Economics Working Paper 141

Consistent Solutions in Exchange Economies: a Characterization of the Price Mechanism

Nir Dagan†
Universitat Pompeu Fabra

November 1995

Keywords: Walrasian allocations with slack, consistency.

Journal of Economic Literature classification: D51.

* This research is based on Chapter 1 of the authors Ph.D. thesis which was carried out at the Hebrew University of Jerusalem. The author acknowledges helpful comments and suggestions from Sergiu Hart and Eyal Winter.
† Dept. of Economics, Universitat Pompeu Fabra, Balmes 132, 08008 Barcelona, Spain.
Abstract

We characterize the Walrasian allocations correspondence by means of four axioms: consistency, replica invariance, individual rationality and Pareto optimality. It is shown that for any given class of exchange economies any solution that satisfies the axioms is a selection from the Walrasian allocations with slack. Preferences are assumed to be smooth, but may be satiated and non-convex. A class of economies is defined as all economies whose agents' preferences belong to an arbitrary family (finite or infinite) of types. The result can be modified to characterize equal budget Walrasian allocations with slack by replacing individual rationality with individual rationality from equal division. The results are valid also for classes of economies in which core–Walras equivalence does not hold.
1. Introduction

The most important solution concept in economics is price equilibrium. However there is a rather limited amount of literature which characterizes the price mechanism as a consequence of more basic assumptions. Most of the literature concentrates on identifying economies in which price equilibrium coincides with other solutions such as the core (e.g. Aumann, 1964). This state of affairs is much different than that of cooperative game theory and bargaining where most solution concepts are axiomatically characterized.

It is now known that almost all the major solution concepts in cooperative game theory and bargaining satisfy a certain consistency property (the Davis-Maschler ,1965, reduced game property) and can be exactly characterized by this property and some more additional requirements. These solutions include the core of TU and NTU games (Peleg 1986,1985), the Nash bargaining solution (Lensberg 1988), the prenucleolus (Sobolev 1975), and the prekernel (Peleg 1986).\(^1\)

The study of consistency in models other than cooperative games or bargaining problems has developed by defining particular consistency properties to each model, and therefore it is difficult to compare results obtained in different models. Another feature is that most literature is confined to situations where the agents have a collective endowment, and thus the major descriptive solutions in economics cannot be studied in the existing framework.

This paper identifies a consistency property that can be defined on a large range of economic situations where agents have private endowments. The paper provides a characterization of the Walrasian equilibrium with slack by four axioms: consistency, replica

\(^1\)An exception is the Shapley value; however it was characterized by a different reduced game property by Hart and Mas-Colell (1989).
invariance, individual rationality and Pareto optimality. The characterization result holds for many classes of economic situations, and in particular can be applied to the class of economies with convex and locally non satiated preferences, and to the single-peaked preferences problem. In addition, by replacing individual rationality with individual rationality from equal division we obtain a characterization of the equal budget Walrasian equilibrium with slack. This latter result generalizes Thomson (1988, Theorem 3) and Thomson (1994, Theorem 4) who characterized equal budget Walrasian allocations in locally non satiated exchange economies, and the uniform rule of the fair division problem when preferences are single peaked, respectively.

Consistency properties in exchange economies with private endowments were first considered by Thomson (1992). Assume a certain allocation is a solution of a given economy. The question is how to define a reduced economy whose members are a subset of the whole set of agents and their possibilities are derived from the assumption that they should keep their agreement with the agents outside the reduced economy. Thomson (1992) proposed several definitions. The one we adopt is the following. In the reduced economy the agents have the same preferences as in the original economy, and the endowments are modified by dividing the trade with the rest of the world equally among the agents. Consider the case where the allocation is a Walrasian allocation (in the classical sense). In this case the value of the trade the agents do with the rest of the world is zero when evaluated by the Walrasian prices. Thus, dividing the trade equally will keep each agent’s income fixed and therefore the equal division of the trade is sensible. The main result of this paper may be interpreted as that only when trades and bundles can be evaluated by prices such a division of the trade is sensible.

3The notion of Walrasian equilibrium with slack was studied by Mas-Colell (1988) and generalizes the concept of Walrasian equilibrium to economies with possibly satiated preferences.
The results of this paper are related to those of Thomson and Zhou (1993). They studied solutions to economies with a collective endowment and a continuum of agents. One of their important discoveries is that in the case of continuum economies, the domain of the solution can be very small: only a given economy and all its reduced economies. This paper establishes a result that has some similar features for economies with a finite number of agents. Indeed, here we require the domain to include economies with any finite number of agents, but the variety of preferences in the domain can be arbitrarily chosen. This observation is sufficient to conclude that different economic situations such as classical exchange economies and the fair division problem where preferences are single peaked do admit a unified treatment also in the case of economies with a finite number of agents. It should be noted that other results, (e.g. Thomson, 1994, Theorems 1 and 2), are valid only in the case where the domain includes a large variety of preferences, although they hold for domains with a finite number of potential agents (or more precisely names of agents).\(^3\)\(^4\)

Our analysis shows that convexity assumptions on preferences are not necessary for the main result, even when one considers finite agent economies. In particular we prove a variant of the second welfare theorem without convexity and local non satiation (Lemma 2). This lemma is inspired by Campbell (1988) who showed that an allocation whose replica is Pareto optimal in all replicas of the economy can be decentralized by prices. Both Campbell's theorem and Lemma 2 hold without any convexity or smoothness assumption. Lemma 2 generalizes Campbell's theorem to the case where preferences may be satiated.

Another definition of a reduced economy, proposed by Thomson (1992), was studied

\(^3\)Thomson (1994) stated and proved his Theorems 1 and 2 for a variable number of agents, however Dagan (1995) had shown that the domain can be restricted.

\(^4\)In a domain with a finite number of potential agents the economies are limited by size, however the choice of preferences is not limited, so one may consider different economies where the same "name" has different preferences.
by van den Nouweland, Peleg, and Tijs (1994), and by Dagan (1994). Their results are discussed in Section 4.2.

The paper is organized as follows. The model is presented in Section 2; consistency is discussed in Section 3; the Theorem is given and discussed in Section 4; Section 5 provides a "fair allocation" variant of the Theorem; and the proofs are given in Section 6.

2. THE MODEL

2.0 Notation

We denote the k-dimensional Euclidian space by \mathbb{R}^k; the non negative orthant by \mathbb{R}^+_k; and the interior of \mathbb{R}^+_k by \mathbb{R}^{k+}_+. The interior of a set A is denoted by $\text{int}(A)$, and the convex hull of A by $\text{Co}(A)$. The cardinality of a set S is denoted by $\#S$.

2.1 A Model

A type on \mathbb{R}^k is a pair (X, R) where $X \subset \mathbb{R}^k$ is the consumption set, R is a reflexive preference relation on X. For a type (X, R) define the strict preference relation P as follows:

For all $x, y \in X$ xPy if and only if xRy and not yRx. Note that by construction P is irreflexive. For all $x \in X$ let $R(x) := \{y \in X : yRx\}$ and $P(x) := \{y \in X : yPx\}$.

An economy is a pair $[\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in N}]$, where \mathbb{R}^k is the commodity space; N is a finite nonempty set of agents; for all agents $i \in N$ (X_i, R_i) is a type on \mathbb{R}^k, and $\omega_i \in \mathbb{R}^k$ is an endowment.

An allocation is a list $(x_i)_{i \in N}$ where for all $i \in N$ $x_i \in X_i$ and $\sum_{i \in N} \omega_i = \sum_{i \in N} x_i$.

2.2 Walrasian Equilibria with Slack

Let $e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in N}]$ be an economy. A Walrasian equilibrium with slack is a triple $[(x_i)_{i \in N}, p, s]$ where $(x_i)_{i \in N}$ is an allocation; $p \in \mathbb{R}^k \setminus \{0\}$; $s \in \mathbb{R}_+$; for all $i \in N$ $x_i \in \{x \in \mathbb{R}^k : px \leq p\omega_i + s\}$ and $P_i(x_i) \cap \{x \in \mathbb{R}^k : px \leq p\omega_i + s\} = \emptyset$. The allocation $(x_i)_{i \in N}$ associated with a Walrasian equilibrium with slack is called a Walrasian allocation. We
denote by $W(e)$ the set of all Walrasian allocations of e. As we do not assume monotonicity
or free disposal, we allow prices to be negative. This generalization of Walrasian
equilibrium to economies with satiated preferences is due to Mas-Colell (1988).

2.3 Individual Rationality and Pareto Optimality

Let $e = [R^k, (X_i, R_i, \omega_i)_{i \in N}]$ be an economy. An allocation $(x_i)_{i \in N}$ is *individually rational*
if for all $i \in N$ $\omega_i \not\in P_i(x_i)$.

An allocation $(x_i)_{i \in N}$ is *Pareto optimal* if there does not exist an allocation y such that
for all $i \in N$ $y_i = x_i$ or $y_i \in P_i(x_i)$, and for some $i \in N$ $y_i \in P_i(x_i)$.

This definition of Pareto optimality is the finite agent analogue of the definition in
Thomson and Zhou (1993). It is intermediate to the more standard stronger and weaker
versions. The stronger version would be to ask $y_i \in R_i(x_i)$ instead of $y_i = x_i$ or $y_i \in P_i(x_i)$, and
the weaker one would ask $y_i \in P_i(x_i)$ for all i.

Walrasian allocations are individually rational and Pareto optimal. Formally:

Proposition 1: Let $e = [R^k, (X_i, R_i, \omega_i)_{i \in N}]$ be an economy. And let $[(x_i)_{i \in N}, p, s]$ be a
Walrasian equilibrium with slack. Then $(x_i)_{i \in N}$ is individually rational and Pareto optimal.

Proof: By definition, for all $i \in N$ $x_i \in \{x \in R^k : px \leq p\omega_i + s\}$ and $P_i(x_i) \cap \{x \in R^k : px \leq p\omega_i
+s\} = \emptyset$. As $s \geq 0$, $\omega_i \in \{x \in R^k : px \leq p\omega_i + s\}$ for all i, and thus $\omega_i \not\in P_i(x_i)$ for all i.

Now, any allocation $(y_i)_{i \in N}$ that makes some of the agents better off, and leaves the rest of
the agents *with the same bundle* satisfies $p\Sigma_{i \in N} \omega_i = p\Sigma_{i \in N} y_i > p\Sigma_{i \in N} x_i = p\Sigma_{i \in N} \omega_i$ a
contradiction. Therefore $(x_i)_{i \in N}$ is Pareto optimal. ∎

Note that Walrasian allocations do not necessarily satisfy the stronger form of Pareto
optimality in the case of satiated preferences.
2.4 Solutions

Let \(\Omega \) be a non-empty set of economies. A solution on \(\Omega \) is a correspondence that assigns each economy in \(\Omega \) a set (possibly empty) of allocations.

3. CONSISTENCY

We begin with the definition of a reduced economy:

Let \(e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \) be an economy, and \(x = (x_i)_{i \in \mathbb{N}} \) be an allocation, and \(S \subset \mathbb{N} \).

The reduced economy of \(e \) with respect to \(S \) and \(x \) is the economy:

\[
e^{S,x} = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}]^{S,x} = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in S}] , \text{ where for all } i \in S \omega_i' = \omega_i + (1/\#S) \sum_{j \in S} (\omega_j - x_j).
\]

The reduced economy of \(e \) with respect to \(S \) and \(x \) is the economy whose members are the members of \(S \), and the sum of the trades the members of \(S \) do with the rest of the agents is divided equally among the members of \(S \).

Now we are ready to define consistency.

A solution \(f \) on \(\Omega \) is consistent if for all economies \(e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \) in \(\Omega \), and for all \(S \subset \mathbb{N} \), for all \(x \in f(e) \), if \(e^{S,x} \in \Omega \), then \(x \mid S \in f(e^{S,x}) \).

If a consistent solution assigns an allocation to a given economy, then it assigns the reduced allocation to the reduced economy, provided the reduced economy is in the domain of the solution.

It turns out that the Walrasian allocations correspondence is consistent for all domains of economies. Formally we have:

PROPOSITION 2: Let \(\Omega \) be a non empty set of economies. The solution that assigns all economies in \(\Omega \) their Walrasian allocations is consistent.

Proof: Let \(e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \) be an economy in \(\Omega \), and let \(x = (x_i)_{i \in \mathbb{N}} \) be a Walrasian
allocation. Thus there exists a price vector p and a slack s, such that \([x,p,s]\) is a Walrasian equilibrium with slack. Now let $S \subseteq N$. Define $s' = s - (1/#S)p\Sigma_{i \in NS}(\omega_i - x_i)$. As x is an allocation $\Sigma_{i \in N}(x_i - \omega_i) = 0$, so $p\Sigma_{i \in NS}(\omega_i - x_i) = p\Sigma_{i \in S}(x_i - \omega_i) \leq (#S)s$, thus $s' \geq 0$. Further note that for all $i \in S$ $p\omega_i + s = p[\omega_i + (1/#S)\Sigma_{i \in NS}(\omega_i - x_i)] + s'$. Thus $[x|S,p,s']$ is a Walrasian equilibrium with slack of the economy $e^{S,A}$. *

Given an economy $e = [\mathbb{R}^k,(X_i,R_i,\omega_i)_{i \in N}]$, the \textit{m-fold replica} of e is the economy $e(m) = [\mathbb{R}^k,(X_{ij},R_{ij},\omega_{ij})_{i,j \in N \times M}]$ where $M = \{1,2,\ldots,m\}$ and for all $ij \in N \times M$ $(X_{ij},R_{ij},\omega_{ij}) = (X_i,R_i,\omega_i)$. The \textit{m-fold replica of an allocation} $(x_i)_{i \in N}$ of e is an allocation $(x_{ij})_{i,j \in N \times M}$ of $e(m)$ in which for all $ij \in N \times M$ $x_{ij} = x_i$.

A solution f on Ω is \textit{replica invariant} if for all economies $e = [\mathbb{R}^k,(X_i,R_i,\omega_i)_{i \in N}]$ in Ω, and for all $M = \{1,2,\ldots,m\}$, for all $(x_i)_{i \in N} \in f(e)$, if $e(m) \in \Omega$, then $(x_{ij})_{i,j \in N \times M} \in f(e(m))$.

PROPOSITION 3: Let Ω be a non empty set of economies. The solution that assigns all economies in Ω their Walrasian allocations is replica invariant.

Proof: Trivial. *

4. THE MAIN RESULT

4.1 Theorem

In this section we restrict attention to economies in which the types of the agents satisfy the following assumptions. Let (X,R) be a type on \mathbb{R}^k.

A1 \textit{Upperhemi continuity}: For all $x \in X$ $P(x)$ is open relative to X.

A2 \textit{Local non satiation at non satiated points}: For all $x \in X$ if $P(x) \neq \emptyset$, then $P(x) \cap O(x) \neq \emptyset$, for all open balls $O(x)$ around x.

7
A3 Smoothness: \(X = \mathbb{R}^n_+ \) and for all \(x \in X \) if \(P(x) \neq \emptyset \), there exists at most one hyperplane through \(x \) with normal \(p \) such that for all \(y \in P(x) \) \(px \leq py \).

The main result of this paper is as follows:

Theorem: Let \(T \) be a set of types on \(\mathbb{R}^n \) that satisfy A1-A3. Let \(\Omega(T) \) be the class of all economies in which the agents types belong to \(T \). If a solution \(f \) on \(\Omega(T) \) is consistent, replica invariant and assigns individually rational and Pareto optimal allocations, then for all \(e \in \Omega(T) \) \(f(e) \subseteq W(e) \).

4.2 Discussion

The Theorem does not characterize the Walrasian allocations exactly, but only with inclusion. In order to derive exact characterizations, one usually considers domains \(\Omega \) in which the solution is nonempty, and that contain a large enough variety of preferences to exclude nonempty subsolutions. We do not do this, as we are interested in phenomena that hold across many domains.

The Theorem can be modified to economies with a continuum of agents. In this case the result holds without replica invariance for a domain containing an economy and all its reduced economies. This domain is analogous to the one used in the Theorem of Thomson and Zhou (1993). They note that the domain in the continuum case is smaller (in an intuitive sense) than in the finite agent case, and therefore consistency is a weaker requirement. We disagree with this statement. Consider the following hypothetical domain: An economy with a countable number of agents and all its reduced economies that also contain a countable number of agents. This domain is not smaller in any respect than the domain we have in the Theorem, as the one in the Theorem can be viewed as the set of all finite agent reduced
economies of a countable economy. The hypothetical domain is intuitively analogous to the one needed in continuum economies.

An important feature of the Theorem is that there is no need for a variety of types in the domain of economies in which the solution is defined for. As noted in the Introduction, other results such as Thomson (1994, Theorems 1 and 2) do require a large variety of types, although these other results do not require a large number of potential agents. Most previous literature on consistency makes note only of the differences in domains concerning the number of potential agents. We think that this is a consequence of the fact that the notion of the variety of types is meaningless in cooperative games, the area in which consistency was first analyzed.

Our result is related to Zhou (1992), who characterized equal budget Walrasian allocations in large economies as equivalent to strictly fair allocations. We show that the axioms imply that the allocations recommended by the solution satisfy a condition stronger than strict fairness (with respect to net-trades) and then apply a generalization of the Second Welfare Theorem to derive a generalization of Zhou's replica result. Zhou notes that other characterizations based on the weaker notion of fair allocations such as Champsaur and Laroque (1981) require a large variety of preferences in the given continuum economy, and therefore do not hold in finite type economies or replica sequences. We think that this phenomena is similar to the fact that the characterization of the uniform rule based on requiring the allocations to be envy-free (Thomson 1994, Theorem 1) is valid on a domain including a variety of preferences.

The Theorem does not hold in the case where preferences are not smooth. However, the axioms used in the Theorem are satisfied by the Walrasian allocations correspondence without requiring anything from preferences or from the domain.

A counter example can be constructed by using the example in Zhou (1992).
(Propositions 1, 2 and 3).

Another consistency property, which also appears in Thomson (1992), was studied by van den Nouweland, Peleg, and Tijs (1994), and by Dagan (1994). Economies are defined there with a trade vector \(t \) that determines the market clearing conditions of the economy. Van den Nouweland, Peleg, and Tijs (1994) characterize the Walrasian allocations correspondence with consistency, converse consistency, Pareto optimality, and axioms that imply that the solution coincides with the Walrasian allocations correspondence of one agent economy. It should be noted that given any Pareto optimal solution that is consistent and conversely consistent with respect to a certain definition of a reduced economy can be characterized by these three properties and the requirement that the solution coincides with the one characterized for small economies. Thus, their result is not much different than stating that the Walrasian allocation correspondence in consistent and conversely consistent with respect to the specific definition of the reduced economy. Dagan (1994a) uses consistency and converse consistency in order to prove replica invariance. Then by requiring core selection and applying Debreu and Scarf (1963, Theorem 3) he gets a characterization of the Walrasian allocation correspondence. However, imposing replica invariance directly, consistency is actually not needed for this result.

4.3 An Example

In this subsection we present an application of the Theorem to economies with one good and single-peaked preferences. Consistency in this setting was studied by Thomsom (1994) for the case where the agents have a collective endowment. Klaus, Peters, and Storck en (1995) considered the case of private endowments. The rule they proposed—the uniform reallocation rule—is the Walrasian allocations correspondence.

We consider now economies where the commodity space is \(\mathbb{R} \), and for all \(i X_i = \mathbb{R}_+ \) and \(R_i \) is continuous, transitive and complete, and satisfies the following: There exists a
number \(p(R_i) \) such that for all \(x, y \in \mathbb{R}_+ \) if \(y < x \leq p(R_i) \) or \(p(R_i) \leq x < y \), then \(x \preceq y \). We call \(p(R_i) \) the peak of agent \(i \), and denote \(p(R_i) \) by \(p_i \). Note that \(X_i = \mathbb{R}_+ \) implies that the preference relation \(R_i \) is smooth.

Let \(\Omega \) be a set of economies with agents as described above, and with a strictly positive total endowment. The uniform reallocation rule is defined as follows:

The **uniform reallocation rule** on \(\Omega \), assigns each economy in \(\Omega \) the unique allocation \(x \) that satisfies: for all \(i \in \mathbb{N} \), \(x_i = \min(p_i, \lambda + \omega_i) \) if \(\sum_{i \in \mathbb{N}} \omega_i \leq \sum_{i \in \mathbb{N}} p_i \), and \(x_i = \max(p_i, \lambda + \omega_i) \) if \(\sum_{i \in \mathbb{N}} \omega_i \geq \sum_{i \in \mathbb{N}} p_i \), where \(\lambda \) solves the equation \(\sum_{i \in \mathbb{N}} x_i = \sum_{i \in \mathbb{N}} \omega_i \).

Note that when there is a shortage of the good, i.e. \(\sum_{i \in \mathbb{N}} \omega_i \leq \sum_{i \in \mathbb{N}} p_i \), the allocation \(x \), \(p=1 \) and \(s=\lambda \) is the unique Walrasian equilibrium with slack. When there is a surplus of the good, i.e. \(\sum_{i \in \mathbb{N}} \omega_i \geq \sum_{i \in \mathbb{N}} p_i \), then \(x \), \(p=-1 \) and \(s=-\lambda \) is the unique Walrasian equilibrium with slack.

The following characterization of the uniform reallocation rule is a consequence of the Theorem and the facts that this rule coincides with the Walrasian allocations and that it is always single valued.

Proposition 4: Let \(T \) be a set of types as defined in the above example, and \(\Omega(T) \) be the set of all economies whose agents types belong to \(T \), and have a strictly positive total endowment. The uniform reallocation rule is the unique solution on \(\Omega(T) \) which is nonempty, consistent, replica invariant, and assigns Pareto optimal and envy-free allocations.

5. Equal Budget Walrasian Allocations

In this section we present a variant of the Theorem presented in Section 4 above. The solution characterized is the equal budget Walrasian allocations correspondence. We note
that the importance of this additional result lies in the fact that one may use the same model and consistency axiom in analyzing both solutions that respect private endowments and those who do not. In models of collective endowments private ownership situations cannot be studied.

Let \(e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \) be an economy. The allocation \(x \) is an equal budget Walrasian allocation if it is a Walrasian allocation in the economy \(e' = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \), where for all \(i \in \mathbb{N} \) \(\omega'_i = \frac{1}{\#N} \sum_{i \in \mathbb{N}} \omega_i \). We say that an allocation is individually rational from equal division if for all \(i \in \mathbb{N} \) \(\omega_i \in P_i(x) \).

The result of this section is:

PROPOSITION 5: Let \(T \) be a set of types on \(\mathbb{R}^k \) that satisfy A1-A3. Let \(\Omega(T) \) be the class of all economies in which the agents types belong to \(T \). If a solution \(f \) on \(\Omega(T) \) is consistent, replica invariant and assigns individually rational from equal division and Pareto optimal allocations, then for all \(e \in \Omega(T) \) \(f(e) \subseteq W(e') \), where \(e' = [\mathbb{R}^k, (X_i, R_i, \omega'_i)_{i \in \mathbb{N}}] \), and for all \(i \in \mathbb{N} \) \(\omega'_i = \frac{1}{\#N} \sum_{i \in \mathbb{N}} \omega_i \).

The proof is similar to that of the Theorem, and therefore is left to the reader. ☞

Thomson (1988, Theorem 3) and Thomson (1994, Theorem 4) can be derived from Proposition 5. Moreover, note that the axioms in Proposition 5 do not require that the solution will not depend on individual endowments. Thus Proposition 5 is a stronger statement than the analogous statement on a domain in which individual endowments are not a part of the description of an economy.

6. PROOF OF THE THEOREM

12
Let \(\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}} \) be an economy, and \((x_i)_{i \in \mathbb{N}} \) an allocation. Let:

\[A(\omega, x) = \{ t \in \mathbb{R}^k : tx = (x_i - \omega_i) \text{ for some } i \in \mathbb{N} \} . \]

An allocation \((x_i)_{i \in \mathbb{N}} \) is extremely strictly envy free if for all \(i \in \mathbb{N} \) \[\{ P_i(x_i) \setminus \{ \omega_i \} \} \cap \text{Co}(A(\omega, x)) = \emptyset , \] where \(P_i(x_i) \setminus \{ \omega_i \} = \{ t : tx = y - \omega_i, \text{ for some } y \in P_i(x_i) \} \).

Lemma 1: Let \(T \) be a set of types on \(\mathbb{R}^k \) that satisfy A1, and the consumption sets \(X \) are open. Let \(\Omega(T) \) be the class of all economies in which the agents types belong to \(T \). If a solution \(f \) on \(\Omega(T) \) is consistent, replica invariant and assigns individually rational allocations, then for all \(e \in \Omega(T) \) for all \(x \in f(e) \) \(x \) is extremely strictly envy free.

Proof: Let \(e = [\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}] \in \Omega(T) \). And let \((x_i)_{i \in \mathbb{N}} \in f(e) \). Let \(t \in \text{Co}(A(\omega, x)) \).

There exist weights \((\alpha_i)_{i \in \mathbb{N}} \) such that for all \(i \in \mathbb{N} \) \(\alpha_i \geq 0 \) and \(\sum_{i \in \mathbb{N}} \alpha_i = 1 \), and \(t = \sum_{i \in \mathbb{N}} \alpha_i (x_i - \omega_i) \).

Fix an agent \(j \).

Step 1: First consider the case where for all \(i \in \mathbb{N} \) \(\alpha_i \) are rational and \(\alpha_j > 0 \). Thus there exist integers \((\beta_i)_{i \in \mathbb{N}} \) and \(\gamma \) such that for all \(i \in \mathbb{N} \) \(\alpha_i = \beta_i / \gamma \). Now consider the \(\gamma \) fold replica of the economy. By replica invariance, the replica of \(x \) belongs to \(f(e(\gamma)) \). Now consider the reduced economy of \(e(\gamma) \) in which \(j \) is a member and there are \(\beta_i \) members of each type \(i \). Denote this economy by \(e' \). By consistency the restriction of the replica of \(x \) to \(e' \) belongs to \(f(e') \). Note that \(j \)'s endowment in \(e' \) is \(\omega_j + t \), thus by individual rationality \(t \in P_j(x_j) \setminus \{ \omega_i \} \).

Step 2: Now consider any trade \(t \in \text{Co}(A(\omega, x)) \). There exists a sequence of trades in \(\text{Co}(A(\omega, x)) \) that satisfy the conditions of step 1 and converge to \(t \). As \(P_j(x_j) \) is open relative to \(\mathbb{R}_k \), \(t \in P_j(x_j) \setminus \{ \omega_j \} \) as well. \(\varnothing \)

Lemma 2: Let \(\mathbb{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}} \) be an economy, whose agents satisfy A1 and A2. Let \((x_i)_{i \in \mathbb{N}} \)
be an allocation that satisfies for all \(i \in \mathbb{N} \) \(x_i \in \text{int}(X_i) \) and whose replica is Pareto optimal in all replicas of the economy. Then there exists a price \(p \neq 0 \) such that for all \(i \in \mathbb{N} \) for all \(y \in P_i(x_i) \) \(py > px_i \).

Proof: Let \((\mathcal{R}^k, (X_i, R_i, \omega_i)_{i \in \mathbb{N}}) \) be an economy, whose agents satisfy A1 and A2. Let \((x_i)_{i \in \mathbb{N}} \) be an allocation that satisfies for all \(i \in \mathbb{N} \) \(x_i \in \text{int}X_i \) and whose replica is Pareto optimal in all replicas of the economy. Let \(S = \{ i \in \mathbb{N} : P_i(x_i) \neq \emptyset \} \).

Case 1: \(S = \emptyset \). Then the lemma is trivially satisfied.

Case 2: \(S \neq \emptyset \). Let \(G = \text{Co}\{ \Sigma_{i \in S} P_i(x_i) - \{ \omega_i \} \} \). Note that \(\text{int}(G) \) is nonempty. Now we will show that \(0 \notin \text{int}(G) \). Assume that \(0 \in \text{int}(G) \). Then there exists a finite set \(K \), trades \((t_i)_{i \in K} \) all belonging to \(\{ \Sigma_{i \in S} P_i(x_i) - \{ \omega_i \} \} \), and weights \((\alpha_i)_{i \in K} \) such that for all \(i \in K \) \(\alpha_i \geq 0 \) and \(\Sigma_{i \in K} \alpha_i = 1 \), and \(0 = \Sigma_{i \in K} \alpha_i t_i \). We can assume without loss of generality that for all \(i \in K \) \(\alpha_i \) are rational. Thus there exist integers \((\beta_i)_{i \in K} \) and \(\gamma \) such that for all \(i \in K \) \(\alpha_i = \beta_i / \gamma \). Now consider the \(\gamma \) fold replica of the economy. First note that for all \(i \in K \) there exist trades \((t_i)_{i \in S} \) such that \((t_i + \omega_i) P_i x_i \) for all \(j \in S \), and \(t_i = \Sigma_{j \in S} t_{ij} \). Note that the following allocation is feasible and is Pareto superior to the \(\gamma \) fold replica of \(x \) -- a contradiction: For all agents of type \(j \in \mathbb{N} \setminus S \) assign \(x_i \); For all \(i \in K \) for all \(j \in S \) for \(\beta_i \), agents of type \(j \in S \) assign \(t_j + \omega_j \).

Thus we have \(0 \notin \text{int}(G) \).

Now, by Minkowski's Separating Hyperplane Theorem there exist a hyperplane with normal \(p \neq 0 \) such that for all \(y \in \text{int}(G) \) \(py \geq 0 \). By upperhemi continuity of preferences \(G \) is a subset of the closure of \(\text{int}(G) \), thus for all \(y \in G \) \(py \geq 0 \). If for some \(i \in S \) and some \(y \in P_i(x_i) \) \(py < px_i \), then by local non satiation at non satiated points we may find bundles \(y'_j \in P_j(x_j) \) for all other agents, such that \(y + \Sigma_{j \in \mathbb{N} \setminus S} y'_j < 0 \), contradicting the last result, therefore for all \(i \in S \) for all \(y \in \text{int}(X_i) \) \(py \geq px_i \). Now, for all \(i \in \mathbb{N} \) \(x_i \in \text{int}(X) \) and \(P_i(x_i) \) is open, thus it follows from a standard argument that for all \(i \in S \) for all \(y \in P_i(x_i) \) \(py > px_i \).
Lemma 3: Let $[\mathbb{R}^k, \{X_i, R_i, \omega_i\}_{i \in \mathbb{N}}]$ be an economy, whose agents satisfy A1, A2, and A3. Let $(x_i)_{i \in \mathbb{N}}$ be an allocation that is extremely strictly envy free and whose replica is Pareto optimal in all replicas of the economy. Then there exists a price p and a slack s such that $[x, p, s]$ is a Walrasian equilibrium with slack.

Proof: Let $[\mathbb{R}^k, \{X_i, R_i, \omega_i\}_{i \in \mathbb{N}}]$ be an economy, whose agents satisfy A1, A2, and A3. Let $(x_i)_{i \in \mathbb{N}}$ be an allocation that is extremely strictly envy free and whose replica is Pareto optimal in all replicas of the economy. By lemma 2 there exists a price p such that for all $i \in \mathbb{N}$ for all $y \in P_i(x_i)$ $py > px_i$. Let p be such a price. For all $i \in \mathbb{N}$ let $s_i = p(x_i - \omega_i)$.

Step 1: If for some i and j in \mathbb{N} $s_i < s_j$ then $P_i(x_i) = \emptyset$. As x is extremely strictly envy free at any point t on the line segment connecting $(x_i - \omega_i)$ and $(x_j - \omega_j)$ it is satisfied that $\omega_i + t \in P_i(x_i)$. By A3 the intersection of any line segment that goes through x_i and a point z satisfying $pz > px_i$ with $P_i(x_i)$ is nonempty whenever $P_i(x_i) \neq \emptyset$; this should hold also for $z = (x_i - \omega_i) + \omega_j$, thus $P_i(x_i) = \emptyset$.

Step 2: Let $s = \max \{s_i; i \in \mathbb{N}\}$. Note that $[x, p, s]$ is a Walrasian equilibrium with slack.

REFERENCES

Economic Theory 25, 269-282.

WORKING PAPERS LIST

1. Albert Marcet and Ramon Marimon
 Communication, Commitment and Growth. (June 1991) [Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

2. Antoni Bosch
 Economies of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in European Economic Review 35, (1991) 1589-1595]

3. Albert Satorra

4. Javier Andrés and Jaume Garcia
 Wage Determination in the Spanish Industry. (June 1991) [Published as "Factores determinantes de los salarios: evidencia para la industria española" in J.J. Dolado et al. (eds.) La industria y el comportamiento de las empresas españolas (Ensayos en homenaje a Gonzalo Mato), Chapter 6, pp. 171-196, Alianza Economia]

5. Albert Marcet
 Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marcet

7. Xavier Calsamiglia and Alan Kirman
 A Unique Informationally Efficient and Decentralized Mechanism with Fair Outcomes. (November 1991) [Published in Econometrica, vol. 61, 5, pp. 1147-1172 (1993)]

8. Albert Satorra

9. Teresa García-Miliá and Therese J. McGuire

10. Walter García-Fontes and Hugo Hopenhayn
 Entry Restrictions and the Determination of Quality. (February 1992)

11. Guillem López and Adam Robert Wagstaff
 Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in Moneda y Crédito Vol. 196]

12. Daniel Serra and Charles ReVelle
 The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part I (April 1992) [Published in Location Science, Vol. 1, no. 4 (1993)]

13. Daniel Serra and Charles ReVelle

14. Juan Pablo Nicolini

15. Albert Marcet and Thomas J. Sargent
 Speed of Convergence of Recursive Least Squares Learning with ARMA Perceptions. (May 1992) [Forthcoming in Learning and Rationality in Economics]

16. Albert Satorra

Special issue

17. Vernon L. Smith
 Experimental Methods in Economics. (June 1992)

18. Albert Marcet and David A. Marshall
 Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations.

19. M. Antónia Monés, Rafael Salas and Eva Ventura
 Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)

19. Hugo A. Hopenhayn and Ingrid M. Werner
 Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)
20. Daniel Serra
The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Marimon, Stephen E. Spear and Shyam Sunder
Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgia Giovannetti, Albert Marcet and Ramon Marimon
Growth, Capital Flows and Enforcement Constraints: The Case of Africa. (March 1993) [Published in European Economic Review 37, pp. 418-425 (1993)]

23. Ramon Marimon
Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Marimon and Ellen McGrattan

25. Ramon Marimon and Shyam Sunder
Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaime Garcia and José M. Labeaga
A Cross-Section Model with Zeros: an Application to the Demand for Tobacco. (March 1993)

27. Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman
Does Economic Integration cause Foreign Direct Investment? (March 1993) [Published in Working Paper University of Edinburgh 1993:1]

29. Jeffrey Prisbrey
An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hopenhayn and Maria E. Muniagurria
Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Colera

32. Rafael Crespi i Cladera
Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hopenhayn
The Shakeout. (April 1993)

34. Walter Garcia-Fontes
Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Brucart
On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

36. Teresa García-Milà, Therese J. McGuire and Robert H. Porter

37. Ramon Marimon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labeaga and Angel López
Tax Simulations for Spain with a Flexible Demand System. (May 1993)

39. Daniel Serra and Charles ReVeille
Market Capture by Two Competitors: The Pre-Emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no.4 (1994)]

40. Xavier Cuadras-Morató

41. M. Antònia Monés and Eva Ventura
Saving Decisions and Fiscal Incentives: A Spanish Panel Based Analysis. (July 1993)

42. Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]
43. Jordi Gali
Local Externalities, Convex Adjustment Costs and Sunspot Equilibria. (September 1993) [Forthcoming in Journal of Economic Theory]

44. Jordi Gali
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Gali
Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand. (October 1993) [Forthcoming in Journal of Economic Theory]

46. Oriol Amat
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Forthcoming in European Management Journal]

47. Diego Rodriguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodriguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amat and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Prisbrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tiits
Economic Applications of Genetic Algorithms as a Markov Process. (November 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993)

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tiits
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín-Queralt and Shinichi Suda

59. Ángel de la Fuente and José María Marín-Queralt
Innovation, "Bank" Monitoring and Endogenous Financial Development. (January 1994)

60. Jordi Gali
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argües
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994) [Published in Revista de Estudios Europeos n° 8 (1994) pp. 21-56]

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Irasema Alonso

64. Rohit Raih

65. Jordi Gali and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

66. Jordi Gali and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Forthcoming in Carnegie-Rochester Conference in Public Policy]
67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

68. John Ireland
How Products' Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)

69. Fabrizio Zilibotti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovannetti.

72. Raffaele Giordano.

73. Jaume Puig i Junoy.
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

74. Daniel Serra, Samuel Ratkic and Charles ReVelle.
The Maximum Capture Problem with Uncertainty (March 1994) [Forthcoming in Environment and Planning B]

75. Oriol Amat, John Blake and Jack Dowds.
Issues in the Use of the Cash Flow Statement-Experience in some Other Countries (March 1994)

76. Albert Marcet and David A. Marshall.
Solving Nonlinear Rational Expectations Models by Parameterized Expectations: Convergence to Stationary Solutions (March 1994)

77. Xavier Sala-i-Martin.
Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

78. Xavier Sala-i-Martin.

79. Xavier Sala-i-Martin.
Cross-Sectional Regressions and the Empirics of Economic Growth (May 1994)

80. Xavier Cuadras-Morató.
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

81. Esther Martínez García.
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin.
Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martín.

84. Robert J. Barro and Xavier Sala-i-Martin.
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaele Giordano.
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov.
The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta.
Quality of Professional Services under Price Floors. (June 1994) [Forthcoming in Revista Española de Economía]

88. Jose M. Bainen.
Basic Research, Product Innovation, and Growth. (September 1994)

89. Oriol Amat and John Blake and Julia Clarke.
Bank Financial Analyst's Response to Lease Capitalization in Spain (September 1994) [Forthcoming in International Journal of Accounting.]

90. John Blake and Oriol Amat and Julia Clarke.
Management's Response to Finance Lease Capitalization in Spain (September 1994)

91. Antoni Bosch and Shyam Sunder.
Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (Revised: July 1994)

92. Sergi Jiménez-Martín.
93. Albert Carreras and Xavier Tafunell.
 National Enterprise. Spanish Big Manufacturing Firms (1917-1990), between State and Market (September 1994)

94. Ramon Fauli-Oller and Massimo Motta.
 Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)

95. Marc Sáez Zafra and Jorge V. Pérez-Rodríguez.
 Modelos Autorregresivos para la Varianza Condicional Heteroscedástica (ARCH) (October 1994)

96. Daniel Serra and Charles ReVelle.

97. Alfonso Gambardella and Walter García-Fontes.
 Regional Linkages through European Research Funding (October 1994) [Forthcoming in Economic of Innovation and New Technology]

98. Daron Acemoglu and Fabrizio Zilibotti.
 Was Prometheus Unbound by Chance? Risk, Diversification and Growth (November 1994)

99. Thierry Foucault.
 Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (Revised: June 1994)

100. Ramon Marimon and Fabrizio Zilibotti.
 'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994)

101. María Sáez Martí.

102. María Sáez Martí.
 An Evolutionary Model of Development of a Credit Market (December 1994)

103. Walter García-Fontes and Ruben Tansini and Marcel Vaillant.
 Cross-Industry Entry: the Case of a Small Developing Economy (December 1994)

104. Xavier Sala-i-Martin.
 Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Doménech and Joaquim Silvestre.
 Credit Constraints in General Equilibrium: Experimental Results (December 1994)

106. Casey B. Mulligan and Xavier Sala-i-Martin.

 Human Capital, Heterogeneous Agents and Technological Change (March 1995)

108. Xavier Sala-i-Martin.

 Interactive Local Bandwidth Choice (February 1995)

 ARCH Patterns in Cointegrated Systems (March 1995)

111. Xavier Cuadras-Morató and Joan R. Rosés.
 Bills of Exchange as Money: Sources of Monetary Supply during the Industrialization in Catalonia (1844-74) (April 1995)

112. Casey B. Mulligan and Xavier Sala-i-Martin.
 Measuring Aggregate Human Capital (October 1994, Revised: January 1995)

113. Fabio Canova.

114. Sergiu Hart and Andreu Mas-Colell.
 Bargaining and Value (July 1994, Revised: February 1995) [Forthcoming in Econometrica]

 Supply Side Interventions and Redistribution (June 1995)

 Technological Diffusion, Convergence, and Growth (May 1995)

117. Xavier Sala-i-Martin.
 The Classical Approach to Convergence Analysis (June 1995)
118. Serguei Maliar and Vitali Perepelitsa.
LCA Solvability of Chain Covering Problem (May 1995)

Solving Capability of LCA (June 1995)

120. Antonio Ciccone and Robert E. Hall.
Productivity and the Density of Economic Activity (May 1995) [Forthcoming in American Economic Review]

121. Jan Werner.
Arbitrage, Bubbles, and Valuation (April 1995)

122. Andrew Scott.
Why is Consumption so Seasonal? (March 1995)

123. Oriol Amat and John Blake.
The Impact of Post Industrial Society on the Accounting Compromise-Experience in the UK and Spain (July 1995)

124. William H. Dow, Jessica Holmes, Tomas Philipson and Xavier Sala-i-Martin.
Death, Trianus, and Aerobics: The Evaluation of Disease-Specific Health Interventions (July 1995)

125. Tito Cordelia and Manjira Datta.
Intertemporal Cournot and Walras Equilibrium: an Illustration (July 1995)

126. Albert Satorra.
Asymptotic Robustness in Multi-Sample Analysis of Multivariate Linear Relations (August 1995)

127. Albert Satorra and Heinz Neudecker.
Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors (August 1995)

128. Marta Gómez Puig and José G. Montalvo.
Bands Width, Credibility and Exchange Risk: Lessons from the EMS Experience (December 1994, Revised: June 1995) [Finance and Banking Discussion Papers Series (1)]

129. Marc Sáez.
Option Pricing under Stochastic Volatility and Stochastic Interest Rate in the Spanish Case (August 1995) [Finance and Banking Discussion Papers Series (3)]

130. Xavier Freixas and Jean-Charles Rochet.

131. Heinz Neudecker and Albert Satorra.
The Algebraic Equality of Two Asymptotic Tests for the Hypothesis that a Normal Distribution Has a Specified Correlation Matrix (April 1995)

132. Walter García-Fontes and Aldo Geuna.
The Dynamics of Research Networks in Brite-Euram (January 1995, Revised: July 1995)

133. Jeffrey S. Simonoff and Frederic Udina.
Measuring the Stability of Histogram Appearance when the Anchor Position is Changed (July 1995) [Forthcoming in Computational Statistics and Data Analysis]

134. Casey B. Mulligan and Xavier Sala-i-Martin.
Adoption of Financial Technologies: Implications for Money Demand and Monetary Policy (August 1995) [Finance and Banking Discussion Papers Series (5)]

135. Fabio Canova and Morten O. Ravn.
International Consumption Risk Sharing (March 1993, Revised: June 1995) [Finance and Banking Discussion Papers Series (6)]

136. Fabio Canova and Gianni De Nicolo'.
The Equity Premium and the Risk Free Rate: A Cross Country, Cross Maturity Examination (April 1995) [Finance and Banking Discussion Papers Series (7)]

137. Fabio Canova and Albert Marcet.
The Poor Stay Poor: Non-Convergence across Countries and Regions (October 1995)

138. Etsuro Shioji.
Regional Growth in Japan (January 1992, Revised: October 1995)

139. Xavier Sala-i-Martin.
Transfers, Social Safety Nets, and Economic Growth (September 1995)

140. José Luis Pinto.
Is the Person Trade-Off a Valid Method for Allocating Health Care Resources? Some Caveats (October 1995)

141. Nir Dagan.