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Abstract – Multiple-input multiple-output (MIMO) techniques 

have become an essential part of broadband wireless communica-

tions systems. For example, the recently developed IEEE 802.16e 

specifications for broadband wireless access include three MIMO 

profiles employing 2×2 space-time codes (STCs), and two of these 

MIMO schemes are mandatory on the downlink of Mobile Wi-

MAX systems. One of these has full rate, and the other has full 

diversity, but neither of them has both of the desired features. 

The third profile, namely, Matrix C, which is not mandatory, is 

both a full rate and a full diversity code, but it has a high decoder 

complexity. Recently, the attention was turned to the decoder 

complexity issue and including this in the design criteria, several 

full-rate STCs were proposed as alternatives to Matrix C. In this 

paper, we review these different alternatives and compare them 

to Matrix C in terms of performances and the corresponding 

receiver complexities.  

Keywords—Multiple-input multiple-output (MIMO), space-

time codes (STCs), WiMAX systems. 

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques based 
on using multiple antennas at transmitter and receiver can 

provide spatial diversity, multiplexing gain, interference sup-

pression, and make various tradeoffs between them. These 

techniques have been incorporated in all of the recently devel-

oped wireless communications system specifications and have 

become an indispensable part of the IEEE 802.16e-2005 stan-

dard [1] for mobile broadband wireless access systems.  

From the MIMO schemes included in the IEEE 802.16e 

specifications, the WiMAX Forum has specified two mandato-

ry profiles for use on the downlink. One of them is based on 

the space–time code (STC) proposed by Alamouti for transmit 
diversity [2]. This code achieves a diversity order that is equal 

to twice the number of antennas at the receiver, but it is only 

half-rate, because it only transmits two symbols using two 

time slots and two transmit antennas. (In this paper, the rate is 

defined as the number of transmitted symbols per antenna use. 

The Alamouti code is of course full rate if the rate is defined 

as the number of transmitted symbols per channel use). The 

other profile is spatial multiplexing (SM), which uses two 

transmit antennas to transmit two independent data streams. 

This scheme is full-rate, but it does not benefit from any di-

versity gain at the transmitter, and at best, it provides a diver-

sity order equal to the number of receive antennas.  
For future evolutions of the WiMAX standard, it is highly 

desirable to include a new code combining the respective 

advantages of the Alamouti code (Matrix A) and the SM 

(Matrix B) while avoiding their drawbacks. Such a code 

actually exists in the IEEE 802.16e-2005 specifications (where 
it is referred to as Matrix C). The Matrix C is a variant of the 

Golden code [3] (see also [4] and [5] for other variants), which 

is known to be one of the best 2×2 STCs achieving the 

diversity-multiplexing frontier [4]. But the problem of this 

code is its detection complexity, which grows as the fourth-

power of the signal constellation size, and this makes it 

impractical for low-cost wireless user terminals.  

Recently, motivated by the orthogonality of the Alamouti 

scheme, new full-rate full-diversity (FR-FD) 2×2 STCs were 

proposed independently in [6][7][12]. These codes achieve the 

diversity-multiplexing frontier, while their optimum detection 

complexity (using exhaustive search) grows at most 
quadratically with the size of the signal constellation (see, e.g., 

[6] for more detail).  

In this paper, we present a unified comparison between Ma-

trix C and the STC presented in [6]. First, in Section II, we 

briefly discuss the design criteria for STCs. Sections III is 

devoted to the comparison between Matrix C and the recently 

proposed codes. Then, in Section IV, we explain the sphere 

decoder (SD) and the corresponding reduced SD. Finally, we 

present some numerical comparisons in Section V and give 

our conclusions in Section VI. 

Notation: Matrices (resp. column vectors) are set in 
boldface capital (resp. lower case) letters. akl  denotes the entry 

of matrix A at its kth row and lth column, and bk denotes the 

kth element of the column vector b. The operators (·)*, (·)T,

and (·)H stand for complex conjugate, transpose, and conjugate 

transpose, respectively. ||·||2 denotes Frobenius norm of the 

enclosed vector. 

II. STC DESIGN CRITERIA 

A. Pairwise Error Probability Analysis
Now, we will briefly discuss the most common design 

criteria for STCs. We consider that the transmitter does not 

have any channel state information while the receiver knows 

the channel perfectly. For 2×2 MIMO transmission, we write  

ZHXY += , (1) 

where H is the 2×2 channel matrix with the entries klh  of 

complex channel gains, X is the 2×2 codeword matrix   
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whose elements take values from the codebook X, Y includes 

the received signal samples and Z denotes the matrix of 

additive circularly symmetric complex Gaussian noise 

samples with spectral density N0. The recently proposed STC 

schemes mainly rely on the analysis of pairwise error 

probability (PEP) )ˆ( XX →P  which is the probability that X̂

is detected while X  is transmitted. At high signal-to-noise 

ratio (SNR) values, the union-Chernoff bound analysis of the 

PEP leads to the following design criteria.  

1) Rank Criterion [8]: For the STC given in (2), the diversity 

gain, defined as  

)ˆ(rankmin)(

ˆ

ˆ,
XX

XX

XX
−=

≠
∈X

Xd , (3) 

should be maximized. If )ˆ( XX −  is full rank for all code-

word pairs, then the code is said to have full diversity.

2) Determinant Criterion [10]: After ensuring full-diversity, 

we should maximize the coding gain which can be defined for 

a 2×2 STC as 

2

ˆ

ˆ,
)ˆdet(min XX

XX

XX
−=

≠
∈X

δ . (4) 

In order to obtain the best achievable performance, the 

coding gain should be maximized for a given average transmit 

power. It should be noted that, for high SNR values, the most 

important parameter is the diversity gain which dominates the 

steepness of the bit-error rate (BER) curve. Afterwards, it is 

the coding gain which should be maximized. The STCs, 

presented in the sequel, are examples of such full-diversity 

schemes which have large coding gain. Other design criteria 

can be added. Among them, we mention here the requirement 

that the constellation has cubic shaping (see below for a 
discussion). 

B. Detection Complexity 
In the design of STCs another important criterion is the 

decoding complexity. This is highly crucial especially for 

mobile applications. The Matrix C (or equivalently the Golden 

code) is the best-known full-rate 2×2 STC which satisfies the 

rank criterion with a high coding gain. However, optimum 

detection has a high computational complexity. Therefore, 

other FR-FD STCs with lower optimum decoding complexity 

should be included as alternatives to Matrix C. The results 
available in the literature suggest that there is an intrinsic 

tradeoff between error performance and detection complexity. 

But, theoretical tradeoff limits have not been exhibited yet.  

III. FR-FD 2×2 STCS FOR WIMAX SYSTEMS

Matrix C has been included in the IEEE 802.16–2005 

specifications for the enhancement of the performance of 

Matrix A and B while providing full-rate and full-diversity 

with a higher coding gain. Particularly, for a group of 4 

symbols ( )4321 ,,, ssss , the transmission matrix is given by  

+−
++

+
=

4132

3241

2
1

1

sjrsrss

srsjrss

r
CX , (5) 

where 2/)51( +−=r  and 1−=j .

This code leads to a spatial diversity of order 4 for 2 

receiver antennas and achieves substantially better 

performance than the SM code (Matrix B) whose spatial 

diversity is limited to 2 (for this number of receive antennas). 

Moreover, XC results in the same bit error probability as the 

Golden code (and the other variants proposed in [4] and [5]). 

More specifically, XC results in a coding gain of 16/5 which is 
the largest coding gain obtained so far. XC differs from the 

Golden code and its variants in using a higher order extension 

field (see, e.g., [9] for related definitions). From the 

implementation point of view, the only difference is that the 

construction of XC requires a smaller number of 

multiplications compared to the Golden code. However, as 

explained above, the problem of this code is its inherent 

detection complexity.  

In particular, the optimum receiver evaluates the ML 

function for all symbol quadruplets ( )4321 ,,, ssss  and selects 

the one which maximizes this ML function. The ML function 

evaluated for ( )4321 ,,, ssss  is actually the squared Euclidean 

distance between the received noisy signal and the noiseless 

signal corresponding to that quadruplet, and can be expressed 
as the squared Frobenius norm  

( ) 2

4321 ,,, HXY −=ssssD . (6) 

For a signal constellation with M points, this receiver involves 

the computation of M4 Euclidean distances and selects the 
symbol quadruplet minimizing this distance. The optimum 

receiver complexity is, therefore, proportional to 164 = 65.536 

for a 16-QAM signal constellation, and to 644 = 16.777.216 

for a 64-QAM signal constellation. Of course, this is 

prohibitive in practical applications. Therefore, one resorts to 

suboptimum receivers which may degrade the performance 

severely. One possible solution is to use SD whose 

performance and complexity are upper bounded by those of 

ML detection based on exhaustive search. The major issues in 

the implementation of SD are choosing the initial radius and 

the order in which the symbols are examined. These two 

issues can dramatically improve or degrade the complexity of 
SD. In fact, even the SD would require a high number of 

computations for satisfactory detection performance. This 

requires the use of new STCs which have close performance 

to that of XC with lower detection complexity. It is also worth 

noting that, from a practical point of view, SD suffers from the 

fact that its throughput is variable.  

Now, we turn our attention to the recently proposed FR-FD 

2×2 STC schemes which may be very strong candidates for 

future high-rate wireless transmission systems. They attempt 

to maximize both the diversity gain and the coding gain, while 

leading to an optimum detection of reduced complexity. More 

98



specifically, these schemes are FR-FD 2×2 STCs whose 

optimum receiver has a complexity that is only proportional to 

M2 (see [6][7][11]–[13] for more detail). Thus, the number of 

Euclidean distance computations in the optimum detector is 

reduced to 162 = 256 for a 16-QAM signal constellation and to 

642 = 4.096 for a 64-QAM signal constellation. Comparing 

these numbers to those associated to Matrix C, it becomes 

clear that these codes make the implementation of FR-FD 2×2 

STCs with optimum receiver more realistic.  

Such an STC first appears in [12] but its low decoding 

complexity property was only realized in [7] independent from 
our work in [6]. The STC presented in [7] is a combination of 

the original Alamouti scheme and a precoded scheme having 

also an Alamouti structure. In contrast, our STC has a 

symmetric structure since it directly combines two Alamouti 

schemes. As is shown in the sequel, this evenly distributes the 

transmitted energy for each symbol per channel use. 

Moreover, since they lead to the same detection complexity 

and almost the same performance [13], we prefer to present 

the simplest one in terms of construction, namely, the STC 

that we recently presented in [6]. In this code, the group of 4 

symbols ( )4321 ,,, ssss  is transmitted as follows: 

++
−−+

=
*

3

*

142

*

4

*

231

dscsbsas

dscsbsas
newX . (7) 

A careful look clearly shows that (7) is nothing but a simple 

linear combination of two Alamouti schemes. Here, a, b, c,

and d are complex-valued design parameters. They are chosen 

such that the resulting STC attains FR-FD transmission in a 

quasi-static Rayleigh fading channel. However, this task is 

infeasible especially for higher constellation sizes. In [6], the 

optimization of the parameters is simplified considering the 

desired average transmit power constraints. More specifically, 
we consider 

1
2222 =+=+ dcba  (8) 

1
2222 =+=+ dbca  (9) 

as the transmit power constraints. The first condition ensures 

the transmission of equal average power at each symbol time, 

while the second condition ensures that equal average total 

power is transmitted for each symbol. A simple manipulation 

can show that the magnitudes of a and c should be equal for 

reduced complexity optimum detection. These equalities lead 

immediately to the fact that all the design parameters should 

have the same magnitude, i.e., 2/1==== dcba .

Now, without any loss of generality, we may set 

2/1== ca . This decreases the number of unknown para-
meters without affecting the coding gain. Then, the remaining 

parameter pair (b, d) can be optimized numerically leading to 

a full-diversity scheme with large coding gain. Such an opti-
mization has been performed using QPSK signaling and re-

sulted in a set of parameter pairs which gave a coding gain of 

2 independent from QAM constellation size. In light of the 

design criteria given in Section II, this directly ensures that the 

obtained code will have full diversity for any QAM constella-

tion size. Moreover, as shown in [4] and [14], such an STC 

with non-vanishing coding gain achieves the diversity-

multiplexing frontier. In the numerical illustrations we provide 

the example of [6] in which we have 

[ ] )24/()71()71( ++−= jb  and jbd −= .
Both of the above mentioned STCs fall into the class of 

linear dispersion codes [15] which can be written in the form 

=

+=
4

1

,, )(
k

kIkkRk jss BAX , (10) 

where Rks ,  and Iks ,  denote the real and imaginary parts of the 

symbol ks , respectively, and kk BA , , 4,,1=k , are 22 ×
complex-valued weight matrices of X. The matrices kk BA , , 

4,,1=k  have to be designed such that 

8)(tr
4

1

=+
=k

k

H

kk

H

k BBAA  (11) 

in order to conserve the total average transmitted power, 

where tr(·) denotes the trace of the enclosed matrix. With the 

constraint of equal average energy transmission for each 

symbol, (11) turns to 

2)(tr =+ k

H

kk

H

k BBAA  for all 4,,1=k . (12) 

It can be easily shown that the aforementioned STCs satisfy 

(12). Indeed, (12) is equivalent to the transmit power 

constraint (9) used in the design of Xnew. Furthermore, since 

the magnitudes of all the parameters are equal in Xnew, all the 
symbols will be transmitted with the same average power at 
each channel use. This property is unique to Xnew.

Now, in order to make a more detailed comparison, we use 

vector representation and introduce the following notation.  

First, define the column vectors [ ]Txxxx 22122111 ,,,=x ,

[ ]Tyyyy 22122111 ,,,=y  and [ ]Tzzzz 22122111 ,,,=z , which are 

obtained from stacking the columns of the matrices X, Y and 

Z, respectively, one after the other. Next, we define the 

corresponding real-valued column vector as 

{ } { } { } { } { } { }[ ]T

R xxxxxx 222221211111 Im,Re,,Im,Re,Im,Re=x  (13) 

It is known that any linear dispersion code in the form of (10) 

can be expressed as  

RR sGx = , (14) 

where Rs  collects the real and imaginary parts of the symbols 

from the symbol vector [ ]Tssss 4321 ,,,=s  as in (13). Here, the 

matrix G is called the real generator matrix of the STC.  

The Matrix C (XC) and the STC presented in [7] has the 

property that the generator matrix G satisfies 

8IGGGG == TT , (15) 

where IN denotes the NN ×  identity matrix. Therefore, the 

properties of the input signal s is not changed and the resulting 
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STC is said to have cubic shaping [3]. This also implies that 

the average power of the input symbol vector s remains 

unchanged whatever the structure of the signal. On the other 

hand, the property (15) is not satisfied with Xnew, hence, it 

does not have cubic shaping. To that end, in order to make a 

fair comparison between CX  and newX , we need to know the 

statistics of the input symbols. In fact, if the input symbols 

4321 ,,, ssss  are either non-zero mean independent symbols or 

correlated symbols, then, the performance of newX  will 

deviate from that of CX . However, since quite powerful 

interleavers are used in all current system specifications, it is 

reasonable to assume that the data symbols at the input of the 

space-time encoder will be uncorrelated. Hence, the average 

performance of the system will not be affected by the absence 

of property in (15). Indeed, the average power is conserved 
when the input symbols have no correlation, i.e., we have    

[ ] [ ] [ ] [ ]222
sssGGssG EEEE RR

TT

RR === ,

for both XC and Xnew.

IV. DECODING OF FR-FD 2×2 STCS

Now, we provide a comparison of the STCs in terms of 

decoding complexity. In [6], for the sake of simplicity, direct 

utilization of exhaustive search was described. Here, we will 

describe the SD and present the reduced complexity detector 

employing the SD. 

A. Sphere Decoding 

Utilizing the definition (13) for the column vectors y  and 

z , we can express the MIMO transmission in (1) as [16] 

RRR zsGHy += . (16) 

Here, H  is obtained from the channel matrix H  as 

( )**

2)2/1( EHEHIH ⊗+⊗⊗=  where ⊗  stands for Kro-

necker product and 
−

=
1

1

j

j
E . Then, the ML metric (6) 

can be rewritten as  

( ) 2

4321 ,,, RRssssD sGHy −= . (17) 

Minimization of (17) can be implemented using the SD algo-
rithm [17] which is more computationally efficient than the 

exhaustive search in most cases. To this end, the matrix GH

is first decomposed using QR decomposition as QRGH = ,

where Q is an 8×8 unitary matrix and R is an 8×8 upper trian-
gular matrix. Multiplying (16) from left-hand side with Q

H,

we rewrite the input-output relation as  

R

H

RR

H

R zQsRyQy +==~
. (18) 

Then, the SD finds 

2
minargˆ

RRR

R

sRys
s

−= . (19) 

The search procedure of this standard real SD should be 

performed by using a tree search with 8 levels. Now, using the 

special structures of its real generator matrix G and the upper 

triangular matrix R, we will show that Xnew lends itself to a 

reduced complexity implementation of the SD. 

B. Reduced-complexity detection 
Using the fact that the QR decomposition coincides with the 

Gram-Schmidt orthogonalization procedure applied to the 

columns of the matrix GH  (see [13] for more detailed 

discussion), it can be shown that the upper-triangular matrix R

appears to be 

=
224

1211

R0

RR
R , (20) 

where R11 and R22 are diagonal matrices, and 04 is a 4×4 zero 

matrix. This interesting property comes from the special 
structure of the real generator matrix G. Indeed, one can show 

that the real generator matrix of (7) can be decomposed as  

[ ]21 GGG = , (21) 

where each Gi is equivalent to the real generator matrix of the 

Alamouti scheme. This allows us to decouple the estimation of 

symbol pairs and simplify the receiver architecture. More 

formally, this allows the SD to be performed only for 4 levels 
and the SD finds 

2)8,5(

22

)8,5()8,5(

)8,5(

minargˆ
RRR

R

sRys
s

−= . (22) 

Here, we used the notation [ ]Tlk

lk xx ,,
),( =x  in which the 

symbols are collected from the vector x either in increasing or 

decreasing order of indices from k to l. Once the symbol 

vector )8,5(

Rs  is obtained using the reduced SD, the remaining 

symbols collected in )4,1(

Rs  are decoded simply as in the case 

of Alamouti scheme using symbol-by-symbol ‘Alamouti’ 
decoding. Moreover, since the matrix G is a combination of 

two ‘Alamouti-type’ real generator matrices, the decoding can 

be performed the other way round with the same complexity: 

By decoding in the reverse direction, the SD finds  
    

2)1,4(

11

)1,4()1,4(

)1,4(

minargˆ
RRR

R

sRys
s

−= , (23) 

and the remaining symbols in )5,8(

Rs  are obtained using 

symbol-by-symbol ‘Alamouti’ decoding. This simply allows 

evaluating soft log-likelihood ratios for all symbol bits with 

the same receiver architecture. This is particularly important if 

we need soft data for further decoding stages – which is the 

case in real system architectures.  

It is also worth noting that since the matrix R22 (resp., R11,

for the reverse detection order) is diagonal, the number of 

computation will be reduced in the SD process in (22) (resp. in 

(23)) compared to the standard SD computations with 4 level 

tree search. 
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V. NUMERICAL COMPARISONS

We now provide some performance comparisons between 
the aforementioned STCs in order to sustain our claims. Fig. 1 

shows the BER performance as a function of 0/ NEb , bE

denoting the average signal energy per bit, and provides 

comparisons between Xnew, namely, the new STC, and XC

(Matrix C) of WiMAX systems. The results are obtained for 

an uncorrelated Rayleigh fading channel with [ ] 1
2 =klhE  for 

all k, l, using full SD for XC and reduced complexity SD (cf. 

Section IV.B) for Xnew. It can be seen that Xnew gives 

essentially the same results as XC at substantially lower 

complexity. The small difference between the curves in Fig. 1 

can be interpreted as the performance loss due to the receiver 

complexity reduction. The performance curves for the STC 

proposed in [7] were not included for readability purposes. As 

the coding gains are very close to each other, intuitively, both 
are expected to give very close results. Indeed, we have 

observed that the performance curves of Xnew and the one 

proposed in [7] almost fits on each other. Such comparisons 

also exist in [13] and coincide with our observations. 

Fig. 1: Performance comparison between XC with full SD and 

Xnew with reduced SD. 

The complexity reduction can be observed from Fig. 2, 

where the number of visited nodes [18] are plotted as a 

function of SNR 0/ NEb . As seen in Fig. 2, the new STC 

results in a considerable reduction in the number of 

computations. Moreover, since the number of visited nodes 

has a large impact on the required chip area per throughput 

[18], the new STC reduces the hardware complexity without 

any noticeable performance degradation. 

We shall now compare the performance of Xnew with that of 

XC when the same suboptimum receiver is used for both. In 

order to observe such a comparison, for both XC and Xnew, we 

initially use SDs with tree search levels of 2, 4 and 6, and then 

employ zero-forcing decision-feedback equalization (ZF-DFE) 

for the rest of the symbols. In Fig. 3, we depict the 

performance curves for QPSK where we employed ZF-DFE 

for detecting 2, 4 and 6 real symbols, respectively. Notice that 

ZF-DFE of 2 and 4 symbols corresponds to the optimum 

detection for Xnew. For similar detection complexities, Xnew

outperforms XC about 2.4 dB at the BER of 10-3 when a 2-

stage ZF-DFE is used and this gain increases to about 8.1 dB 

when a 4-stage ZF-DFE is used. On the other hand, when we 

use SD only for the first two real symbols and detect the rest 

using ZF-DFE, neither of the two STCs benefits from the 

available diversity. For low SNR values, Xnew provides better 
performance than XC, while for high SNR values XC slightly 

outperforms Xnew. Similar conclusions can be drawn for 16-

QAM as depicted in Fig. 4. 

Fig. 2: Average number of visited nodes in full SD used to 

decode XC and reduced SD used to decode Xnew.

Fig. 3: Performance comparison between XC and Xnew with   

the same detector complexity (QPSK). 
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Fig. 4: Performance comparison between XC and Xnew with the 

same detector complexity (16-QAM). 

VI. CONCLUSIONS 

In this paper, we have analyzed the MIMO schemes of IEEE 

802.16 specifications and made a comparison between the 

existing FR-FD 2×2 STCs and other possible candidates. The 

results indicated that the recently proposed schemes achieve 

the performance of the existing STC, while substantially 

reducing the optimum decoder complexity. Furthermore, it 
was also observed that when used at similar decoder 

complexity, the new STCs may bring a considerable 

performance gain compared to the existing STCs. Thus, the 

new STC designs with reduced decoder complexity open up 

new perspectives for future evolutions of WiMAX systems, as 

well as for other broadband wireless systems. 
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