \otimes \mathbf{I} \right) \left[(I - E\Lambda) \otimes \mathbf{I}_p \right] = \\
(I - E\Lambda)\Lambda^{-1}(I - E\Lambda) \otimes \mathbf{I} = (\Lambda^{-1} - \mathbf{I}) \otimes \mathbf{I} = (I - E\Lambda)\Lambda^{-1} \otimes \mathbf{I}.
\]

Consequently, \(\text{rank}(Q\Gamma Q') = \text{rank}((I - E\Lambda)\Lambda^{-1}) \text{rank}(\mathbf{I}) = \text{rank}((I - E\Lambda)) \text{rank}(\mathbf{I}) = (G - 1)(p - 1) \).
where \(v_{gi} = D^+ \text{vec } (z_{gi} - \bar{z}_g)(z_{gi} - \bar{z}_g)' \).

When \(\{z_{gi}\}_{i=1}^n \) are iid normally distributed, then \(\Phi_g \) takes the following normal-theory (NT) expression

\[
\Phi_g^* \equiv 2 D^+ (\Sigma_g \otimes \Sigma_g) D^{+'},
\]

which is consistently estimated by

\[
W_g^* \equiv 2 D^+ (S_g \otimes S_g) D^{+'}.
\]

The corresponding matrices \(\tilde{\Phi}^* \) and \(\tilde{W}^* \) are obtained by replacing the matrix \(\Sigma_g \) in the expression of \(\Phi_g^* \) by \(\tilde{\Sigma} \) and \(\tilde{S} \) respectively. Note that under NT, the null hypothesis \(H_0 \) implies also Assumption A of equality of the matrices \(\Phi_g \).

The asymptotic distribution-free (DF) and the normal-theory (NT) of (28) will thus be

\[
T = n s' (H \otimes \tilde{W}^-) s
\]

and

\[
T^* = n s' (H \otimes \tilde{W}^{*-}^-) s,
\]

respectively. The number of degrees of freedom of the test is equal to \(k = (G - 1)p \). Note that \(T^* \) is simpler to compute than \(T \), since it requires only the inversion of matrices of dimension \(h \times h \), while \(T \) requires the inversion of a \(p \times p \) matrix.

The scaled version (33) of \(T^* \) will be

\[
\tilde{T} = T^*/a,
\]

where \(a = \text{tr}(\tilde{W}^{*-1} \tilde{W})/p \).
Consider now the case where $z_{gi} = (y_{gi}', 1)'$ is an augmented moment vector, and we define $\Sigma_g \equiv \mathcal{E}(z_{gi}z_{gi}')$ and $S_g \equiv \frac{1}{n_g} \sum_{i=1}^{n_g} z_{gi}z_{gi}'$ as the population and sample augmented moment matrices respectively. In this case, H_0 is the hypothesis of equality of mean vector and variance matrix across groups. It holds that W_g of (40) and \tilde{W} of (41) still give consistent estimators of the DF expressions of Φ_g and $\tilde{\Phi}$ respectively. Now, however, the NT form of Φ_g is (e.g., Satorra 1992)

$$\Phi^*_g \equiv 2D^+(\Sigma_g \otimes \Sigma_g - \mu_g\mu_g' \otimes \mu_g\mu_g')D^+,'$$

where $\mu_g = \mathcal{E}z_{gi}$. It can easily be verified that $2^{-1}D'(\Sigma^{-1}_g \otimes \Sigma^{-1}_g)D = \Phi^*_g$, thus the same expressions of T, T^* and \tilde{T} as reported in (44), (45) and (46) respectively hold in the case of augmented moment matrices.

3.3 Testing the equality of correlation matrices

Consider $H_0 : P_g = \bar{P}$, $g = 1, \ldots, G$, where P_g is the $(h \times h)$ correlation matrix of an h-dimensional vector in the gth group. Let $R_g \equiv (S_g)^{-1/2}S_g(S_g)^{-1/2}$ be the sample correlation matrix, where S_g is the gth sample variance matrix. Let $r \equiv \text{vec}(r_g | g = 1, \ldots, G)$, where $r_g \equiv \tilde{D}\text{vec}R_g$. The asymptotic variance matrix of $\sqrt{n_g}r_g$ is (Neudecker and Wesselen, 1990)

$$\Psi_g = \tilde{D}\Pi_g\Phi_g\Pi_g'r\tilde{D}',$$

where

$$\Pi_g = [I - (I \otimes P_g)K_d] \left[(\Sigma_g)^{-1/2} \otimes (\Sigma_g)^{-1/2}\right]$$

and Φ_g is the asymptotic variance matrix of s_g described in section above. Here K is the commutation matrix (see Magnus and Neudecker, 1988), and note that \tilde{D} is the
duplication matrix for zero-axial symmetry. The expression for \(\Psi \), the variance matrix common to all groups, is obtained by replacing in the expression \(\Psi_g \) the matrices \(\Pi_g \), \(\Phi_g \) and \(\Sigma_g \) by \(\tilde{\Pi} \), \(\tilde{\Phi} \), \(\tilde{P} \) and \(\tilde{\Sigma} \) respectively.

Consistent estimators of the DF and NT expressions of \(\Psi_g \) are

\[
A_g = \tilde{D} \tilde{\Pi}_g W_g \tilde{\Pi}_g' \tilde{D}'
\]

and

\[
A^*_g = \tilde{D} \tilde{\Pi}_g W^*_g \tilde{\Pi}_g' \tilde{D}'
\]

respectively, where \(W_g \) and \(W^*_g \) are given in (40) and (43) respectively, and \(\tilde{\Pi}_g \) is the matrix of (49) with \(P_g \) and \(\Sigma_g \) replaced by \(R_g \) and \(S_g \) respectively. The corresponding expressions for \(\tilde{A} \) and \(\tilde{A}^* \) are obtained by replacing in the expressions above \(W_g \), \(S_g \) and \(R_g \) by \(W \), \(\tilde{S} \) and \(\tilde{R} \) respectively. Here \(\tilde{R} \) is the correlation matrix associated with \(\tilde{S} \). In contrast with the test of equality of augmented moment matrices discussed in the last section, now under normality (NT) the null hypothesis \(H_0 \) does not imply Assumption A.

The DF and NT chi-squared tests statistics of (28) will then be

\[
T = n \ r'(H \otimes \tilde{A}^{-1})r
\]

and

\[
T^* = n \ r'(H \otimes \tilde{A}^{*-1})r.
\]

respectively. We note that to compute \(T^* \) the following equality can be useful (Jennrich, 1970)

\[
A^{*-1}_g = \frac{1}{2} \tilde{D}' \left[R^{-1}_g \otimes R^{-1}_g - 2(I \otimes R^{-1}_g)JU^{-1}_gJ'(R^{-1}_g \otimes I) \right] \tilde{D}.
\]

(50)
where \(U_g \equiv I + R_g \times R_g^{-1} \) and \(J' \) is the matrix that converts \(\text{vec}X \) to \(x = X_d 1 \), (i.e. \(J' \text{vec}X = X_d 1 \)) for any square matrix \(X \).

The statistic \(T^* \) can be scaled to \(\bar{T} = T^*/a \), where \(a = \text{tr}(\bar{A}^{-1} \bar{A})/p \). When the distribution of the observed variables is elliptical, then \(\Psi_g \) is of the form \(\Psi_g = (1+\kappa_g)\Phi_g^* \), where \(\kappa_g \) is a kurtosis parameter (Neudecker, 1994) and \(\Phi_g^* \) was given in (42). \(^8\) Further, when \(\kappa_g = \bar{\kappa} \), then \(\alpha = (1+\bar{\kappa})/p \) and \(\bar{T} \) will then be asymptotically an exact chi-squared statistic when \(H_0 \) holds.

4 References

\(^8\)We recall that in the case of an elliptical distribution

\[
\Phi_g = 2(1 + \kappa_g)D^+(\Sigma_g \otimes \Sigma_g)D^{++'} + \kappa_g D^+(\text{vec}\Sigma_g)(\text{vec}\Sigma_g)'D^{++'}
\]

(51)

WORKING PAPERS LIST

1. Albert Marcet and Ramon Marimon
 Communication, Commitment and Growth. (June 1991) [Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

2. Antoni Bosch
 Economics of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in European Economic Review 35, (1991) 1589-1595]

3. Albert Satorra

4. Javier Andrés and Jaime García
 Wage Determination in the Spanish Industry. (June 1991) [Published as "Factores determinantes de los salarios: evidencia para la industria española" in J.J. Dolado et al. (eds.) La industria y el comportamiento de las empresas españolas (Ensaios en homenage a Gonzalo Mato), Chapter 6, pp. 171-196, Alianza Economía]

5. Albert Marcet
 Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marcet

7. Xavier Calzamiglia and Alan Kirman
 A Unique Informationally Efficient and Decentralized Mechanism with Fair Outcomes. (November 1991) [Published in Econometrica, vol. 61, 5, pp. 1147-1172 (1993)]

8. Albert Satorra

9. Teresa García-Mihl and Therese J. McGuire
 Industrial Mix as a Factor in the Growth and Variability of States' Economies. (January 1992) [Forthcoming in Regional Science and Urban Economics]

10. Walter García-Fontes and Hugo Hoppenmay
 Entry Restrictions and the Determination of Quality. (February 1992)

11. Guillelmo López and Adam Robert Wagstaff
 Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in Moneda y Crédito Vol. 196]

12. Daniel Serra and Charles ReVelle
 The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part I (April 1992) [Published in Location Science, Vol. 1, no. 4 (1993)]

13. Daniel Serra and Charles ReVelle

14. Juan Pablo Nicollini

15. Albert Marcet and Thomas J. Sargent
 Speed of Convergence of Recursive Least Squares Learning with ARMA Perceptions. (May 1992) [Forthcoming in Learning and Rationality in Economics]

16. Albert Satorra

Special issue
Vernon L. Smith
Experimental Methods in Economics. (June 1992)

17. Albert Marcet and David A. Marshall
 Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations.

18. M. Antonia Monís, Rafael Salas and Eva Ventura
 Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)

19. Hugo A. Hoppenmay and Ingrid M. Werner
 Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)
20. Daniel Serra
 The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Marimon, Stephen E. Spear and Shyam Sunder
 Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgia Giovannetti, Albert Marcet and Ramon Marimon
 Growth, Capital Flows and Enforcement Constraints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Marimon
 Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Marimon and Ellen McGrattan

25. Ramon Marimon and Shyam Sunder
 Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaume García and José M. Labega
 A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas
 Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman
 Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993-1]

29. Jeffrey Prisbrey
 An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hoppenhain and Maria E. Munñagurria
 Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Cordero

32. Rafael Crequi i Cladera
 Proteccionces Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hoppenhain
 The Shakenut. (April 1993)

34. Walter García-Fontes
 Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Buscan
 On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

 The Effect of Public Capital in State-Level Production Functions Reconsidered. (February 1993)

37. Ramon Marimon and Shyam Sunder
 Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labega and Ángel López
 Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVelle
 Market Capture by Two Competitors: The Pre-Emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no. 4 (1994)]

40. Xavier Cuzeras-Morató

41. M. Antónía Menéndez and Eva Ventura
 Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

42. Wouter J. den Haan and Albert Marcet
 Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies. (1994)]

43. Jordi Gali
 Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]
44. Jordi Galí
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Galí
Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in Journal of Economic Theory]

46. Oriol Amat
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodriguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodriguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amat and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tilis
Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993)

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tilis
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín-Vigueras and Shinichi Suda

59. Ángel de la Fuente and José María Marín-Vigueras
Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994)

60. Jordi Galí
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argüés
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994)

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Inesma Alonso
Patterns of Exchange, Fiat Money, and the Welfare Costs of Inflation. (September 1993)

64. Rohit Rahi
Adverse Selection and Security Design. (February 1994)

65. Jordi Galí and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Galí and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]

67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

68. John Ireland
How Products' Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)
69. Fabrizio Zihibuti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovanetti.

72. Raffaella Giordano.

73. Jaume Puig i Junoy.
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Raick and Charles ReVelle.
The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning B]

75. Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement-Experience in some Other Countries (March 1994)

76. Albert Marcet and David A. Marshall.
Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and NeoClassical Models (May 1994)

78. Xavier Sala-i-Martin.

79. Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cuadras-Morató.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martínez García.
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in NeoClassical Models of Growth (May 1994)

83. Sergi Jiménez-Martin.

84. Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaella Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov.
The Dynamics of Migration in the Presence of Chirns (June 1994)

87. Walter García-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994)

88. Jose M. Bailer.
Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julia Clarke.
Bank Financial Analyst’s Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting]

90. John Blake and Oriol Amat and Julia Clarke.
Management's Response to Finance Lease Capitalization in Spain (September 1994)

91. Antoni Bosch and Shymon Snoder.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (July 1994)

The Wage Effect of an Indexation Clause: Evidence from Spanish Manufacturing Firms. (September 1994)

93. Albert Carreras and Xavier Taillandier.
National Enterprise: Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Faulf-Oller and Massimo Motta.
Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)
95. Marc Sáez Zafra and Jorge V. Pérez-Rodríguez.
Modelos Autorregresivos para la Varianza Condicional Heteroscedástica (ARCH) (October 1994)

96. Daniel Serra and Charles ReVelle.

97. Alfonso Gambardella and Walter García-Fontes.
Regional Linkages through European Research Funding (October 1994) (Forthcoming in Economic of Innovation and New Technology)

98. Daron Acemoglu and Fabrizio Zilibotti.
Was Prometheus Unbound by Chance? Risk, Diversification and Growth (November 1994)

99. Thierry Foucault.
Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (June 1994)

100. Ramon Masimon and Fabrizio Zilibotti.
'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994)

101. María Sáez Martí.

102. María Sáez Martí.
An Evolutionary Model of Development of a Credit Market (December 1994)

103. Walter García-Fontes and Ruben Tanini and Marcel Vaillant.
Cross-Industry Entry: the Case of a Small Developing Economy (December 1994)

104. Xavier Sala-i-Martin.
Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Domènech and Joaquim Silvestre.
Credit Constraints in General Equilibrium: Experimental Results (December 1994)

106. Casey B. Mulligan and Xavier Sala-i-Martin.

107. José M. Ballén and Luis A. Rivero-Báñez.
Human Capital, Heterogeneous Agents and Technological Change (March 1995)

108. Xavier Sala-i-Martin.
A Positive Theory of Social Security (February 1995)

Interactive Local Bandwidth Choice (February 1995)

ARCH Patterns in Cointegrated Systems (March 1995)

111. Xavier Cuadras-Morató and Joan R. Rosés.
Bills of Exchange as Money: Sources of Monetary Supply during the Industrialization in Catalonia (1844-74) (April 1995)

112. Casey B. Mulligan and Xavier Sala-i-Martin.
Measuring Aggregate Human Capital (January 1995)

113. Fabio Canova.

114. Sergiu Hart and Andrei Man-Colell.
Bargaining and Value (February 1995)

115. Teresa García-Milià, Albert Marcet and Eva Ventura.
Supply Side Interventions and Redistribution (June 1995)

Technological Diffusion, Convergence, and Growth (May 1995)

117. Xavier Sala-i-Martin.
The Classical Approach to Convergence Analysis (June 1995)

118. Serguei Maliar and Vitali Perekplitsa.
LCA Solvability of Chain Covering Problem (May 1995)

Solving Capability of LCA (June 1995)

120. Antonio Ciccone and Robert E. Hall.
Productivity and the Density of Economic Activity (May 1995)
121. Jan Werner.
Arbitrage, Bubbles, and Valuation (April 1995)

date

122. Andrew Scott.
Why is Consumption so Seasonal? (March 1995)

date

123. Oriol Amat and John Blake.
The Impact of Post Industrial Society on the Accounting Compromise-Experience in the UK and Spain (July 1995)

date

124. William H. Dow, Jessica Holmes, Tomas Philipson and Xavier Sala-i-Martin.
Death, Tetanus, and Aerobics: The Evaluation of Disease-Specific Health Interventions (July 1995)

date

125. Tito Cordella and Manjira Datta.
Intertemporal Cournot and Walras Equilibrium: an Illustration (July 1995)

date

126. Albert Satorra.
Asymptotic Robustness in Multi-Sample Analysis of Multivariate Linear Relations (August 1995)

date

127. Albert Satorra and Heinz Neudecker.
Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors (August 1995)

date