Economics Working Paper 191*

On the Term Structure of Interbank Interest Rates: Jump–Diffusion Processes and Option Pricing†

Manuel Moreno‡

and

Juan Ignacio Peña**

November 1996

*This paper is also number 24 Finance and Banking Discussion Papers Series, UPF.
†The authors are grateful to the Bank of Spain who kindly provided some data. Partial financial support was provided by DGICYT grant PB93–0234. Michele Boldrin, Javier Estrada, Esther Ruiz, Christian Dunis and participants in the second Chemical Bank–Imperial College International Conference provided helpful comments. The usual caveat applies.
‡Universitat Pompeu Fabra. Ramon Trias Fargas, 25–27. 08005 Barcelona. Spain. Phone: (34–3) 542 27 71. Fax: (34–3) 542 17 46. E-mail: mmoren@upf.es
**Universidad Carlos III de Madrid. Av. Madrid, 126–128. 28903 Getafe, Madrid. Spain. Phone: (34–1) 624 96 25. Fax: (34–1) 624 96 08. E-mail: ypenya@eco.uc3m.es

Keywords: Jump–diffusion processes, interbank interest rates, option pricing.

Abstract

In this paper we study the dynamic behavior of the term structure of Interbank interest rates and the pricing of options on interest rate sensitive securities. We posit a generalized single factor model with jumps to take into account external influences in the market. Daily data is used to test for jump effects. Qualitative examination of the linkage between Monetary Authorities' interventions and jumps are studied. Pricing results suggest a systematic underpricing in bonds and call options if the jumps component is not included. However, the pricing of put options on bonds presents indeterminacies.
1 Introduction

This paper addresses the modelling of the term structure of Interbank interest rates and the pricing of options on interest rate sensitive securities. Traditional (one or more factor) models have so far assumed that interest rates evolve over time in a continuous way, see Duffie (1992, pp. 129-139). But there are some circumstances where this may not be a reasonable assumption. One interesting case is domestic Interbank Markets which are subject to exogenous interventions by the Monetary Authorities in their attempts to control the money supply. In this case those interventions may cause jump-like behavior in observed interest rates. This idea is similar to Merton’s (1976) analysis of stock option pricing. Merton suggested that bursts of information are better depicted in price behavior as jumps. Thus, one may infer from Merton’s suggestion that the unexpected interventions by the Monetary Authorities are a set of signals to the market which convey information on money supply.

Of course many other reasons can affect interest rates in jump-like fashion, for instance supply or demand shocks and economic or political news. One of the targets of this paper is to deal with all those possible influences under the same umbrella, by positing a general enough model that can cope with these kind of different effects. Note also that another practical advantage of employing diffusion processes with superimposed discrete jumps is that we can take into account the “fat tails” usually found in the distribution of security prices.

The article is organized as follows. In Section 2 we present the theoretical background. Section 3 describes the econometric approach. Section 4 addresses the basic characteristics of our data sample. The empirical analysis is presented in section 5. Section 6 analyzes the relationship between monetary authorities’ interventions and the jump-like behavior of interest rates. Section 7 discusses the pricing of bonds and options. Finally, section 8 summarizes and concludes.

2 Theoretical Background

The basic framework in this paper is the single-factor model of interest rates, in the tradition of Vasicek (1977), and Cox, Ingersoll and Ross (1985a,b)
among others. We generalize those models, following the suggestions by Das (1994a), who posits the addition of a jump component in the process followed by the state variable. The dynamics of the interest rate are given by the following jump-diffusion process:

$$dr = k(\theta - r)dt + \sigma \tau^r dz + J(\mu, \gamma^2)d\pi(h)$$ \hspace{1cm} (1)

where, for the instantaneous riskless interest rate \(r \), \(k \) is the coefficient of mean reversion, \(\theta \) is the long run mean level of \(r \), \(\sigma \) is the standard deviation of \(r \), \(\tau \) is the elasticity coefficient parameter, \(dz \) is a standard Gauss-Wiener process, \(J \) is the jump magnitude in \(r \) which has a Normal distribution with mean \(\mu \) and variance \(\gamma^2 \) and \(d\pi(h) \) is a Poisson arrival process with a constant intensity parameter \(h \). The jump and diffusion components on the interest rate process are assumed to be independent. Mean reversion (\(k > 0 \)) ensures that \(r \) follows a stationary process.

Given the instantaneous interest rate \(r \) at period \(t \), let \(P[r, t; T] \) represent the price of a riskless pure discount bond maturing at period \(T \). From Ito's lemma, the instantaneous rate of return on the bond is

$$dP = (P_r dr + 0.5P_{rr}(dr)^2 + P_r dt)$$ \hspace{1cm} (2)

where subscripts denote partial derivatives. In perfect markets, the instantaneous expected rate of return for any asset can be written as the instantaneous riskless rate, \(\tau \), plus a risk premium. Therefore the risk-adjusted return on all zero coupon bonds must be the same. Assuming that the market price per unit of risk (\(\lambda(.) \)) for the bond is a general function that may depend on \(\sigma, r \) and \(\tau \), but not on \(T - t \), and remembering that the jump and diffusion components in equation (1) are independent, the variance of changes in \(r \) is simply the sum of the variances of both components. The arbitrage-free pricing partial differential equation is as follows:

$$0 = [k(\theta - r) - \lambda(\sigma, r, \tau)] P_r + P_t + 0.5\sigma^2 \tau^r P_{rr}$$
$$- rP + hE [P(r + J) - P(r)]$$ \hspace{1cm} (3)

This is the fundamental equation for the price of any zero coupon bond which has a value that depends solely on the instantaneous rate, \(r \), and the time to maturity, \(T - t \). With the boundary condition,

$$P(r, T, T) = 1.0$$ \hspace{1cm} (4)
Analytical solutions of equation (3) (if available) are usually obtained by positing that the functional form of the bond price is given by

\[P(r, t, T) = A[t, T] \exp(-B[t, T]r) \]

where

\[A[t, T] = f_A(\Phi) \quad B[t, T] = f_B(\Phi) \quad \Phi = (T - t, k, \theta, \sigma, \tau, h, \mu, \gamma^2, \lambda) \]

If it is not possible to find an analytical solution, numerical procedures may be used to approximate equation (3).

Explicit expressions for \(A[t, T] \) and \(B[t, T] \) have been reported for some particular cases. Ahn and Thompson (1988) studied the case of \(\tau = 0.5 \) assuming a jump component equal to \(\delta dy \) where \(\delta \) is a negative constant and the intensity of \(y \) is taken to be \(\pi r \), i.e. the jump arrival rate is proportional to the level of interest rate. Das (1994a) studied the cases \(\tau = 0.5 \) and \(\tau = 0.0 \) and parametrized both the size and sign of the jump. To our knowledge, expressions for \(A[t, T] \) and \(B[t, T] \) for general values of \(\tau \) have not been reported.

The valuation framework presented above can be applied to other securities whose payoffs depend on interest rates, such as options and futures on bonds. Theoretical work on pricing interest rate sensitive securities for jump-diffusion process include Ahn and Thompson (1988), Naik and Lee (1990), Das (1994a) and Naik and Lee (1995). In these papers analytic models for bond and option prices are given. However, none of these models permits the pricing of American options. This is unfortunate given that almost all traded interest sensitive securities have American features. Furthermore, the pricing of “American-style” derived securities usually requires numerical methods, either by binomial trees or by finite-differencing methods, see Duffie (1992, Chap. 10). Recently, applications of numerical methods to jump-diffusion processes have been reported by Amin (1993) for the binomial tree approach and by Das (1994b) for the finite-differencing approach. In this paper we follow the latter approach, using the full implicit finite-differencing (FIFD) method for bond and option pricing.

We now develop the procedure to solve equation (3) using the FIFD method. When using this method, careful specification of the boundary conditions is required. Since the state variable, \(r \), varies in the range \([0, \infty)\), and the process requires backward recursion in time on a discrete time grid.
of the state variable, it is hard to establish a grid over this support. To deal with this problem we carry out the following transformation of variable

\[y = \frac{1}{1 + \beta r}, \quad \beta > 0 \] \hfill (7)

The new state variable, \(y \), varies in the range \((0,1)\) and this makes the upper boundary easy to establish. Using this transformation from \(r \) to \(y \) we obtain a transformed version of the partial differential equation (3):

\[
0 = P_y \left[\sigma^2 \beta^{2-2\tau} y^{3-2\tau} (1 - y)^{2\tau} - \beta y^2 \left(k \left(\theta - \frac{1-y}{\beta y} \right) - \lambda(\cdot) \right) \right]
+ P_{yy} \left[\frac{1}{2} \sigma^2 \beta^{2-2\tau} y^{4-2\tau} (1 - y)^{2\beta} \right] + P_t - \left(\frac{1-y}{\beta y} \right) P
+ \left[EP \left(\frac{1-y}{\beta y} + J \right) - P \left(\frac{1-y}{\beta y} \right) \right] h \] \hfill (8)

which can be written as

\[
0 = P_y A + P_{yy} B + P_t - \left(\frac{1-y}{\beta y} \right) P + \left[EP \left(\frac{1-y}{\beta y} + J \right) - P \left(\frac{1-y}{\beta y} \right) \right] h \] \hfill (9)

where

\[
A = \left[\sigma^2 \beta^{2-2\tau} y^{3-2\tau} (1 - y)^{2\tau} - \beta y^2 \left(k \left(\theta - \frac{1-y}{\beta y} \right) - \lambda(\cdot) \right) \right]
B = \left[\frac{1}{2} \sigma^2 \beta^{2-2\tau} y^{4-2\tau} (1 - y)^{2\beta} \right] \] \hfill (10)

The procedure to solve equation (8) using the FIDF method involves a two-dimensional grid where we have the (transformed) state variable \((y)\) on one axis and time \((t)\) on the other. Let the variable \(i = 1, 2, ..., N \) index the state variable axis and the variable \(j = 1, 2, ..., T \) index the time axis on the grid where \(N \) and \(T \) are the number of points on each axis. We denote the price of a bond on the grid as \(P_{i,j} \) and the value of the state variable as \(y_{i,j} \). The distance between adjacent nodes on the \(i \)-axis is equal to \(m \), and that between adjacent nodes on the \(j \)-axis is equal to \(q \). Using this notation, we
can write the differential equation (8) in difference equation form as follows:

\[0 = A_i \left[\frac{P_{i+1,j} - P_{i-1,j}}{2m} \right] + \frac{P_{i,j+1} - P_{i,j}}{q} + B_i \left[\frac{P_{i+1,j} - 2P_{i,j} + P_{i-1,j}}{m^2} \right] + h \sum_{n=1}^{N} P_{n,j} \times \text{Prob} \left[\frac{1 - y_{n,j}}{\beta y_{n,j}} \frac{1 - y_{i,j}}{\beta y_{i,j}} \right] - hP_{i,j} - \frac{1 - y}{\beta y} P_{i,j} \]

\[i = 1, 2, ..., N, \quad j = 1, 2, ..., T \]

The boundary conditions for pricing the bonds at maturity are simply

\[P \left(\frac{1 - y}{\beta y}, T, T \right) = 1.0 \]

Rearranging equation (11) we can write

\[- \frac{P_{i,j+1}}{q} = P_{i+1,j}a_i + P_{i,j}b_i + P_{i-1,j}c_i + h \sum_{n=1}^{N} P_{n,j} \times \text{Prob} \left[\frac{1 - y_{n,j}}{\beta y_{n,j}} \frac{1 - y_{i,j}}{\beta y_{i,j}} \right] \]

where

\[a_i = \left[\frac{A_i}{2m} + \frac{B_i}{m^2} \right] \]

\[b_i = \left[-\frac{1}{q} - \frac{2B_i}{m^2} - \frac{1 - y}{\beta y} - h \right] \]

\[c_i = \left[-\frac{A_i}{2m} + \frac{B_i}{m^2} \right] \]

This system of \(N \) equations is solved by backward recursion, given the boundary conditions for the bond. The \(N \times T \) equations system in formulae (13) can be written in matrix form:

\[P_{j+1} = XP_j \quad j = T - 1, ..., 1 \quad X = -q(Q + Y) \]

where \(Q \) is a \(N \times N \) matrix containing the probabilities of jumping from any node \(P_{i,j} \) to \(P_{n,j} \). \(P_{j+1} \) is an \(N \times 1 \) vector and \(Y \) is a tridiagonal matrix where each row contains the coefficients \(a_i, b_i \) and \(c_i \). Backward recursion is performed by computing equation (15) from \(j = T - 1 \) to \(j = 1 \). For other interest rate derivative securities, which are functions of bond prices, appropriate boundary conditions can be imposed, and the prices can be computed off the grid. This approach allows almost all forms of path-independent valuation.
\section{Econometric Framework}

The model to be estimated for the dynamics of the interest rate is the following jump-diffusion process:

\[dr = k(\theta - r)dt + \sigma r^\gamma dz + J(\mu, \gamma^2)dh \]

(16)

We follow a two-step procedure. First we estimate the pure diffusion part of the model, setting \(h = 0 \) in equation (16). Then we estimate both the jump's location and size using a likelihood ratio test-type statistic. Finally, we estimate jointly the full diffusion-jump model.

The pure diffusion is estimated using the discrete time technology of Chan et al (1992), based on an iterated version of Hansen's GMM (Generalized Method of Moments). The econometric specification is

\[r_t - r_{t-1} = a + br_{t-1} + \varepsilon_t \quad E[\varepsilon_t] = 0 \quad E[\varepsilon_t^2] = \sigma^2 r_{t-1}^{2r} \]

(17)

so that

\[k = -b, \quad \theta = -\frac{a}{b} \]

(18)

Given the parameter vector \(\Omega = (\alpha, \beta, \sigma, \tau) \) and the residuals \(\varepsilon_t \) in equation (17), let the moment vector \(f_t(\Omega) \) be

\[f_t(\Omega) = \begin{bmatrix} \varepsilon_t \\ \varepsilon_t r_{t-1} \\ \varepsilon_t^2 - \sigma^2 r_{t-1}^{2r} \\ (\varepsilon_t^2 - \sigma^2 r_{t-1}^{2r}) r_{t-1} \end{bmatrix} \]

(19)

Under the null hypothesis, if the restrictions implied by equation (17) are true, \(E[f_t(\Omega)] = 0 \). We replace \(E[f_t(\Omega)] \) with its sample counterpart \(g_T(\Omega) \), using \(T \) observations,

\[g_T(\Omega) = \frac{1}{T} \sum_{t=1}^{T} f_t(\Omega) \]

(20)

Then, the GMM estimator is:

\[\Omega_0 = \arg\min_{\Omega} J_T(\Omega) \]

(21)

where

\[J_T(\Omega) = g_T(\Omega)'Vg_T(\Omega) \]

(22)
and V is an appropriate weighting matrix. To deal with possible residual autocorrelation and heteroskedasticity we employ the Newey-West corrected covariance matrix for the GMM model and then iterate till convergence is achieved.

To test the overidentifying restrictions of the model, we use the chi-square test. The quantity $T J_T(\Omega)$ is distributed χ^2 with degrees of freedom equal to the number of moment conditions less the number of parameters estimated.

Using the estimated values of the diffusion parameters, we estimate the jump locations using an approach based on the ideas of Aase and Guttorm (1987). Essentially the procedure is to compute a selected criterion function for each observation, assuming no jumps (restricted) and compare it with its value assuming one jump (unrestricted). In our case, the criterion function is the quadratic form $J_T(\Omega)$. We compute for each observation the test statistic

$$R = T [J_T(\Omega_0) - J_T(\Omega_1)]$$

This test is asymptotically distributed χ^2 with one degree of freedom, and can be interpreted as the normalized difference of the restricted $J_T(\Omega_0)$ and unrestricted $J_T(\Omega_1)$ objective functions. This procedure provides the location and size of the jumps with their sign.

Therefore, at each point in time, we know whether or not, a jump occurred, as well as its sign. Thus, at each t, we can write the conditional expectation and variance of the change in the interest rate depending on the event at that time. Using a dummy variable D_i, $i = 1, 2, ..., T$, which takes values $D_i = 1$ if there is a jump and $D_i = 0$ otherwise, we obtain the moments for the estimation as follows:

$$\epsilon_t = \epsilon_t = r_t - r_{t-1} - (a + br_{t-1}) - dD_t$$

$$E[\epsilon_t] = 0$$

$$E[\epsilon_t^2] = \sigma^2 r_{t-1}^2 - (dD_t)^2 = 0$$

where we use as a starting point the parameters estimated for the pure diffusion process.

4 Data Characteristics

In this section we address the basic characteristics of our data sample. The instantaneous riskless interest rate is approximated by daily overnight Spain
interbank offer rates.\footnote{The interest rate data is computed as the average rate for all transactions on a specified term in a given day.} The data was obtained from the Research Department, Bank of Spain, and consists of annualized rates. Daily data spans the period from 1 January 1988 to 10 March 1994. The number of observations is 1534. Figure 1 shows the overnight rate. Note the periodic “drops” in the overnight rate as well as the significant increase in the volatility associated with the turbulence in the European Monetary System. It is perhaps worth mentioning that in the period from September 1992 to May 1993 the peseta was devaluated three times.

Table I provides summary statistics of the interest rate (r) as well as the changes in interest rate (dr). The unconditional average interest rate is 13\% and its standard deviation is around 180 basis points. The mean change in interest rates is slightly negative and its volatility is about 33 basis points. The excess kurtosis in the distribution of changes in interest rates indicates the presence of fat tails in the interest rate distribution. The autocorrelation coefficients of the interest rates (see Table II) are close to unity and decay quite slowly. The autocorrelation coefficients of the changes in interest rate are small and negative. Therefore, mean reversion in interest rate is suggested in our sample.

\section{Empirical Analysis}

This section presents the estimation of equation (17). First we estimate the pure diffusion model, which nests eight interest rate models (see Table III) derived from the restrictions on the parameters a, b and τ in equation (17). In a second stage, we use the estimated values of the diffusion parameters to obtain the location, size and sign of the jumps.

\subsection{Modelling Pure Diffusion Processes}

Table IV presents the estimation results obtained for the pure diffusion processes. We estimate the unrestricted diffusion process derived from the equation (16) as well as eight restricted models derived through restrictions on the parameters of this model. The χ^2 tests for goodness-of-fit indicate that the Brennan-Schwartz (1980), Cox \textit{et al} (1985) and Vasicek (1977) models
exhibit the closest to zero GMM minimized criterion values. The lowest \(\chi^2 \) value corresponds to the Brennan-Schwartz model, which assume the highest value for \(\tau \) among these, and all three models have \(\chi^2 \) values smaller than 0.8. In these models a single parameter, \(\tau \), is restricted. As no restrictions are imposed on the parameters \(a \) and \(b \), all of them show mean reversion. The Dothan (1978) and Cox et al (1980) models which assume that the parameters \(a \) and \(b \) are null, fit the data less well but none can be rejected at the 90% confidence level. The Black-Scholes (1973) and Merton (1973) models have \(\chi^2 \) values in excess than 5 and can be rejected at the 90% confidence level. The Cox model, which assumes that the parameter \(a \) is equal to zero, can be rejected at the 95% confidence level.

Note that models which imply mean reversion have the lowest GMM criterion \(\chi^2 \) values. On the other hand, models which assume that the parameters \(a \) and/or \(b \) are null - that is, there is no mean reversion in interest rates - have high \(\chi^2 \) values and are therefore not acceptable.

The parameters' estimates of the unconstrained model, which are very similar to the estimates of the Brennan-Schwartz model, show that the parameters \(a \) and \(b \) are different from zero and, hence, there is evidence of mean reversion in interest rates. Another feature of this model is that the estimated value for the parameter \(\tau \) is 0.96. Therefore, the conditional volatility of the process is very sensitive to the level of the interest rate. This value is higher than the values assumed by the most common models as the Vasicek or Cox et al (1985b) models.

To obtain more information on the performance of the alternative pure diffusion models, we test their in-sample forecasting power in relation to the level and volatility of interest rates. First, we use the fitted values for equation (17) to compute the time series of conditional expected interest rate changes and conditional variances for the unrestricted and the eight restricted models. Then, we compute the \(R^2_j \), \((j = 1, 2) \) statistics. These two values are reported in the two last columns of Table IV and show (for each model) the proportion of the total variation in the ex post interest rate changes or squared interest rate changes that can be explained by the conditional expected interest rate changes and conditional volatility measures, respectively.

The \(R^2_1 \) value is the measure related to the actual interest rate changes. The unrestricted and Brennan-Schwartz models have the best explanatory performance and are closely followed by the Cox et al (1985b) and Vasicek
models. The remaining models have no explanatory power. In the case of the R^2 statistic, which measures the degree of the model’s explanatory power of the volatility of the interest rate changes, the highest value corresponds also to the unconstrained and the Brennan-Schwartz models, which are followed by the Cox et al (1985b), Cox (1975) and Black-Scholes models. Therefore, these two measures, which indicate the predictive power of the models, provide a classification of the alternative models which is very similar to that obtained when parameters of the pure diffusion models were estimated. Given the previous results, we choose the Brennan-Schwartz process as a tentative model for the pure diffusion part of the Interbank interest rate.

5.2 Modelling Jumps

Once we have estimated the pure diffusion models, we use those results to estimate the location of the jumps. After applying the econometric procedure described in section 3, we find 77 jumps in the sample. Figure 2 plots the time series of the interest rate and the location of the jumps. The summary statistics of the jumps are reported in Table V. The mean jump size is about 7 basis points and its volatility (measured by the standard deviation) is around 140 basis points. The arrival frequency of the jumps is 5.02% and, therefore, there is approximately one jump per month. The distribution of jump sizes if shown in Figures 3 and 4. Separating the jumps by their sign, there are 37 positive jumps while the remaining 40 are negative. The mean of the negative jumps is 100 basis points and the mean of the positive jumps is 123 basis points. The distribution of the negative jumps has a lower variance than the distribution of the positive jumps.

Once the location of the jumps is known, we are able to include this information in our model by means of dummy variables. This is done by estimating the two models in equations (25) through (28).

The first model includes one dummy variable that indicates the moment when a jump occurred:

$$r_t - r_{t-1} = a + br_{t-1} + dD_t + \varepsilon_t$$

$$E[\varepsilon_t] = 0 \quad E[\varepsilon_t^2] = \sigma^2 r_{t-1}^2$$

(25)

where

$$D_t = \begin{cases} 1 & \text{if there is a jump} \\ 0 & \text{otherwise} \end{cases}$$

(26)
We also estimate a second model with two dummy variables which distinguish between positive and negative jumps:

\[r_t - r_{t-1} = a + br_{t-1} + d^+ D^+_t + d^- D^-_t + \varepsilon_t \]
\[E[\varepsilon_t] = 0 \quad E[\varepsilon_t^2] = \sigma^2 r_{t-1}^{2*} \]
(27)

where

\[D^+_t = \begin{cases} 1 & \text{if there is a positive jump} \\ 0 & \text{otherwise} \end{cases} \]
\[D^-_t = \begin{cases} 1 & \text{if there is a negative jump} \\ 0 & \text{otherwise} \end{cases} \]
(28)

The parameter estimates for the two jump-Brennan-Schwartz models are shown in Table VI.

The \(a \) and \(b \) are both significantly different from zero, pointing out that mean reversion is present in our sample, even after taking account of jumps. The coefficient associated with the jump dummy variable is not different from zero. When different effects are allowed for positive and negative jump the coefficients are statistically significant. The degree of fit of the model with jump is similar to the model without jumps, as measured by the \(R^2 \). However, when separate variables are included for positive and negative jumps the degree of fit increases substantially. Therefore, we conclude that taking into account the presence of a jump process increases the model’s explanatory power.

6 Interventions by Monetary Authorities

In this section we investigate the extent to which interventions by the Bank of Spain (Spain’s Monetary Authority) are responsible for at least part of the jump-like behavior of interest rate time series. The Bank of Spain (BS) uses a “target” interest rate (tipo de intervencion, TI henceforth) in open market transactions. Periodically, the BS intervenes in the interbank market, offering money for lending or borrowing at the TI rate. Data for the TI rate was obtained from the Research Department of the Bank of Spain. Short term rates tend to track the TI rate rather closely. This can be noticed from the regression results in Table VII. The regression of the short rate on the
contemporaneous TI rate is highly significant. Also the TI one-day lag is found to be significant. This reflect the fact that BS sets the TI rate after the start of the interbank trading session. The results in Table VII suggest that about 50% of the total variance in the short rate is explained by its relationship with the TI rate.

We compare a change in the BS target rate with the occurrence of a jump as derived in the jump-diffusion model. If both occur together, we assume that the jump was caused by the BS intervention. There were a total of 77 jumps in the interest rate and 160 BS target rate changes. Jumps and changes in the BS target rate coincide in 22 days. The summary statistics for these jumps and the associated changes in the BS target rate are reported in Table VIII. The mean jump size is near zero and the volatility of the jumps, indicated by their standard deviation, is about 160 basis points. Therefore, this restricted set of 22 jumps is more volatile than the whole set of 77 jumps. In a similar way to the whole set of jumps, the highest jump sizes occur in the last 20 months of our sample period.

In the 22 days where BS actions and jumps occurred together, there were 10 positive and 12 negative jumps. Therefore, in this restricted set of jumps, the proportion of positive and negative jumps is similar to the proportion we found in the whole sample. Their average, in the restricted set of jumps, is greater than the values obtained in the whole sample and, similarly, the mean value of the positive jumps is greater than the (absolute value of the) mean value of negative jumps, which is in excess of 110 basis points.

We build a window of five days around the BS target rate change in order to check if the market was able to anticipate (or reverse) a BS move. If we find that the change in the BS target rate is preceded by a jump in the market in the prior week, this may be interpreted as anticipation. The results are displayed graphically in Figure 5. In this figure, the x-axis represents the number of days by which the BS intervention precedes the jump (a negative value indicates the number of days between a jump and a posterior BS rate change). The highest peaks of this figure correspond to the central value (number of days in which a BS action and a jump occur simultaneously) and to the extreme values (days in which a BS action and a jump are separated by five days). Another interesting feature of this figure is its symmetry.

Therefore, we may say that some, but not all, jumps are related to the monetary authorities' interventions, but perhaps there are also other factors (e.g. exchange rate shocks) that should be taken into account if we want to
explain the occurrence of jumps in our sample. In conclusion, it seems that the analysis indicates that about one-third of jump-like shocks are coincident with BS actions. Moreover, it is not very clear whether the market was able to either anticipate or reverse a BS move systematically.

7 Pricing Derivatives

For illustrative purposes, we implement the algorithm described in section 2 to price bonds with maturities of 3 months and 1 year and also a 3-month option on a 1 year bond. The options, puts and calls, are priced under pure-diffusion and jump-diffusion assumptions. We price both European and American Options. The following parameter values are used:

\[
\begin{align*}
\alpha &= 0.149, \quad \beta = -0.008, \quad \sigma = 0.0088, \quad \lambda(\cdot) = 0 \\
\mu &= 0, \quad \gamma = 1.392, \quad h = 12.3, \quad \tau = 1.0
\end{align*}
\]

(29)

The strike price is 0.95. The parameters in equation (29) are those of the model estimated for the overnight interest rate which follows a jump-enhanced Brennan-Schwartz process.

Table IX contains the results. Given that the pricing results for European and American call options are identical, we report both jointly. There are some interesting results. The price of a one-year bond is higher under the jump-diffusion model. This is the well-known "asymmetric" effect, caused by the asymmetry of the bond pricing function. This feature of high prices will increase with the duration of the bond. Also, options will increase in value because the jumps induce "fat tails" into the distribution of bond prices. This is the "time value" effect. In the case of calls, both effects, asymmetric and time value, result in the option increase in value. However, in the case of puts, the asymmetric effect reduces the option value whereas the time value effect increases its value. The trade-off between these two forces leaves the jump-diffusion value of the put indeterminate in comparison with the pure-diffusion case.

2Many other pricing simulations for bonds and options were performed. The bond pricing simulation was performed for maturities ranging from 1 year to 10 years. The option pricing simulation was performed for 3, 6, and 9 months' options on bonds of different maturities. Detailed results are available on request.
8 Conclusion

This paper has presented a single-factor model for the term structure of the interbank interest rate, when the instantaneous rate follows a jump-diffusion process. The empirical implementation suggests that jump-diffusions better explain interest rate behavior than pure diffusion models. Some economic implications of jump activity are explored with an analysis of changes in the Bank of Spain target rate. As a result, some, but not all, jumps are found to be related to Central Bank interventions. Additionally, we price European-style and American-style interest rate contingent claims (bond and options) using the FIFD approach, enhanced to deal with partial differential equations derived in a jump-diffusion model. The existence of jumps affects bonds and call options very much like in the case of stocks. We find underpricing if the jumps are not taken into account. However, the put option pricing presents some indeterminacies.
References

Table I. Interest rates: descriptive statistics
This table provides summary statistics of the overnight Spain interbank interest rate (r_t) as well as the changes in this interest rate ($r_t - r_{t-1}$). Means, standard deviations, skewness coefficients and excess kurtosis are computed from January 1988 through March 1994. Raw data is in percentage terms.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number of observations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness Coefficient</th>
<th>Excess Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_t</td>
<td>1534</td>
<td>13.003</td>
<td>1.8363</td>
<td>-0.424</td>
<td>-0.496</td>
</tr>
<tr>
<td>$r_t - r_{t-1}$</td>
<td>1533</td>
<td>-0.0035</td>
<td>0.3368</td>
<td>3.0023</td>
<td>98.507</td>
</tr>
</tbody>
</table>

Table II. Interest rates: correlation structure
This table shows correlation coefficients of order j, denoted by ρ_j of the overnight Spain interbank interest rate (r_t) as well as the changes in this interest rate ($r_t - r_{t-1}$). These coefficients are computed from January 1988 through March 1994. N denotes the number of observations. Raw data is in percentage terms.

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>ρ_3</th>
<th>ρ_4</th>
<th>ρ_5</th>
<th>ρ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_t</td>
<td>1534</td>
<td>0.9809</td>
<td>0.9656</td>
<td>0.9542</td>
<td>0.9450</td>
<td>0.9366</td>
<td>0.9287</td>
</tr>
<tr>
<td>$r_t - r_{t-1}$</td>
<td>1533</td>
<td>-0.113</td>
<td>-0.114</td>
<td>-0.067</td>
<td>-0.009</td>
<td>-0.013</td>
<td>0.052</td>
</tr>
</tbody>
</table>
Table III. Alternative pure diffusion processes

This table shows the alternative pure diffusion models that reflect the dynamics of the interest rate. These processes derive from restrictions on the parameters a, b and τ in the system of equations

$$r_t - r_{t-1} = a + br_{t-1} + \epsilon_t \quad E[\epsilon_t] = 0 \quad E[\epsilon_t^2] = \sigma^2 r_{t-1}^{2\tau}$$

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>b</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merton (1973)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vasicek (1977)</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cox et al (1985b)</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Dothan (1978)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Black and Scholes (1973)</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brennan-Schwartz (1980)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cox et al (1980)</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Cox (1975)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrestricted</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV. Estimates of the alternative pure diffusion models
This table provides the parameter estimates (with t-statistics in parentheses) of unrestricted and restricted alternative pure diffusion models for Spain interbank interest rates. GMM minimized criterion (χ^2) values, with p-values in parentheses and associated degrees of freedom (d.f.), are also reported. The sample period is from January 1988 to March 1994. The R^2 statistics are computed as the proportion of the total variation of the actual interest rate changes ($j = 1$) and their volatility ($j = 2$) explained by the respective predictive values for each model. The parameters are estimated by means of the generalized method of moments applied to the estimation of equation (16).

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>b</th>
<th>σ^2</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merton (1973)</td>
<td>0.00119</td>
<td>0</td>
<td>0.06304</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.181)</td>
<td>(2.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasicek (1977)</td>
<td>0.1721</td>
<td>-0.0132</td>
<td>0.1113</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2.15)</td>
<td>(-2.15)</td>
<td>(3.5)</td>
<td></td>
</tr>
<tr>
<td>Cox et al (1985b)</td>
<td>0.1834</td>
<td>-0.0145</td>
<td>0.000001</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>(2.26)</td>
<td>(-2.28)</td>
<td>(5.6)</td>
<td></td>
</tr>
<tr>
<td>Dothan (1978)</td>
<td>0</td>
<td>0</td>
<td>0.000452</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6.43)</td>
<td></td>
</tr>
<tr>
<td>Black and Scholes (1973)</td>
<td>0</td>
<td>-0.00008</td>
<td>0.00044</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.18)</td>
<td>(5.8)</td>
</tr>
<tr>
<td>Brennan-Schwartz (1980)</td>
<td>0.1874</td>
<td>-0.0146</td>
<td>0.000657</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(2.3)</td>
<td>(-2.3)</td>
<td>(3.72)</td>
<td></td>
</tr>
<tr>
<td>Cox et al (1980)</td>
<td>0</td>
<td>0</td>
<td>0.00957</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.04)</td>
<td></td>
</tr>
<tr>
<td>Cox (1975)</td>
<td>0</td>
<td>-0.0001</td>
<td>0.0016</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.17)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>0.1874</td>
<td>-0.014</td>
<td>0.000911</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(2.2)</td>
<td>(-2.3)</td>
<td>(3.4)</td>
<td>(2.9)</td>
</tr>
</tbody>
</table>
Table IV. Estimates of the alternative pure diffusion models (cont.)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>d.f.</th>
<th>R_1^2</th>
<th>R_2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merton (1973)</td>
<td>5.30</td>
<td>2</td>
<td>-0.0002</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.0706)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasicek (1977)</td>
<td>0.7911</td>
<td>1</td>
<td>0.0062</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.3737)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox et al (1985b)</td>
<td>0.3161</td>
<td>1</td>
<td>0.0063</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td>(0.5739)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dothan (1978)</td>
<td>5.23</td>
<td>3</td>
<td>-0.0001</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.1557)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black and Scholes (1973)</td>
<td>5.216</td>
<td>2</td>
<td>0.0</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>(0.0736)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennan-Schwartz (1980)</td>
<td>0.0068</td>
<td>1</td>
<td>0.0064</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>(0.9342)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox et al (1980)</td>
<td>5.308</td>
<td>3</td>
<td>0.0</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.1506)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox (1975)</td>
<td>5.213</td>
<td>1</td>
<td>0.0</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td>(0.0224)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrestricted</td>
<td>—</td>
<td>—</td>
<td>0.0064</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Table V. Jump size: descriptive statistics
This table provides summary statistics of the jumps located in the interest rate series from January 1988 through March 1994. We report statistics for the following variables: $JUMP_t$, which denotes jump size, $JUMPPOS_t$, which includes the size of positive jumps, and $JUMPNEG_t$, which includes the size of negative jumps.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number of jumps</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness</th>
<th>Excess Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$JUMP_t$</td>
<td>77</td>
<td>0.0737</td>
<td>1.392555</td>
<td>0.7515</td>
<td>3.90682</td>
</tr>
<tr>
<td>$JUMPPOS_t$</td>
<td>37</td>
<td>1.2313</td>
<td>0.985046</td>
<td>3.4132</td>
<td>14.3367</td>
</tr>
<tr>
<td>$JUMPNEG_t$</td>
<td>40</td>
<td>-1.00348</td>
<td>0.659994</td>
<td>-3.59903</td>
<td>16.5665</td>
</tr>
</tbody>
</table>

Table VI. Estimates of the jump-diffusion models
This table contains the parameter estimates (with t-statistics in parentheses) of the two alternative jump-diffusion models for Spain interbank interest rates. The sample period is from January 1988 to March 1994. The parameters are estimated by means of the generalized method of moments and they are obtained from equation (25)-(26) and (27)-(28).

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>b</th>
<th>σ^2</th>
<th>d</th>
<th>d^+</th>
<th>d^-</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(25)-(26)</td>
<td>0.1490</td>
<td>-0.0082</td>
<td>0.0088</td>
<td>0.0113</td>
<td>—</td>
<td>—</td>
<td>0.0064</td>
</tr>
<tr>
<td>(2.46)</td>
<td>(-1.77)</td>
<td>(-43.74)</td>
<td>(0.28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(27)-(28)</td>
<td>0.1248</td>
<td>-0.0070</td>
<td>0.0030</td>
<td>—</td>
<td>1.1533</td>
<td>-1.08</td>
<td>0.5441</td>
</tr>
<tr>
<td>(3.17)</td>
<td>(-2.33)</td>
<td>(-46.27)</td>
<td>(31.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VII. The short rate and the TI rate
This table provides regression results on the relationship between the short rate and the TI rate. The sample period is from January 1988 to March 1994. The regression is corrected for first-order autocorrelation (coefficient ϕ) and is run on contemporaneous and one lagged values of the BS target rate TI. Robust standard errors are computed using the Newey-West covariance matrix estimator.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Constant</th>
<th>TI(t)</th>
<th>TI(t-1)</th>
<th>ϕ</th>
<th>Adjusted R^2</th>
<th>D-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>-0.122</td>
<td>0.882</td>
<td>0.146</td>
<td>0.827</td>
<td>0.472</td>
<td>2.10</td>
</tr>
<tr>
<td>t-stat</td>
<td>-0.301</td>
<td>15.53</td>
<td>2.57</td>
<td>53.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VIII. Coincidence between jumps and BS actions. Jumps size: descriptive statistics
This table provides summary statistics of the jumps that occur simultaneously with a change in the BS target rate. The sample period is from January 1988 through March 1994. We report these statistics for the following variables: $JUMP_{BS_t}$, which denotes jump size, $JUMPPSBS_t$, which includes the size of positive jumps, and $JUMPNGBS_t$, which shows the size of negative jumps.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number of jumps</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness Coefficient</th>
<th>Excess Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$JUMP_{BS_t}$</td>
<td>22</td>
<td>0.01111</td>
<td>1.6008</td>
<td>-0.4879</td>
<td>1.6869</td>
</tr>
<tr>
<td>$JUMPPSBS_t$</td>
<td>10</td>
<td>1.3962</td>
<td>0.8150</td>
<td>1.4609</td>
<td>2.0053</td>
</tr>
<tr>
<td>$JUMPNGBS_t$</td>
<td>12</td>
<td>-1.1431</td>
<td>1.0729</td>
<td>-2.9163</td>
<td>9.0796</td>
</tr>
</tbody>
</table>
Table IX. Examples of pricing bonds and options using the FIFD method

This table contains bond values for maturities of 3 months and 1 year at different values of the current overnight rate. Values are for zero-coupon bonds with face values of 1.0 an; \(r = 0.08, 0.09, 0.10, 0.11, 0.12 \). The arrival rate is \(h = 12.3 \) jumps per year, and the jumps are distributed \(\sim N(0, 0.001) \). The other parameters are \(a = 0.149, b = -0.008, \sigma = 0.0088 \), and \(\lambda = 0.0 \). Option prices are computed for the three-month option on the one-year discount bond. The strike price is 0.95. The pricing results are identical for European and American call options.

<table>
<thead>
<tr>
<th>Security</th>
<th>(r = 0.08)</th>
<th>(r = 0.09)</th>
<th>(r = 0.10)</th>
<th>(r = 0.11)</th>
<th>(r = 0.12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond (3-month)</td>
<td>0.9791</td>
<td>0.9779</td>
<td>0.9756</td>
<td>0.9748</td>
<td>0.9722</td>
</tr>
<tr>
<td>Bond (1-year)</td>
<td>0.9295</td>
<td>0.9232</td>
<td>0.9176</td>
<td>0.9108</td>
<td>0.9042</td>
</tr>
<tr>
<td>Call</td>
<td>0.0087</td>
<td>0.0051</td>
<td>0.0022</td>
<td>0.0011</td>
<td>0.0003</td>
</tr>
<tr>
<td>Put (European)</td>
<td>0.0021</td>
<td>0.0051</td>
<td>0.0087</td>
<td>0.0116</td>
<td>0.0131</td>
</tr>
<tr>
<td>Put (American)</td>
<td>0.0097</td>
<td>0.0176</td>
<td>0.0192</td>
<td>0.0271</td>
<td>0.0342</td>
</tr>
<tr>
<td>Jump-Diffusion Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond (3-month)</td>
<td>0.9794</td>
<td>0.9782</td>
<td>0.9758</td>
<td>0.9749</td>
<td>0.9725</td>
</tr>
<tr>
<td>Bond (1-year)</td>
<td>0.9297</td>
<td>0.9234</td>
<td>0.9177</td>
<td>0.9110</td>
<td>0.9046</td>
</tr>
<tr>
<td>Call</td>
<td>0.0091</td>
<td>0.0054</td>
<td>0.0026</td>
<td>0.0015</td>
<td>0.0008</td>
</tr>
<tr>
<td>Put (European)</td>
<td>0.0021</td>
<td>0.0051</td>
<td>0.0087</td>
<td>0.0116</td>
<td>0.0131</td>
</tr>
<tr>
<td>Put (American)</td>
<td>0.0097</td>
<td>0.0176</td>
<td>0.0190</td>
<td>0.0271</td>
<td>0.0340</td>
</tr>
</tbody>
</table>

23
Figure 1: Plot of the overnight interbank interest rate.
Figure 2: Plot of the overnight interbank interest rate and jumps indicator.
Figure 3: Plot of jump size.
Figure 4: Distribution of jump size.
Figure 5: Plot of the relation between jumps and BS actions.
1. Albert Marcet and Ramon Marimon
 Communication, Commitment and Growth. (June 1991) [Published in Journal of Economic Theory Vol. 58, no. 2, (December 1992)]

2. Antoni Bosch
 Economies of Scale, Location, Age and Sex Discrimination in Household Demand. (June 1991) [Published in European Economic Review 35, (1991) 1589-1595]

3. Albert Satorra

4. Javier Andrés and Jaume García
 Wage Determination in the Spanish Industry. (June 1991) [Published as "Factor determinantes de los salarios: evidencia para la industria española" in J.J. Dolado et al. (eds.) La industria y el comportamiento de las empresas españolas (Essayos en homenaje a Gonzalo Mato), Chapter 6, pp. 171-196, Alianza Economía]

5. Albert Marcet
 Solving Non-Linear Stochastic Models by Parameterizing Expectations: An Application to Asset Pricing with Production. (July 1991)

6. Albert Marcet

7. Xavier Calsamiglia and Alan Kirman

8. Albert Satorra

9. Teresa García-Milk and Therese J. McGuire

10. Walter García-Fontes and Hugo Hopenhayn
 Entry Restrictions and the Determination of Quality. (February 1992)

11. Guillem López and Adam Robert Wagstaff
 Indicadores de Eficiencia en el Sector Hospitalario. (March 1992) [Published in Moneda y Crédito Vol. 196]

12. Daniel Serra and Charles ReVelle
 The PQ-Median Problem: Location and Districting of Hierarchical Facilities. Part I (April 1992) [Published in Location Science, Vol. 1, no. 4 (1993)]

13. Daniel Serra and Charles ReVelle

14. Juan Pablo Nicolini

15. Albert Marcet and Thomas J. Sargent

16. Albert Satorra

Special issue

Vernon L. Smith
Experimental Methods in Economics. (June 1992)

17. Albert Marcet and David A. Marshall
 Convergence of Approximate Model Solutions to Rational Expectation Equilibria Using the Method of Parameterized Expectations. (This issue is included in working paper number 76 of this same series. In wp. #76, apart from the contents of wp. #17, there are other interesting things)

18. M. Ambrosio Monés, Rafael Salas and Eva Ventura
 Consumption, Real after Tax Interest Rates and Income Innovations. A Panel Data Analysis. (December 1992)
19. Hugo A. Hopenhayn and Ingrid M. Werner
Information, Liquidity and Asset Trading in a Random Matching Game. (February 1993)

20. Daniel Serra
The Coherent Covering Location Problem. (February 1993) [Forthcoming in Papers in Regional Science]

21. Ramon Marimon, Stephen E. Spear and Shyam Sunder
Expectationally-driven Market Volatility: An Experimental Study. (March 1993) [Forthcoming in Journal of Economic Theory]

22. Giorgia Giovannetti, Albert Marcet and Ramon Marimon

23. Ramon Marimon
Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. (March 1993) [Published in European Economic Review 37 (1993)]

24. Ramon Marimon and Ellen McGrattan

25. Ramon Marimon and Shyam Sunder
Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence. (March 1993) [Forthcoming in Econometrica]

26. Jaume Garcia and José M. Labeaga

27. Xavier Freixas
Short Term Credit Versus Account Receivable Financing. (March 1993)

28. Massimo Motta and George Norman

29. Jeffrey Pribrey
An Experimental Analysis of Two-Person Reciprocity Games. (February 1993) [Published in Social Science Working Paper 787 (November 1992)]

30. Hugo A. Hopenhayn and Maria E. Muniguerría
Policy Variability and Economic Growth. (February 1993)

31. Eva Ventura Colera

32. Rafael Crespi i Cladera
Protecciones Anti-Opa y Concentración de la Propiedad: el Poder de Voto. (March 1993)

33. Hugo A. Hopenhayn
The Shakeout. (April 1993)

34. Walter García-Fontes
Price Competition in Segmented Industries. (April 1993)

35. Albert Satorra i Brucart
On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models. (February 1993) [Published in Econometric Theory, 10, pp. 867-883]

37. Ramon Marimon and Shyam Sunder
Expectations and Learning Under Alternative Monetary Regimes: an Experimental Approach. (May 1993)

38. José M. Labeaga and Angel López
Tax Simulations for Spain with a Flexible Demand System. (May 1993) [Published as "Simulacion fiscal para España con un sistema de demanda flexible" in Modelos Microeconómicos y Política Fiscal, Manuel Arellano (eds.), Chapter 8, (1994), pp. 277-300]

39. Daniel Serra and Charles ReVelle
Market Capture by Two Competitors: The Pre-emptive Location Problem. (May 1993) [Published in Journal of Regional Science, Vol. 34, no.4 (1994)]

40. Xavier Cuadra-Morató
41. M. Antinòa Mones and Eva Ventura

42. Wouter J. den Haan and Albert Marcet
Accuracy in Simulations. (September 1993) [Published in Review of Economic Studies, (1994)]

43. Jordi Gali

44. Jordi Gali
Monopolistic Competition, Endogenous Markups, and Growth. (September 1993) [Forthcoming in European Economic Review]

45. Jordi Gali

46. Oriol Amat
The Relationship between Tax Regulations and Financial Accounting: a Comparison of Germany, Spain and the United Kingdom. (November 1993) [Published in Readings in Accounting in the European Union, edited by A. Socías, Universitat de les Illes Balears, (1996)]

47. Diego Rodríguez and Dimitri Vayanos
Decentralization and the Management of Competition. (November 1993)

48. Diego Rodríguez and Thomas M. Stoker
A Regression Test of Semiparametric Index Model Specification. (November 1993)

49. Oriol Amat and John Blake
Control of the Costs of Quality Management: a Review or Current Practice in Spain. (November 1993)

50. Jeffrey E. Priskrey
A Bounded Rationality, Evolutionary Model for Behavior in Two Person Reciprocity Games. (November 1993)

51. Lisa Beth Tilis
Economic Applications of Genetic Algorithms as a Markov Process. (June 1993)

52. Ángel López

53. Ángel López

54. Antonio Cabrales
Stochastic Replicator Dynamics. (December 1993)

55. Antonio Cabrales and Takeo Hoshi
Heterogeneous Beliefs, Wealth Accumulation, and Asset Price Dynamics. (February 1993, Revised: June 1993) [Forthcoming in Journal of Economic Dynamics and Control]

56. Juan Pablo Nicolini
More on the Time Inconsistency of Optimal Monetary Policy. (November 1993)

57. Lisa B. Tilis
Income Distribution and Growth: A Re-examination. (December 1993)

58. José María Marín Vivieras and Shinichi Suda

59. Ángel de la Fuente and José María Marín Vivieras

60. Jordi Gali
Expectations-Driven Spatial Fluctuations. (January 1994)

61. Josep M. Argilés
Survey on Commercial and Economic Collaboration Between Companies in the EEC and Former Eastern Bloc Countries. (February 1994) [Published in Revista de Estudios Europeos, no. 8, (1994), pp. 21-36]

62. German Rojas
Optimal Taxation in a Stochastic Growth Model with Public Capital: Crowding-in Effects and Stabilization Policy. (September 1993)

63. Irasema Alonso
65. Rohit Rohi

65. Jordi Galí and Fabrizio Zilibotti
Endogenous Growth and Poverty Traps in a Cournotian Model. (November 1993)

65. Jordi Galí and Richard Clarida
Sources of Real Exchange Rate Fluctuations: How Important are Nominal Shocks?. (October 1993, Revised: January 1994) [Published in Carnegie-Rochester Conference in Public Policy, vol. 41, (1994), pp. 1-56]

67. John Ireland
A DPP Evaluation of Efficiency Gains from Channel-Manufacturer Cooperation on Case Counts. (February 1994)

67. John Ireland
How Products’ Case Volumes Influence Supermarket Shelf Space Allocations and Profits. (February 1994)

69. Fabrizio Zilibotti
Foreign Investments, Enforcement Constraints and Human Capital Accumulation. (February 1994)

70. Vladimir Marianov and Daniel Serra
Probabilistic Maximal Covering Location Models for Congested Systems. (March 1994)

71. Giorgia Giovanetti

72. Raffaello Giordano

73. Jaume Puig i Junoy
Aspectos Macroeconómicos del Gasto Sanitario en el Proceso de Convergencia Europea. (Enero 1994)

76. Daniel Serra, Samuel Ratick and Charles ReVelle

77. Oriol Amat, John Blake and Jack Dowds
Issues in the Use of the Cash Flow Statement-Experience in some Other Countries (March 1994) [Forthcoming in Revista Española de Financiación y Contabilidad]

79. Xavier Sala-i-Martin
Lecture Notes on Economic Growth (I): Introduction to the Literature and Neoclassical Models (May 1994)

79. Xavier Sala-i-Martin

81. Xavier Cuadras-Morató
Perishable Medium of Exchange (Can Ice Cream be Money?) (May 1994)

82. Ester Martinez Garcia
Progresividad y Gastos Fiscales en la Imposición Personal sobre la Renta (Mayo 1994)

82. Robert J. Barro, N. Gregory Mankiw and Xavier Sala-i-Martin
Capital Mobility in Neoclassical Models of Growth (May 1994)

83. Sergi Jiménez-Martín

86. Robert J. Barro and Xavier Sala-i-Martin
Quality Improvements in Models of Growth (June 1994)

85. Francesco Drudi and Raffaello Giordano
Optimal Wage Indexation in a Reputational Model of Monetary Policy Credibility (February 1994)

86. Christian Helmenstein and Yury Yegorov
The Dynamics of Migration in the Presence of Chains (June 1994)

87. Walter García-Fontes and Massimo Motta
Quality of Professional Services under Price Floors. (June 1994) [Published in Revista Española de Economía, número monográfico, (1995), pp. 165-189]

93. Jose M. Baille
Basic Research, Product Innovation, and Growth. (September 1994)

91. Antoni Bosch and Shyam Sunder. Tracking the Invisible Hand: Convergence of Double Auctions to Competitive Equilibrium. (Revised: July 1994) [You can find a revised version of this paper at the Web page]

94. Ramon Faulti-Oller and Massimo Motta. Why do Owners let their Managers Pay too much for their Acquisitions? (October 1994)

97. Alfonso Gambardella and Walter Garcia-Fontes. Regional Linkages through European Research Funding (October 1994) [Forthcoming in Economic of Innovation and New Technology]

99. Thierry Foucault. Price Formation and Order Placement Strategies in a Dynamic Order Driven Market (Revised: June 1994) [Finance and Banking Discussion Papers Series (2)]

100. Ramon Marimon and Fabrizio Zilibotti. 'Actual' versus 'Virtual' Employment in Europe: Why is there Less Employment in Spain? (December 1994)

103. Walter Garcia-Fontes and Ruben Tansini and Marcel Vaillant. Cross-Industry Entry: the Case of a Small Developing Economy (December 1994)

104. Xavier Sala-i-Martin. Regional Cohesion: Evidence and Theories of Regional Growth and Convergence (October 1994)

105. Antoni Bosch-Domènech and Joaquim Silvestre. Credit Constraints in General Equilibrium: Experimental Results (December 1994) [You can find a revised version of this paper at the Web page]

113. Fabio Canova.

114. Serguei Hart and Andreu Mas-Colell.
Bargaining and Value (July 1994, Revised: February 1995) [Forthcoming in Econometrica]

115. Teresa Garcia-Mila, Albert Marcet and Eva Ventura.
Supply Side Interventions and Redistribution (June 1995)

Technological Diffusion, Convergence, and Growth (May 1995)

117. Xavier Sala-i-Martin.
The Classical Approach to Convergence Analysis (June 1995)

118. Serguei Mialar and Vitali Perepelitsa.
LCA Solvability of Chain Covering Problem (May 1995)

119. Serguei Mialar, Igor' Kozin and Vitali Perepelitsa.
Solving Capability of LCA (June 1995)

120. Antonio Ciccone and Robert E. Hall.
Productivity and the Density of Economic Activity (May 1995) [Forthcoming in American Economic Review]

121. Jan Werner.
 Arbitrage, Bubbles, and Valuation (April 1995)

122. Andrew Scott.
Why is Consumption so Seasonal? (March 1995)

123. Oriol Amat and John Blake.
The Impact of Post Industrial Society on the Accounting Compromise-Experience in the UK and Spain (July 1995)

124. William H. Dow, Jessica Holmes, Tomas Philipson and Xavier Sala-i-Martin.
Death, Tetanus, and Aerobics: The Evaluation of Disease-Specific Health Interventions (July 1995)

125. Tito Cordella and Manjira Datta.
Intertemporal Cournot and Walras Equilibrium: an Illustration (July 1995)

126. Albert Satorra.
Asymptotic Robustness in Multi-Sample Analysis of Multivariate Linear Relations (August 1995)

127. Albert Satorra and Heinz Neudecker.
Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors (August 1995)

128. Marta Gómez Puig and José G. Montalvo.
Bands Width, Credibility and Exchange Risk: Lessons from the EMS Experience (December 1994, Revised: June 1995) [Finance and Banking Discussion Papers Series (1)] [Forthcoming in European Economic Review]

129. Marc Sáez.
Option Pricing under Stochastic Volatility and Stochastic Interest Rate in the Spanish Case (August 1995) [Finance and Banking Discussion Papers Series (3)]

130. Xavier Freixas and Jean-Charles Rochet.

131. Heinz Neudecker and Albert Satorra.
The Algebraic Equality of Two Asymptotic Tests for the Hypothesis that a Normal Distribution Has a Specified Correlation Matrix (April 1995)

132. Walter García-Fontes and Aldo Geuna.
The Dynamics of Research Networks in Brite-Euram (January 1995, Revised: July 1995)

133. Jeffrey S. Simonoff and Frederic Udina.
Measuring the Stability of Histogram Appearance when the Anchor Position is Changed (July 1995) [Forthcoming in Computational Statistics and Data Analysis]

134. Casey B. Mulligan and Xavier Sala-i-Martin.
Adoption of Financial Technologies: Implications for Money Demand and Monetary Policy (August 1995) [Finance and Banking Discussion Papers Series (5)]

135. Fabio Canova and Morten O. Ravn.
International Consumption Risk Sharing (March 1993, Revised: June 1995) [Finance and Banking Discussion Papers Series (6)]
136. Fabio Canova and Gianni De Nicolò.
The Equity Premium and the Risk Free Rate: A Cross Country, Cross Maturity Examination (April 1995) [Finance and Banking Discussion Papers Series (7)]

137. Fabio Canova and Albert Marcet.
The Poor Stay Poor: Non-Convergence across Countries and Regions (October 1995)

138. Esturo Shioji.
Regional Growth in Japan (January 1992, Revised: October 1995)

139. Xavier Sala-i-Martin.
Transfers, Social Safety Nets, and Economic Growth (September 1995)

140. José Luis Pinto.
Is the Person Trade-Off a Valid Method for Allocating Health Care Resources? Some Caveats (October 1995) [Revised version forthcoming in Health Economics]

141. Nir Dagan.

142. Antonio Ciccone and Kiminori Matsuyama.
Start-up Costs and Pecuniary Externalities as Barriers to Economic Development (March 1995) [Forthcoming in Journal of Development Economics]

143. Esturo Shioji.
Regional Allocation of Skills (December 1995)

144. José V. Rodríguez Mora.
Shared Knowledge (September 1995)

145. José M. Marin and Rohit Rabi.
Information Revelation and Market Incompleteness (February 1996) [Finance and Banking Discussion Papers Series (8)]

146. José M. Marin and Jacques P. Olivier.
On the Impact of Leverage Constraints on Asset Prices and Trading Volume (November 1995) [Finance and Banking Discussion Papers Series (9)]

147. Massimo Motta.

148. Ramon Fauli-Oller and Massimo Motta.

149. Luis Angel Medrano Adán.
Insider Trading and Real Investment (December 1995) [Finance and Banking Discussion Papers Series (11)]

150. Luisa Fuster.
Altruism, Uncertain Lifetime, and the Distribution of Wealth (December 1995)

Consistency and the Walrasian Allocations Correspondence (January 1996)

152. Nir Dagan.
Recontracting and Competition (August 1994, Revised: January 1996)

Implicit Collusion on Wide Spreads (December 1995) [Finance and Banking Discussion Papers Series (12)]

Unfolding a Symmetric Matrix (January 1996)

155. Sjaak Harkens and Nir Vulkan.
Information Acquisition and Entry (February 1996)

156. María Sánchez Martí.
Boundedly Rational Credit Cycles (February 1996) [Finance and Banking Discussion Papers Series (13)]

157. Daron Acemoglu and Fabrizio Zilibotti.
Agency Costs in the Process of Development (February 1996) [Finance and Banking Discussion Papers Series (14)]

158. Antonio Ciccone and Kiminori Matsuyama.
Efficiency and Equilibrium with Locally Increasing Aggregate Returns Due to Demand Complementarities (January 1996)

159. Antonio Ciccone.
Rapid Catch-Up, Fast Convergence, and Persistent Underdevelopment (February 1996)
162. Xavier Cuadrás-Morató and Randall Wright.
On Money as a Medium of Exchange when Goods Vary by Supply and Demand (February 1996)

163. Roberto Serrano.
A Comment on the Nash Program and the Theory of Implementation (March 1996)

164. Enriqueta Aragónès and Zviha Neeman.
Strategic Ambiguity in Electoral Competition (January 1994; Revised: April 1996)

165. Enriqueta Aragónès.
Negativity Effect and the Emergence of Ideologies (January 1994; Revised: December 1995) [Forthcoming in Journal of Theoretical Politics]

166. Pedro Delicado and Manuel del Río.
Weighted Kernel Regression (March 1996).

167. Luis Angel Medrano Adín.
Market versus Limit Orders in an Imperfectly Competitive Security Market (February 1996) [Finance and Banking Discussion Papers Series (15)]

168. Fabio Canova and Eva Ortega.
Testing Calibrated General Equilibrium Models (March 1996)

169. Roberto Serrano and Ken-Ichi Shimomura.
An Axiomatization of the Prekernel of Nontransferable Utility Games (April 1996)

170. Luis M. Cubeddu.
The Intra-Generational Redistributive Effects of Social Security (April 1996)

171. Olivier Gossner.
Comparison of Information Structures (May 1996)

172. Albert Marcet, Thomas J. Sargent and Juha Seppälä.
Optimal Taxation without State-Contingent Debt (April 1996)

Approximation of Quadratic Irrationals and their Pierce Expansions (June 1996)

174. Eric van Wincoop and Jane Marriott.
Public and Private Saving and Investment (June 1996) [Finance and Banking Discussion Papers Series (17)]

175. Walter García-Fontes, Ruben Tansini and Marcel Vaillant.
Trade Liberalization in Uruguay: Domestic and Foreign Firms (June 1995)

176. Alfonso Gambardella and Walter García-Fontes.
European Research Funding and Regional Technological Capabilities: Network Composition Analysis (June 1996)

177. Xavier Freixas and Emmanuelle Gabillon.
Optimal Regulation of a Fully Insured Deposit Banking System (May 1996) [Finance and Banking Discussion Papers Series (16)]

178. Xavier Freixas and Bruno Parigi.
Conagion and Efficiency in Gross and Net Interbank Payment Systems (March 1996; Revised: June 1996) [Finance and Banking Discussion Papers Series (18)]

179. Vladimir Marianov and Daniel Serra.
Probabilistic Maximal Covering Location-Allocation Models with Constrained Waiting Time or Queue Length for Congested Systems (September 1996)

Bargaining, Coalitions and Competition (June 1996)

181. Antonio Cabrales.
Adaptive Dynamics and the Implementation Problem with Complete Information (July 1996)

182. Daniel Serra and Vladimir Marianov.
The P-Median Problem in a Changing Network: The Case of Barcelona (July 1996)

183. Oriol Amat, John Blake and Soledad Moya.
La Contabilidad Creativa en España y en el Reino Unido. Un Estudio Comparativo (July 1995)

184. Tito Cordella and Thierry Foucault.
Minimum Price Variations, Time Priority and Quotes Dynamics (September 1996) [Finance and Banking Discussion Papers Series (19)]

185. Albert Saotra.
Fusion of Data Sets in Multivariate Linear Regression with Errors-in-Variables (October 1996)

186. Nicolaas J. Vriend.
A Model of Market-Making (October 1996)
185. Nicolaas J. Vriend.
Does Reasoning Enhance Learning? (October 1996)

186. Eva Ventura.
Nonlinear Models and Small Sample Performance of the Generalized Method of Moments (September 1996)

Government Consumption and Private Consumption Correlations (October 1996) (Finance and Banking Discussion Papers Series (20))

188. Fabio Canova and Jane Marrinan.
Sources and Propagation of International Cycles: Common Shocks or Transmission? (November 1996) (Finance and Banking Discussion Papers Series (21))

189. Michael Greenacre.
An Adaption of Correspondence Analysis for Square Tables (December 1996)

190. Eric van Damme and Sjaak Hurkens.
Endogenous Stackelberg Leadership (November 1996)

191. Manuel Moreno and Juan Ignacio Peña.
On the Term Structure of Interbank Interest Rates: Jump-Diffusion Processes and Option Pricing (December 1996)