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Abstract

Image registration has been proposed as an automatic method for recov-
ering cardiac displacement fields from Tagged Magnetic Resonance Imaging
(tMRI) sequences. Initially performed as a set of pairwise registrations, these
techniques have evolved to the use of 3D+t deformation models, requiring
metrics of joint image alignment (JA). However, only linear combinations
of cost functions defined with respect to the first frame have been used. In
this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators
of the α-entropy (Hα) to measure the joint similarity between frames, and
to combine the information provided by different cardiac views in an uni-
fied metric. Experiments performed on six subjects showed a significantly
higher accuracy (p < 0.05) with respect to a standard pairwise alignment
(PA) approach in terms of mean positional error and variance with respect
to manually placed landmarks. The developed method was used to study
strains in patients with myocardial infarction, showing a consistency between
strain, infarction location, and coronary occlusion. This paper also presents
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base mid apex long

Figure 1: Example of the tMRI images of the heart. From left to right: basal, medial,
apical, and longitudinal planes of the left ventricle (LV). The top row corresponds to
End-of-Diastole (ED) and the bottom row to End-of-Systole (ED).

an interesting clinical application of graph-based metric estimators, showing
their value for solving practical problems found in medical imaging.

1. Introduction1

Tagged Magnetic Resonance Imaging (tMRI) is currently the reference2

modality for obtaining regional information on myocardial deformation. Since3

its introduction by Zerhouni et al. (1988) for cardiac function assessment, this4

technique has rapidly evolved due to advances in image acquisition, image5

processing, and clinical applications. Figure 1 shows an example of images6

of the heart obtained with tMRI. The continuous efforts of researchers to7

obtain a completely automatic and reliable method for recovering cardiac8

motion and deformation, have generated interest in this modality. Pai and9

Axel (2006) have presented a review of technical and clinical advances in this10

arena.11

The estimation of cardiac displacement fields from tMRI sequences can be12

formulated as an image registration problem (Chandrashekara et al., 2004a;13
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Ledesma-Carbayo et al., 2005; Petitjean et al., 2003; Radeva et al., 1997;14

Shen et al., 2005), since it requires finding a point correspondence between15

component frames of the sequence. The application of registration techniques16

based on information theory (IT) (Chandrashekara et al., 2004a; Petitjean17

et al., 2003) is an interesting approach to cope with the non linear changes18

in tag intensity along the cardiac cycle. However, the evolution of trans-19

formation models towards the use of 3D + t models (Chandrashekara et al.,20

2004b; Ledesma-Carbayo et al., 2005) needs the definition of a metric of joint21

alignment to optimize simultaneously the transformation parameters. This22

problem can be circumvented by using a linear combination of the pairwise23

metrics between each phase and the reference (Chandrashekara et al., 2004b;24

Ledesma-Carbayo et al., 2005), but this approach still measures the image25

similarity with respect to the first phase and fails to exploit the temporal26

correlation between phases.27

In this paper, we have explored an extension of IT-based registration tech-28

niques that finds the optimal transformation parameters of a 3D+t model by29

maximization of a metric of joint frame alignment. The main challenge in30

computing such metrics is the estimation of the probability density function31

(PDF) from a set of samples in a high-dimensional space (in our case, the32

sequence length). Neemuchwala et al. (2007) have recently presented estima-33

tors of α-Mutual Information MIα based on kNNG when high dimensional34

features are employed, and the use of histograms is not possible due to the35

curse of dimensionality (Bellman, 2003). Ma et al. (2007) have applied these36

estimators for computing deformations in a synthetic sequence of tumor im-37

ages, and introduced joint similarity extensions of MIα. More recently, Leo-38

nenko et al. (2008) have presented a class of estimators of Hα based on the39

kth nearest-neighbor distances computed from a sample of N i.i.d. vectors40

with distribution f . In this article, we have extended kNNG estimators of41

Hα to quantify the joint alignment of multiview sequences, and applied it to42

tMRI sequences to recover cardiac displacement fields. For quantitative eval-43

uation of our method, a comparison was run against the method proposed by44

Chandrashekara et al. (2004a) for 6 healthy subjects. Results show a signifi-45

cant decrease in positional error with respect to manually placed landmarks.46

The estimated strains were compared with those obtained by cine harmonic47

phase (HARP) magnetic resonance imaging as the ground truth. For as-48

sessing consistency with other modalities, we have studied two patients with49

myocardial infarction and compared the strain maps with the information50

provided by delayed-enhancement MRI of Gadolinium (deMRI) and cardiac51
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catheterization.52

2. Method53

2.1. Dataset54

The database used for the experiments consisted of 6 healthy subjects55

(3 females and 3 males between 24 and 33 years old) and 2 patients (males,56

54 and 70 years old) with transmural infarction of the myocardium. For57

all subjects, cine MRI (cMRI), tMRI, and deMRI images were acquired in58

breath-hold by using a General Electric Signa CV/i, 1.5 T scanner (General59

Electric, Milwaukee, USA). Healthy subjects were also imaged with deMRI60

to have a proof of their clinical status. The values of acquisition parameters61

were: slice thickness = 8mm, in-plane resolution = 0.78mm × 0.78mm, gap62

between slices = 0mm, TR=7.99ms, TE=4.43ms, flip angle = 20 degrees,63

and FOV=40cm×40cm. cMRI and tMRI sequences were acquired at 3064

phases per cardiac cycle. tMRI images with a grid pattern of 5mm (tag65

spacing) were acquired by applying a Spatial Modulation of Magnetization66

(SPAMM) sequence. An expert clinician assessed the presence of infarction67

from deMRI images, and classified the 17 standard segments (Cerqueira et al.,68

2002) according to the transmurality of necrosis in the myocardial wall into69

four categories: i) 0% (healthy segment) ii) <50%, iii) 50-75% and iv) >70

75%. For patients with myocardial infarction, cardiac catheterization was71

also performed to assess coronary occlusion.72

2.2. Deformation model73

Figure 2 presents a diagram of the method of joint alignment. This figure74

shows that the deformation of the heart is modeled by a set of transformations75

defined relative to its undeformed state (ED), which simplifies the compu-76

tation of metric derivatives and Lagrangian strains. The use of Lagrangian77

strains is more common than natural strains1 in most of current imaging78

techniques (US, MR, SPECT, angiography) (Sutherland et al., 2006).79

Typically, a tMRI study consists of two acquisitions performed in short80

axis (SA) and long axis (LA), which provide complementary information81

about the cardiac deformation. This results in two image sequences ISA(x, t)82

1The natural strain εN is defined as the integral over time of the instantaneous strain,

i.e. εN =
∫ t2

t1
dL
L
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Figure 2: Cardiac motion estimation method. Transformations T0i mapping points in ED
(top) to phase i (bottom) are optimized simultaneously to minimize the Hα of all phases.
The inputs to the optimizer are the set of transformations T and the metric of similarity.
This metric takes in turn all images of the sequence as input.

and ILA(x, t) of P phases, which provide the voxel intensity at spatial po-83

sition x and time t. Cardiac deformation was modeled as a set of P − 184

B-Splines T (x) = {Ti(x)}i=1:P−1 transformations defined on ISA(x, 0). The85

corresponding deformations in LA can be obtained from T (x) by composi-86

tion of T (x) with the rigid transformations defining the relationship between87

both coordinate systems, as described in Section 2.6.88

2.3. Joint vs pairwise alignment89

We explain the advantage of joint registration over pairwise registration90

by adopting a generative model representation of the image registration prob-91

lem. A generative model for the image registration problem is obtained by92

expressing the log posterior probability of the deformation (B-spline param-93

eters B) given the image sequence (Learned-Miller, 2006):94

ln p(B|Z) = −H(Z|B)N + ln p(B) (1)
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where N is the total number of pixels, Z is a random vector of dimension P ,95

called a pixel stack, whose realizations are the time series of grey levels at a96

specified pixel location over successive image volumes in the time sequence.97

Each realization z ranges over the set {0, 2Q}P where Q is the number of bits98

quantifying image intensities. In Equation 1, p(B) is a prior on the deforma-99

tion, which can be discarded by assuming a uniform probability distribution100

of the transformation parameters.101

The conditional entropy on the right hand side of Equation 1 can be em-102

pirically estimated from Shannon entropy using (Cover and Thomas, 1991):103

H(Z|B) =
∑

i

p(Z(x) = zi|B) ln p(Z(x) = zi|B)

≅ −N−1
∑

i

Ni ln Ni + ln N
(2)

where Ni =
∑

j:Z(xj)=zi
is the number of pixel locations where the associated104

vector Z(xj) equals grey level zi and satisfies
∑

i Ni = N .105

The problem, of course, is that there are too few samples to reliably106

estimate the log posterior (1) due to the curse of dimensionality. Further-107

more, even if one wanted to compute the log posterior, the required memory108

explodes as P increases (memory scales as 2P ·Q). This is the justification109

of alternative direct methods of estimating the entropy. The MST/kNNG110

alpha-entropy estimators converge in probability to H(Z|B) for large N and111

P . This is because for large N the alpha-entropy estimator converges to the112

alpha-entropy, by the law of large numbers, and for large P , α = (P−1)/P ≈113

1, and the alpha-entropy is approximately equal to the Shannon entropy.114

Therefore, in light of the representation (1) of the log posterior density,115

the PA approach corresponds to making an approximation to the entropy116

function defining the log posterior H(Z|B) ≈
∑P−1

j=0 H(Ij, Ij+1|B) where Ij117

denotes the j-th image volume in the sequence. Such approximation to the118

full joint entropy is expected to be poor when a frame of the image sequence119

is correlated to more than just its neighboring frames, or more generally120

when pairwise independence of the sequence does not imply joint indepen-121

dence. When the decomposition of the joint distribution into pairwise suc-122

cessive products gives a poor approximation to the true log posterior (1),123

the PA method will perform poorly. For example, using standard arguments124

of mathematical statistics, it can be shown that in the limit as N becomes125

large, minimization of the pairwise entropy will give a biased estimator of126
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the deformation parameters B, equal to the least false estimate of B (Ripley,127

1996).128

2.4. kNNG entropy estimator129

Given a random vector Z = [Z1 · · ·ZP ]T in R
P , the Rényi entropy Hα of130

order α of Z is defined as (Rényi, 1961):131

Hα(Z) =
1

α − 1
log

∫
fα(Z1, ..., ZP )dZ1...dZP (3)

where f(Z1, ..., ZP ) is the PDF of Z.132

If Z = {z1, . . . , zN} are the observed data (realizations of Z), a kNNG133

can be formed by all points zi=1:n and the edges eik = zi − ẑik with their k134

nearest points N (zi) = {ẑi1, . . . , ẑik}. An interesting property of this type of135

graph is the existence of a relationship between its length and the Hα of its136

component points:137

lim
N→∞

log

(
Lγ,k(Z)

Nα

) 1

1−α

= Hα(Z) + ckNNG (4)

where Lγ,k(Z) is the length of the graph defined as:138

Lγ,k(Z) =
∑

z∈Z

∑

ẑ∈N (z)

‖z− ẑ‖γ (5)

and γ = P ∗ (1−α). In Equation 4, ckNNG = (1−α)−1 log βd,γ,k, where βd,γ,k139

is a known constant that depends only on d, γ, and k (Yukich, 1998).140

Equation 4 suggests the following estimator of Hα(Z):141

Ĥα(Z) =
1

1 − α



log
1

Nα

∑

z∈Z

∑

ẑ∈N (z)

‖z − ẑ‖γ − logβd,γ,k



 (6)

The demonstration of the convergence properties of kNNG estimators of142

entropy is out of the scope of this paper, but the reader is referred to Leonenko143

et al. (2008), Redmond and Yukich (1996), and Hero et al. (2003) for further144

reading.145

There is a difference between the entropy estimation approach taken146

by Learned-Miller (2006) and the approach adopted in this paper. Learned-147

Miller assumes that intensities are independently and identically distributed148
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(i.i.d.) both over all pixel locations and over all images inside each pixel149

stack. Using these two assumptions, the problem is reduced to the compu-150

tation of the entropy of a scalar random variable. While the assumption151

of independent images inside the pixel stack Z is reasonable in the case of152

independent subjects, it can not be maintained in our case since we focus153

on temporal sequences where consecutive images are expected to be highly154

dependent. As a consequence, entropy must be estimated in a space of high155

dimensionality without any constraint about component independence in Z.156

The estimator in Equation 6 only assumes i.i.d realizations of Z, and there-157

fore is suitable for our application.158

A drawback of the estimator given by Equation 6 is the high computa-159

tional cost of the graph construction, which hampers the parameter opti-160

mization. In the Appendix 6, we present an analytical expression for the161

gradient of Equation 6 reducing significantly the calculation time.162

2.5. Self matches163

Equation 6 is numerically unstable when any of the distances ‖z − ẑ‖ is164

equal to zero, i.e. in case of self matches. If Z was continuous, their realiza-165

tions would cover the whole range of possible values, without any repetition.166

However, digital images are quantized and represented by a finite number of167

bits, and there exists the possibility of finding multiple occurrences of a spe-168

cific value z∗ in Z. To circumvent this problem, Neemuchwala et al. (2007)169

added uniform noise to each realization, thus dispersing features inside a170

radius-limited neighborhood. Even when this approach effectively solves the171

problem, it might generate arbitrarily large values in the estimated PDF, and172

introduces a stochastic component in the cost function that could interfere173

with the optimization process.174

In this paper, we have solved the problem of multiple occurrences by175

searching for nearest neighbors at a distance strictly positive, and divid-176

ing the distance ‖z − ẑ‖ by the number of occurrences oZ(z) of z in Z.177

This corrects the approximation of the probabilities by using the volume178

of the Voronoi cell proposed by Neemuchwala and Hero (2005) in case of179

self matches. Even when this requires a second nearest neighbor search, the180

additional computational cost is negligible (Mount, 2006).181

2.6. Combination of views182

A tMRI study typically contains SA and LA views of the heart that183

provide complimentary information about the cardiac deformation. An al-184
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ternative to include both views in the registration process is a linear combi-185

nation of the similarity metrics measured independently for each view (Chan-186

drashekara et al., 2004a). However, the application of this strategy would be187

in conflict with the underlying ideas of this paper, which studies a manner188

of quantifying the alignment of a sequence as a whole. To obtain an unique189

metric valid for multiple views and multiple frames, each view can be consid-190

ered a source of realizations of the same random vector Z. This means that191

pixel stacks zsa and zla taken from SA and LA are considered as realizations192

of the same variable Z, and can thus be mixed into a single set of samples193

Z. Under this hypothesis, Equation 3 remains unchanged for registration of194

multiple view sequences, integrating in this way information from different195

time points and views into the same unified framework.196

By convention, SA has been taken as the reference space for defining the197

transformation. Thus, the coordinates of samples in LA must be mapped198

to SA to be transformed. These transformed coordinates need then to be199

mapped back to LA for computing the pixel stack zla. Therefore, it is nec-200

essary to know the transformations from SA to LA (Tsl) and from LA to201

SA (Tls). These transformations are provided by the DICOM format in202

the form of image origin osa
w and orientation Dsa

w = [isa jsa ksa] (ola
w and203

Dla
w = [ila jla kla]) with respect to the coordinate system of the scanner. Two204

generic points xsa
i and xla

i in image coordinates can be expressed in world205

coordinates as :206

xsa
w = osa

w + Dsa
w xsa

i (7)

xla
w = ola

w + Dla
wxla

i (8)

When Equations 7 and 8 refer to the same physical point, we can equate207

the right sides and obtain the following transformations between views:208

Tsl : xsa
i → xla

i =
(
Dla

w

)T
Dsa

w xsa
i +

(
Dla

w

)T (
osa

w − ola
w

)
(9)

209

Tls : xla
i → xsa

i = (Dsa
w )T

Dla
wxla

i + (Dsa
w )T

(
ola

w − osa
w

)
(10)

2.7. Strain estimation210

The mechanical impairment induced over time due to myocardial infarc-211

tion is an important issue that can be assessed through tMRI (Axel et al.,212

2005). The infarcted region of diseased myocardium permanently loses its213
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ability to contract, and this is manifested in an altered motion during the214

cardiac cycle. Therefore, there should be a correlation between the local-215

ization of the infarction and corresponding local strains. To study this cor-216

respondence, strain was computed from the recovered displacements fields217

to discriminate between active healthy myocardium and passively moving218

infarcted tissue.219

The set of transformations T allows to compute the displacement field220

u(x, t) as a function of position x at ED and time t. Since the assumption of221

small deformations is too strong for cardiac deformations, the Green strain222

tensor cannot be applied, and the Green-Lagrange strain tensor must be used223

instead. The Green-Lagrange strain tensor is defined as (Belytschko et al.,224

2001)225

E =
1

2

(
∇u + ∇uT + ∇uT∇u

)
(11)

Diagonal elements Eii of E are normal strains, i.e. strains along each direction226

in the rectangular coordinate system. Given the geometry of the heart, it is227

preferable to use a local coordinate system composed by radial, circumferen-228

tial, and longitudinal directions (Figure 3). To estimate the epicardial surface229

necessary to obtain the radial direction, a manual segmentation of the SA im-230

age at ED was performed followed by the application of a variant (Schroeder231

et al., 1998) of the original marching cubes algorithm (Lorensen and Cline,232

1987).233

The normal strain along an arbitrary direction d can be obtained from234

Equation 11 as (Petitjean et al., 2005):235

Edd = dT Ed (12)

Radial (Err), circumferential (Ecc), and longitudinal (Ell) normal strains can236

be obtained by replacing d with directions r, c, and l, respectively.237

The radial direction is defined outward and perpendicular to the epicar-238

dial surface. The circumferential direction is in the short-axis plane (perpen-239

dicular to the long axis), parallel to the epicardial surface, and counterclock240

wise, as viewed from the base. The longitudinal direction is obtained as the241

cross product of radial and circumferential directions, tangent to the epicar-242

dial surface. In this way, directions were defined to create a right-handed243

system.244
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(a) (b) (c)

Figure 3: Local coordinate system used for strain analysis. Radial (r), circumferential
(c), and longitudinal (l) directions for the point p are shown in the longitudinal (a) and
transverse (b) views of the LV. (c) Example of radial directions obtained from the epicardial
and endocardial surfaces of the LV.

2.8. Implementation issues245

A registration-based method is composed by a transform, a metric, an246

interpolator, and an optimizer. In the following we describe the parameters247

used for each of these components in this paper. Unless the contrary is248

specified, the implementation of the method was performed by using the249

Insight Toolkit (Ibanez et al., 2008), and its component classes.250

For the transformation (Section 2.2), the only parameters to specify are251

the spacings between control points in x, y, and z directions. We have set252

these spacings equal to the tag spacing (5-7mm for our dataset). A larger253

spacing could be insufficient to describe the deformations provided for all254

tags (for example, if the spacing was twice the tag spacing there would be255

two control points to fit three tags). On the other hand, finer grids add256

unnecessary degrees of freedom to the transform (there are not material257

points to track between two adjacent tags) and make the optimization process258

more difficult. This was confirmed experimentally.259

Regarding the metric (Equation 6), the value of α was set to 0.9, which260

implies a γ value of 1.0 when considering 10 frames as the length of systole.261

The number N of points z (i.e. #Z) was set to 0.2 × Nmax, Nmax being the262

number of points in the region of interest. The construction of the kd-tree263

and the nearest neighbor search was performed by using the approximate264

nearest neighbors (ANN) library (Mount, 2006). The use of low k-values (for265
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example k = 1) led to misregistration of the sequences used in this paper,266

probably a consequence of a noisy estimation of the entropy. The use of267

several neighbors makes the entropy estimator more robust to noise, since268

the addition of the distances to the considered point in in Equation 6 tends to269

cancel the noise in the measurements. A number k = 20 of nearest neighbors270

yielded satisfying results.271

For interpolation, we have used a linear interpolator. For optimization,272

we have used a gradient descent method with learning rate η = 1mm and273

a maximum number of iterations Nit = 200. The range of variation of274

the transformation parameters typically increases from end-systole to end-275

diastole, which creates optimization problems when starting from an identity276

transform. This type of problem may be solved by setting different scales277

to the parameters according to a priori information about the specific prob-278

lem (Ibanez et al., 2008), but this solution led to a sequence misregistration.279

Therefore we reduced the range of variation of the parameters for all frames280

by initializing the optimizer with the result of a pairwise registration of each281

frame with respect to the first one (P = 2). This solution allowed us to ob-282

tain good results after joint registration, and it does not assumes any priors283

on the deformation.284

285

3. Results286

3.1. Entropy evolution287

As the Hα is minimized during the registration process, the distribution288

of the pixel stack Z after registration should be more compact with respect to289

the original data. To visualize this expected change in distribution, we have290

performed a reduction of dimensionality by applying a Principal Components291

Analysis (PCA) (Rao, 2002) and projected Z in the subspace spanned by the292

first three principal directions qi=1:3. Figure 4 shows that the point distri-293

bution before registration presents a larger variance than after registration,294

equivalent to a state of higher entropy, as expected.295

3.2. Error analysis296

Figure 5 presents an example of the deformation fields obtained by joint297

image registration, showing consistency with cardiac physiology. To compute298

accuracy, tag intersections were marked in the systolic phases of 6 healthy299

subjects by an expert clinician. Only systolic phases were marked since the300
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Figure 4: Distributions of the pixel stack Z in the subspace spanned by the first three
principal component directions qi=1:3. Top: before registration; bottom: after registration.
Ellipsoids have semi-axis lengths equal to the standard deviation along the corresponding
principal vectors q.
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(a) (b) (c)

Figure 5: Example of displacement field at ES (relative to ED) for a healthy volunteer at
(a) base, (b) mid, and (c) apex. The displacement field is plotted on the SA images at
ED.

Table 1: p-values obtained from the Mann-Whitney test performed on the MSE errors for
JA and PA methods. Results are provided for equally spaced time instants along systole.
Bold values mean rejection of the null hypothesis at 5% significance level.

time (relative to systole) 14% 28% 43% 57% 71% 86% 100%
p-value < 0.01 0.01 < 0.01 0.01 0.01 0.01 < 0.01

images were acquired by using SPAMM, and the strong fading effect of this301

sequence makes difficult to identify tags beyond ES. The resulting transfor-302

mations T ∗ were used to propagate the points in ED to the remaining phases,303

and compare to manual measurements. Tag intersections were marked in SA304

at base, mid, and apex, whereas only the central plane was used in LA. On305

average, 24 tag intersections were tracked from ED through systole.306

To study the differences with respect to pairwise methods, we have im-307

plemented the method proposed by Chandrashekara et al. (2004a) by using308

the Insight Toolkit (Ibanez et al., 2008), and compared the Mean Square Er-309

rors (MSE) along systole (Figure 6). A lower MSE was obtained for almost310

all cardiac phases, and a Mann-Whitney test (Altman, 1997) was performed311

to assess the statistical significances of these differences. The normality of312

the distribution was verified at level 0.05 by using a Lilliefors test (Lilliefors,313

1967), and the independence of population ensured by applying each method314

to a different set of three sequences. Table 1 shows rejection of the null315

hypothesis at 5% significance level for almost all phases, meaning that the316

differences in MSE are statistically significant.317

Differences in error variance (Figure 7) were also studied to assess the318
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Figure 6: MSE errors between manually placed landmarks at tag intersections, and prop-
agated landmarks for six healthy volunteers. JA = joint alignment; PA = pairwise align-
ment.
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Table 2: p-values obtained with a F-test performed on error variances for JA and PA
methods. Bold values mean rejection of the null hypothesis of equal variances (p=0.05).

t (relative to systole) 14% 28% 43% 57% 71% 86% 100%
p-value 0.29 0.04 < 0.01 < 0.01 < 0.01 0.04 0.01

Figure 7: Box plots of the MSE errors showing the difference in variance between joint
alignment (JA) and pairwise alignment (PA).

uniformity of the registration error across regions. It is desirable that regis-319

tration accuracy be independent of the displacement magnitude, which varies320

across the myocardium during the cardiac cycle. The error uniformity can321

be measured by computing its variance. Table 2 shows the p-values obtained322

from a F-test (Altman, 1997) performed on the variances for each phase. As323

in the previous Mann-Whitney test for mean error values, each method was324

applied on different sequences to ensure independence.325

Finally, the JA method was compared to manual measurements by using326

Bland-Altman plots (Altman, 1997). Figure 8 shows a negligible bias, and a327

symmetric error distribution around it.328

3.3. Computational complexity and speed329

Registration based on graphs suffers from a high computational cost that330

increases with the number of feature realizations. The reduction in complex-331

ity by analytical computation of the gradient of the cost function is especially332

advantageous when using transformations with high number of parameters.333

For example, if B-Splines are employed, even a coarse grid over the LV of334

8×8×8 control points contains 1,536 parameters, and the gradient estimation335

requires 3,072 function evaluations, i.e. building 3,072 graphs. The use of336
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Figure 8: Bland-Altman plots of displacements along x (a), y (b), and z (c) axes (∆ux,∆uy,
and ∆uz). Solid and dashed lines show respectively the mean value and the 95% confidence
interval of point displacements.
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Figure 9: Average registration time as a function of the number of samples used for
estimating Hα (expressed as percent of the number of voxels of the ROI containing the
LV)

analytical expressions resulted in an average computation time of 45 min for337

a PC with a 64 bits processor Intel Itanium at 1.5 GHz running Linux Suse338

9.2. Figure 9 shows a linear increase in computation time with the number339

of points used to estimate Hα (the size of Z).340

3.4. Strain in healthy subjects341

Strain analysis along systole was performed by dividing the LV into the342

standard 16 segments of the American Heart Association (AHA) (Cerqueira343

et al., 2002) (the 17th, apical segment is optional). The average and standard344

deviation of radial, circumferential, and longitudinal strain were computed345

for the 6 healthy subjects. The strain analysis was constrained to systole346

because of the same data acquisition issues mentioned in Section 3.2. Fig-347

ure 10 shows the mean strain along systole for healthy subjects. Radial strain348

presented the highest variability in agreement with previous reports (Moore349

et al., 2000; Petitjean et al., 2004). The strain sign is consistent with the350

heart physiology: during systole there is a radial thickening (positive strain),351

and circumferential and longitudinal shortening (negative strain).352

Our method was compared to cine harmonic phase (HARP) magnetic353

resonance imaging method (Osman et al., 1999) as the ground truth (Fig-354

ure 11). The datasets were analyzed at the Johns Hopkins University using355
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Figure 10: Mean strain over systole for healthy subjects estimated with our method. Top
row: radial strain; middle row: circumferential strain; bottom row: longitudinal. Time is
expressed as percent of systole.

Diagnosoft2, a state-of-the-art software for cardiac image analysis.356

3.5. Strain in myocardial infarction357

To assess consistency of the results with expected deformations in patho-358

logical cases, a strain analysis was performed on two patients with myocardial359

infarction. Figure 12 shows the infarction location, regions at risk, and cir-360

cumferential strains for these patients. This analysis consisted in a segment-361

to-segment comparison of circumferential strain with respect to the normal362

subjects. The choice of circumferential strain for comparison is due to the363

small intersubject variability of healthy subjects as compared to radial and364

longitudinal strain. This makes easier the detection of any deviation in strain365

with respect to normal values. Figure 12 shows that for patient #1 the largest366

deviations with respect to normality are found in segments BI, MI, and AI,367

coinciding with the infarction location at the inferior area of the LV. Seg-368

ments BA, MA, and BAS showed an increased strain on the opposite side369

2http://www.diagnosoft.com
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Figure 11: Mean strain over systole for healthy subjects estimated by using HARP. Top
row: radial strain; bottom row: circumferential strain. Time is expressed as percent of
systole. Longitudinal strains are not included because Diagnosoft processes short-axis
images only.

of the infarction, which could be explained as a compensatory mechanism of370

healthy segments to maintain the systolic function close to normal level. In371

patient #2, all infarcted segments presented a lower strain with respect to372

the control group. Even when the lateral wall had no evidence of infarction373

according to deMRI, the circumflex artery (the artery feeding this region)374

presented a 75% of occlusion, which could explain the low strains obtained375

for this region.376

4. Discussion377

The MSE with respect to manual measurements obtained by JA was378

shown to be significantly lower than for the PA approach. The p-values ob-379

tained from the Mann-Whitney test (Table 1) show significant differences380

at 5% level between the errors obtained with PA and JA for most of the381

analyzed time points. The simultaneous parameter optimization guided by382

a joint metric suggested a uniform error distribution over time, but Figure 6383

shows an increase in the MSE over time. To find an explanation to these384

results, manual measurements were repeated for two sequences to measure385

the intraobserver error over time. Figure 13, shows an increase in this er-386

ror, meaning that intersections are more difficult to define for phases close387

to ES. This could be a consequence of the out-of-plane motion (tag inter-388

sections disappear from a slice), and the presence of artifacts produced by389
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Transmurality % Coronary Largest ∆Ecc

occlusion wrt. controls

Pa #1

Pa #2
(a) (b) (c)

Figure 12: Relationship between infarction location, coronary occlusion at risk, and cir-
cumferential strains for the patients with MIA. (a) Transmurality of necrosis classified into
four categories: i) 0% (healthy segment) ii) <50%, iii) 50-75% and iv) > 75%. (b) Percent
of occlusion of the corresponding coronary artery. (c) Highest difference in circumferential
strain with respect to the mean of the control group along systole. Differences lower than
the standard deviations were arbitrarily set to zero.

off-resonance and velocity-induced phase discontinuities (Kim et al., 2003)390

(Figure 14). Therefore, there are some points in the myocardium for which a391

correspondence cannot be found for all time points, which hampers an accu-392

rate recovery of deformation. The availability of real 3D acquisitions (Rutz393

et al., 2008) could contribute to flatten out the error over time, since out-of-394

plane motion would not affect the tag pattern in this case.395

The initial pairwise registration of our method only provides a coarse396

initialization aiming to set the parameters inside the region of capture of397

the joint metric. After this initialization, the mean error is approximately398

25% higher than the error provided by the method by Chandrashekara et al.399

(2004a) (1.32±0.12mm. and 1.06±0.12mm. respectively). After joint regis-400

tration the error is 10% lower with respect to the same method of reference401

(0.95 ± 0.05mm.).402

In this paper, the strain analysis was constrained to systole only because403

21



20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

systole (%)

rm
s
 e

rr
o
r 

(m
m

)

Figure 13: Intraobserver MSE error of manually placed landmarks at tag intersections.

Figure 14: Tag distortion and its influence on the intraobserver error. A magnification of
tags shows an ambiguity in point correspondence between ED (left) and ES (right) images.
For the cross and circle at ED, there are two possible corresponding points at ES.
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the tag fading precludes an accurate strain estimation beyond ES. Tag fad-404

ing is quite strong in images acquired using SPAMM, and other sequences405

like CSPAMM have been developed to reduce this problem (Fischer et al.,406

1993). A priori, there are no apparent problems preventing the application407

of the presented method to the whole cardiac cycle. Similar data acquisition408

issues explain the exclusion of the right ventricle (RV) of the analysis. The409

minimum tag spacing provided by the scanner used in this paper was not410

sufficient to calculate strains accurately in the RV, but it could be included411

in the analysis in case of suitable image resolution is available.412

There is an underestimation of the strain values reported in this paper.413

The first frame of the sequence is usually discarded since the blood is still414

magnetized in ED, and because of the presence of artifacts similar to those415

produced by off-resonance and velocity-induced phase discontinuities (Kim416

et al., 2003). As a consequence, the estimated strain values are lower than417

the real ones, and this could partially explain the differences found with the418

reported values in the literature. In our data, there are 10 frames during419

systole (in average), and therefore the discarded frames represent a loss of420

10% approximately.421

The strain values reported in the literature are very variable, which makes422

difficult a direct comparison to our results. This variability is a consequence423

of differences in the datasets and the estimation methods. An issue frequently424

disregarded is the presence of respiration artifacts and their implications on425

cardiac segmentation. Even when in this paper sequences presenting severe426

artifacts of this type were discarded, this problem is still present to some de-427

gree in all sequences, producing random local changes in the surface curvature428

(and therefore in the radial direction). On the contrary, circumferential direc-429

tion is always in the plane of image acquisition, and does not change among430

subjects, which could explain the low variability of strain in this direction.431

Some methods to remove respiration artifacts in cMRI have been proposed432

(Chandler et al., 2006; Lötjönen et al., 2004), but they need to be modified433

for tMRI images. A possibility is to apply tag removal methods (Quian et al.,434

2007), before using the previously mentioned techniques.435

Figures 10 and 11 show that HARP provides similar results with respect436

to the circumferential strain. However, the radial strain estimated by HARP437

shows some inhomogeneities over the left ventricle, with negative values in438

the inferior and inferolateral regions. In comparison, the presented method439

provided a more homogeneous distribution of the radial strain over systole,440

which is more consistent with the current knowledge of the cardiac physiology.441
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Note that the range of variation of the strain values is similar for HARP442

and our method (the color scales used in Figures 10 and 11 are exactly the443

same). The inclusion of the LA view is one of the sources of the differences444

obtained with respect to HARP, but it’s not the only one because our method445

incorporates temporal information as well. Based on the experiments we have446

performed, we are unable to attribute the differences to a single source. We447

have compared both methods as a whole and a further analysis should be448

performed to fully answer this question.449

Preliminary tests on patients with myocardial infarction showed an agree-450

ment between the recovered and expected strain. Full correspondence be-451

tween infarcted regions and low strain values was found, in agreement with452

previous results from studies with 2D US (Becker et al., 2006; Chan et al.,453

2006; Jurcut et al., 2008; Sachdev et al., 2006; Vartdal et al., 2007; Zhang454

et al., 2005) and MRI (Garot et al., 2004; Geskin et al., 1998; Korosoglou455

et al., 2008; Spottiswoode et al., 2007). These experiments are only illustra-456

tive, and show consistent strains values compared to other modalities.457

5. Conclusions458

In this paper, we have used JA of tMRI sequences for cardiac motion es-459

timation, motivated by the promising results reported for methods based on460

information-theoretic metrics, and from a probabilistic point of view in Sec-461

tion 2.3. To cope with the high computational cost of the kNNG estimators462

of Hα, an analytical expression for metric derivatives was obtained, result-463

ing in a O(N log N) complexity, which reduces drastically the registration464

time. The strategy to combine different views performed correctly, resulting465

in a simple way of integrating their information into a unified metric that466

measures multiphase and multiview similarity in image sequences. Results467

showed significantly lower mean errors and variances when compared to a468

standard PA approach. Strain values corresponding to healthy subjects were469

similar to those reported in the literature. However, the lack of standardiza-470

tion, and the high number of sources of variability, make a direct comparison471

difficult. Strain values for patients with myocardial infarction showed an472

excellent visual correlation with infarction location and territories at risk.473

Even when these results are encouraging, experiments need to be extended474

to a larger population to confirm and generalize clinical conclusions. In this475

paper, we have shown an interesting clinical application of graph-based met-476

ric estimators, showing their value for solving practical problems found in477
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medical imaging.478

6. Appendix: analytical derivatives479

Many optimizers need to estimate the gradient of the cost function. To480

this purpose, the use of finite difference approximation to the gradient is481

impractical for transformations with high number of parameters, since it482

requires computing a kd-tree for each perturbation of the set of parame-483

ters. This is especially problematic for high-dimensional feature spaces as484

the number of perturbations requires for the finite difference estimator is D.485

This problem of graph-based estimators has been addressed by Sabuncu and486

Ramadge (2005) for Minimum Spanning Tree (MST) estimators of Hα. Here487

we develop a similar analytical approximation.488

Using Equation 6, the derivative with respect to the parameter m of the489

transformation is490

∂

∂pm

Ĥα =

∂
∂pm

(∑
z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ

)

(1 − α)
∑

z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ

=

∑
z∈Z

∑
ẑ∈N (z)

∂
∂pm

(‖z − ẑ‖2)
γ

2

(1 − α)
∑

z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ

=
P

∑
z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ−2 ∂

∂pm
(‖z − ẑ‖2)

2
∑

z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ

(13)

The problem has been reduced to computation of derivatives ‖z − ẑ‖2.491

By assuming no changes in correspondence between a point z and its nearest492

neighbor ẑ for infinitesimal changes in the transformation parameters, these493

derivatives can be computed as:494

∂

∂pm

(
‖z − ẑ‖2

)
=

P∑

j=1

2(zj − ẑj)(J
m
T (xj))

T∇zj (14)

where ∇zj is the intensity gradient at the point xj = Tj(x), and Jm
T is the495

mth column of the parametric jacobian of the transformation (Ibanez et al.,496

2008):497

JT =





∂x1

∂p1

∂x1

∂p2

· · · ∂x1

∂pm
∂x2

∂p1

∂x2

∂p2

· · · ∂x2

∂pm

...
...

. . .
...

∂xn

∂p1

∂xn

∂p2

· · · ∂xn

∂pm




. (15)
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Finally, by including Equations 14 into Equation 13, the following expres-498

sion is obtained for the derivative of the Hα:499

∂

∂p
Ĥα =

P
∑

z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ−2

∑P
j=1 2(zj − ẑj)(JT (xj))

T∇zj

2
∑

z∈Z

∑
ẑ∈N (z) ‖z − ẑ‖γ

(16)

It is important to highlight at this point, that Equation 13 is a completely500

general expression and can be used for any type of matching features. If zi501

are concatenations of features in R
d for each time point j, Equation 14 turns502

into503

∂

∂pm

(
‖z − ẑ‖2

)
=

P∑

j=1

d∑

k=1

2(zjk − ẑjk)(J
m
T (xj))

T∇zjk (17)

where ∇zjk represents the spatial gradient of the kth feature coefficient at504

time j, and its computation depends on the feature definition.505

By applying Equation 16 for computing derivatives, the time complexity506

is reduced to O(N log N) as compared to the O(N2 log N) time complexity507

required for finite differences.508
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Lötjönen, J., Pollari, M., Kivistö, S., Lauerma, K., September 2004. Cor-593

rection of movement artifacts from 4D cardiac short and long-axis MR594

data. In: Barillot, C., Haynor, D. R., Hellier, P. (Eds.), Medical Image595

Computing and Computer-Assisted Intervention – MICCAI 2004, 7th In-596

ternational Conference, Part II. Vol. 3217 of Lecture Notes in Computer597

Science. Springer, Saint-Malo, France, pp. 405–12.598

Ma, B., Narayanan, R., Park, H., Hero, A. O., Bland, P. H., Meyer, C. R.,599

July 2007. Comparing pairwise and simultaneous joint registrations of600

decorrelating interval exams using entropic graphs. In: Karssemeijer, N.,601

Lelieveldt, B. P. F. (Eds.), Information Processing in Medical Imaging,602

20th International Conference, IPMI 2007. Vol. 4584 of Lecture Notes in603

Computer Science. Springer, Kerkrade, The Netherlands, pp. 270–82.604

Moore, C. C., Lugo-Olivieri, C. H., McVeigh, E. R., Zerhouni, E. A., Febru-605

ary 2000. Three-dimensional systolic strain patterns in the normal human606

left ventricle: characterization with tagged MR imaging. Radiology 214 (2),607

453–66.608

Mount, D. M., August 2006. ANN programming manual. Department of609

Computer Science and Institute for Advanced Computer Studies, Univer-610

sity of Maryland, College Park, Maryland.611

Neemuchwala, H., Hero, A. O., Zabuawala, S., Carson, P., 2007. Image reg-612

istration methods in high-dimensional space. Int J Imag Syst Tech 16 (5),613

130–45.614

Neemuchwala, H. F., Hero, A. O., 2005. Multi-sensor image fusion and its615

applications. Marcel-Dekker, Ch. Entropic graphs for registration, pp. 185–616

235.617

29



Osman, N. F., Kerwin, W. S., McVeigh, E. R., Prince, J. L., 1999. Cardiac618

motion tracking using cine harmonic phase (HARP) magnetic resonance619

imaging. Magn Reson Med 42 (6), 1048–60.620

Pai, V. M., Axel, L., February 2006. Advances in MRI tagging techniques621

for determining regional myocardial strain. Curr Cardiol Rep 8 (1), 53–8.622

Petitjean, C., Rougon, N., Cluzel, P., April 2005. Assessment of myocadial623

function: a review of quantification methods and results using tagged MRI.624

J Cardiovasc Magn Reson 7 (2), 501–516.625

Petitjean, C., Rougon, N., Prêteux, F., Cluzel, P., Grenier, P., June 2003.626

Measuring myocardial deformations from MR data using information-627

theoretic non rigid registration. In: Magnin, I. E., Montagnat, J., Clarysse,628

P., Nenonen, J., Katila, T. (Eds.), Functional Imaging and Modeling of629

the Heart, Second International Workshop. Vol. 2674 of Lecture Notes in630

Computer Science. Springer, Lyon, France, pp. 162–72.631

Petitjean, C., Rougon, N., Prêteux, F., Cluzel, P., Grenier, P., December632

2004. Quantification of myocardial function using tagged MR and cine633

MR images. Int J Cardiovasc Imaging 20 (6), 497–507.634

Quian, Z., Huang, R., Metaxas, D., Axel, L., April 2007. A novel tag removal635

technique for tagged cardiac MRI and its applications. In: Fouth IEEE636

International Symposium on Biomedical Imaging: From Nano to Macro,637

ISBI 2007. IEEE, Washington, USA, pp. 364–7.638

Radeva, P., Amini, A., Huang, J., May 1997. Deformable B-solids and im-639

plicit snakes for 3D localization and tracking of SPAMM MRI data. Com-640

put Vis Image Understand 66 (2), 163–78.641

Rao, C., 2002. Linear Statistical Inference and Its Applications, 2nd Edition.642

Wiley.643

Redmond, C., Yukich, J. E., February 1996. Asymptotics for euclidean func-644

tionals with power-weighted edges. Stochastic Processes and their Appli-645

cations 61 (2), 289–304.646
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