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Purpose: The objective of this study is to investigate the feasibility of detecting

and quantifying 3D cerebrovascular wall motion from a single 3D rotational X-ray

angiography (3DRA) acquisition within a clinically acceptable time, and computing

from the estimated motion field for the further biomechanical modeling of the

cerebrovascular wall.

Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D

B -spline transformation, which is estimated from a 4D to 2D+t image registration

framework. The registration is performed by optimizing a single similarity metric

between the entire 2D+t measured projection sequence and the corresponding

forward projections of the deformed volume at their exact time instants. The joint

use of two acceleration strategies together with their implementation on graphics

processing units are also proposed so as to reach computation times close to clinical

requirements. For further characterizing vessel wall properties, an approximation of

the wall thickness changes is obtained through a strain calculation.

Results: Evaluation on in silico and in vitro pulsating phantom aneurysms

demonstrated an accurate estimation of wall motion curves. In general, the error

was below 10% of the maximum pulsation, even in the situation when substantial

inhomogeneous intensity pattern was present. Experiments on in vivo data provided

realistic aneurysm and vessel wall motion estimates, whereas in regions where

motion was neither visible nor anatomically possible no motion was detected. The

use of the acceleration strategies enabled completing the estimation process for one

entire cycle in 5-10 minutes without degrading the overall performance. The strain

map extracted from our motion estimation provided a realistic deformation measure

of the vessel wall.

Conclusions: Our technique has demonstrated that it can provide accurate and

robust 4D estimates of cerebrovascular wall motion within a clinically acceptable

time, although it has to be applied to a larger patient population prior to

possible wide application to routine endovascular procedures. In particular,
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for the first time, this feasibility study has shown that in vivo cerebrovascular motion

can be obtained intra-procedurally from a 3DRA acquisition. Results have also shown

the potential of performing strain analysis using this imaging modality, making thus

possible for the future modeling of biomechanical properties of the vascular wall.

Keywords: cerebral vasculature; image registration; motion estimation; rotational19

angiography20
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I. INTRODUCTION21

Cerebrovascular diseases in general cause changes to the architecture of blood vessels in22

the brain by making them narrow, stiff, deformed, or uneven. The pathogenesis of these23

diseases is believed to be dependent on the complex interactions among multiple physiologi-24

cal and mechanical factors such as hemodynamics, wall biomechanics and mechanobiology1.25

Unfortunately, patient-specific vessel wall properties cannot be measured in vivo with cur-26

rent medical imaging techniques2. In many situations, an inverse problem approach based27

on a mathematical model for the biomechanics of the vasculature is a valid surrogate to28

estimate material and structural parameters3,4. An example of such approach consists of29

determining these unknown parameters by applying known boundary conditions on the ves-30

sel wall and analyzing its mechanical responses such as vascular wall motion. Tracking this31

motion should also allow embedding wall compliance as a boundary condition for hemo-32

dynamic simulations5. Besides, other studies suggest that even the direct visualization of33

wall motion abnormalities may be helpful for analyzing pathological features of the cerebral34

vasculature6,7. Therefore, quantifying vascular wall motion and deformation has the poten-35

tial of impacting treatment selection and preoperative planning of cerebrovascular diseases.36

However, since such motion is in general expected to be in a sub-millimeter range7–9, it37

represents a challenge in terms of the available image resolution of current clinical imaging38

techniques.39

Various techniques have been proposed for estimating motion or reconstructing dynamic40

3D structures using projection images acquired from image modalities like three-dimensional41

rotational X-ray angiography (3DRA) and cone beam computed tomography (CBCT). ECG-42

gated techniques10–12 constitute the most typical approach, where a reduced set of projections43

linked to a particular cardiac phase is used to reconstruct a volumetric image using itera-44

tive13 or analytical11,14 reconstruction methods. Recently, a technique15 has been proposed45

to incorporate a 4D motion estimation into a projection motion-compensated 3D recon-46

struction process by comparing the latter to an initial reference reconstruction. However,47

the estimated motion could be limited by the 3D reconstruction error even before performing48

the 3D/3D registration. In other works16,17, continuous respiratory motion during a CBCT49

acquisition has been estimated by optimizing the similarity between the measured and the50

corresponding views of a deforming reference volume obtained from CT. However, their tech-51
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niques need additional motion constraints such as a prior motion model or a regularization52

term. Also, their need of two acquisitions increases patient exposure to radiation, limiting53

their clinical applicability.54

We aim to retrieve the dynamic 3D morphology of a structure of interest from a sin-55

gle 3DRA acquisition (e.g. cerebral aneurysm or a vessel segment). 3DRA is routinely56

performed in clinical practice during endovascular interventions. One standard acquisition57

provides a sequence of 2D rotational X-ray angiographies and an isotropic high-resolution58

3D volumetric image reconstructed from them. A physiological signal synchronized with59

the projections can also be recorded. In a previous work18, we proposed a method to esti-60

mate the 3D morphology of the structure of interest at a given time instant by registering61

forward projections of the deformed 3DRA volume to a sparse set of 2D measured projec-62

tions through a temporal weighting scheme. However, since this technique only represents63

the spatiotemporal motion through independent 3D morphology estimation at discrete time64

points, it fails to address the intrinsic temporal consistency or continuity of motion. In ad-65

dition, the estimated morphology can be compromised by the residual motion introduced by66

forcing the forward projections at a specific time instant to match the measured projections67

in its temporal vicinity. In general, this problem is also common for ECG-gated methods.68

In this paper, instead of representing the motion over time by independent 3D trans-69

formations as proposed in18, we employ a single 4D B -spline transformation model for the70

whole motion cycle. It is estimated from a 4D to 2D+t image registration framework. The71

basic idea of the transformation model is to deform an object by manipulating an underlying72

mesh of control points, resulting in a smooth and continuous deformation of the reference73

image at any time of the motion cycle. Thus, an estimate of arbitrarily small displace-74

ment or deformation can be achieved through the interpolation from the movements of the75

control points. Meanwhile, the registration is optimized by measuring a single similarity76

metric between the entire measured projection sequence and the corresponding forward pro-77

jections of the deformed volume at their corresponding exact time instants. This improves78

the temporal consistency without introducing blurring, as well as the robustness to image79

noise and artifacts such as contrast agent induced intensity inhomogeneity. Performing the80

motion estimation from the projection space improves the accuracy of the motion estimate81

as the pixel resolution is higher in the 2D+t measured projections than in the 3D image.82

On the other hand, computational cost is high for the simultaneous processing of such high-83
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resolution temporal sequences of 3D images, 2D measured and forward projections. We84

therefore introduce the joint use of two acceleration strategies: a precomputation at the85

forward projection generation stage and an object-adaptive region-of-interest (ROI) for the86

forward projection update and the metric computation. Since less data have to be processed,87

these strategies also result in a reduction of memory requirements. Preliminary results and88

the overall registration framework were previously published as in19. Here a detailed method89

description is presented, with the integration of the acceleration strategies implemented on90

graphics processing units (GPU)20. An extended validation is performed on in silico, in vitro91

phantoms, and for the first time, on in vivo patient data. In this paper, we also explore92

whether strain as estimated from the motion field from imaging data can be applied to the93

personalization of modeling of the vascular wall biomechanical properties.94

II. MATERIAL AND METHODS95

II.A. Motion estimation algorithm96

The motion estimation algorithm presented in this paper consists of three steps. First, in97

order to overcome the limited spatial coverage from each of the separate motion cycles, the98

measured projections are reordered and built into one canonical motion cycle, according to99

a synchronized physiological signal such as ECG. Second, a 4D-to-2D+t image registration100

is performed to obtain a single spatiotemporal transformation field over the whole canonical101

motion cycle. Third, after obtaining the optimal transformation parameter, instantaneous102

3D images of the analyzed morphology at any desired time instant can be extracted by103

applying the 4D transformation to the reference volume image.104

II.A.1. Canonical motion cycle105

During the rotational run, the total angular coverage of the measured projections for one106

cardiac or motion cycle is 40-50◦. Such viewing range may not be informative about the107

3D motion along certain directions. This drawback could be potentially compensated for by108

providing an a priori motion model as in17. An alternative is to add a pseudo-periodicity109

constraint term to the optimization function as in16. However, the optimization process110

is complicated by the need of determining empirically the weight for such regularization.111
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FIG. 1. (a) Each motion cycle in the N measured projections sequence is normalized to have a

unitary duration, according to a physiological signal such as ECG. And the time for each projection

is normalized to the full length of its corresponding cardiac cycle. Thus all projections fall within

a [0, 1) interval. A reordered measured projections sequence can then be obtained based on this

normalized time to form one canonical motion cycle. (b) An overview of the 4D-to-2D+t image reg-

istration framework, where one metric measuring the similarity between the measured and forward

projection sequences, I and Ĩ, is used to estimate a 4D continuous and smooth transformation

model parameterized according to ω over space and time.

We overcome this limitation by reordering all the projections (spanning 4-5 cardiac cycles)112

to build one canonical motion cycle. This step is carried out as described in18 and as113

illustrated in Fig. 1(a). We first normalize the period of each cycle to have a unitary duration114

according to a physiological signal such as ECG, which is recorded synchronously together115

with the projections. The time for each of the N measured projections is normalized to the116

full length of its corresponding cardiac cycle. Hence, all projections fall within the [0, 1)117

interval and are then sorted by this normalized time to build one canonical motion cycle118

as I = {Itk(x) | k = 1 . . . N}, where Itk(x) represents the measured projection and at the119

normalized time tk (0 ≤ tk ≤ tk+1 < 1). In practice, images acquired at similar cardiac120

phases in the canonical cycle are approximately separated by a 40-50◦ angular shift per121

cycle. By the use of this compounding strategy, the projection spatial viewing angle range122

is enriched at any temporal vicinity. In addition, the temporal resolution can be considered123

to be approximately increased by a factor corresponding to the number of cycles during the124

acquisition.125
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II.A.2. 4D-to-2D+t image registration126

The entire measured projection sequence is simultaneously processed to estimate a 4D127

continuous and smooth transformation model parameterized over space and time. A single128

metric captures the similarity between projection sequences instead of considering separate129

similarities between individual projections.130

As shown in Fig. 1(b), motion throughout the canonical cycle is represented by a trans-131

formation T parameterized by ω. Thus, the 3D instantaneous motion at time t is given by132

deforming a reference volumetric image V :133

Ṽt(p) = V (T (ω,p, t)), (1)

where p is a point in Ṽt. In this paper, a B -spline based transformation21,22 is used. The134

displacement of p is represented by a 4D tensor product of cubic B -spline functions (i.e.135

β(·) in the temporal dimension and B(·) the 3D tensor of β(·) in the spatial dimensions),136

defined on a sparse control points grid (pc, tτ ):137

T (ω,p, t) = p+
∑
τ,c

β

(
t− tτ
∆τ

)
B

(
p− pc

∆c

)
ωτ,c, (2)

where ω is an array of the control grid coefficients, acting as parameters of the B-spline,138

c the spatial index and τ the temporal index, (∆c,∆τ ) the width of the functions in each139

dimension. This transformation model ensures both temporal and spatial consistency and140

smoothness without compromising the local motion recovery due to its local control property.141

More importantly, an estimate of small displacement or deformation can be achieved through142

the underlying interpolation between the control points. Note that to keep the continuity at143

both ends of the cycle (tτmin
= 0 and tτmax = 1), we need to impose a pseudo-cyclic condition144

ωτmin,c = ωτmax,c. A simple implementation is to extend the range of the transformation145

model on the temporal axis at both ends, as illustrated in Fig. 1(a).146

For each Itk , a corresponding digitally reconstructed radiograph (DRR), Ĩtk , is calculated147

to simulate the X-ray angiography through a ray casting process23. For the rotational angiog-148

raphy (RA) sequence, their projection geometry is known for each projection, including the149

X-ray source position, the projection detector position, and the rotational orientation. We150
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denote by Ĩ the entire DRR sequence, which is iteratively modified to match the measured151

projection sequence I for an optimal estimation of ω̂:152

ω̂=argmin
ω

{
M(ω, I, Ĩ)

}
, (3)

where M is the similarity metric between two mapping regions. Mutual information24,25
153

was used as the metric. Since the registration matches simultaneously all the projections,154

sampled points from the entire sequence are considered as within one region, forming a155

single histogram. Therefore, instead of having one independent metric for each projection156

pair, M describes the similarity between the two sequences I and Ĩ. Histograms are ap-157

proximated using Parzen windows for the probability calculation26. The use of one metric158

measuring the similarity between projection sequences makes the registration more robust159

against local intensity variations (e.g noise and inhomogeneous contrast mixing) than con-160

sidering similarities between individual projections separately. Note that due to the higher161

spatial resolution in measured projections compared to the volumetric image, performing162

the motion estimation from the projection space improves spatial accuracy of the recovered163

motion field. In our case, a displacement equivalent to one pixel translates into approxi-164

mately 0.3 voxel. The L-BFGS-B algorithm27 is used as the optimizer, due to its ability in165

handling a very large number of parameters.166

II.B. An efficient implementation167

Dealing simultaneously with such high-resolution 4D image, 2D measured projections168

and DRRs, requires excessive memory and long computation time. For the method to be169

practically applicable, reducing both of them without degrading the performance is desirable.170

Two strategies are jointly used in order to process the data of interest at each iteration during171

the registration process. The fact that both computation and memory costs scale with the172

amount of processed data makes these strategies efficient. They are further implemented on173

GPU so as to facilitate the clinical use of our technique at a reasonable execution time. The174

main idea of the GPU implementation method is summarized in Appendix and a detailed175

description can be found in20.176
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II.B.1. DRRs precomputation177

In 3DRA images, the structure of interest (e.g. an aneurysm or a vessel segment) is in the178

order of millimeters, occupying a reduced region in the image (see an example in Fig. 2(a)).179

Thus, during the motion estimation process, the transformation can be applied only to a180

volume of interest (VOI) while the rest of the volume remains unmodified. Provided that181

the actual motion present outside the VOI is smaller than or of the same magnitude as the182

motion in the VOI, it will not affect significantly the estimated motion. The reason is that183

due to the use of a sparse B -spline control-points grid, any motion outside may only184

influence one projection in a particular direction while the motion of each control point is185

the result of several projections. However, in order to simulate realistic X-ray projections,186

voxels of the entire volume must be integrated at each iteration to update the DRRs. In187

order to avoid redundant computation, for each pixel x, the corresponding ray is split into188

two parts: inside and outside the VOI. The constant outside part is precomputed, and at189

each iteration only the inside part is integrated and updated to the sum of both parts. An190

illustration is shown in Fig. 2(a) for a VOI containing an aneurysm. The speedup factor191

using such pre-computation is the ratio between the ray segment length crossing the entire192

volume and that of the VOI. The memory reduction rate is also expected to scale with this193

factor.194

II.B.2. Object-adaptive region-of-interests195

A common approach to accelerate the metric computation is to subsample the images.196

Uniform subsampling is not the most efficient method, and special attention should be paid197

to reduce the calculation of the metric and its derivatives by sampling, for example the198

object of interest28 or its edges29. We follow this strategy by encouraging dense sampling of199

image regions that strongly influence the metric. Since morphology changes of the aneurysm200

or vessel wall are reflected on the contrast enhanced lumen boundaries, two object-adaptive201

sampling regions are introduced: the projected object (SOR) and the projected boundary202

(SBR). Consequently, the typical projected VOI, denoted as SVR, for the computation of the203

metric are replaced by the sequences of pixels from the sampling regions SOR or SBR. An204

illustration of these regions is shown in Fig. 2.205
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There are many techniques automatically delineate such regions. Note that the accurate206

definition of the sampling regions in 2D is not crucial for our method, as our interest is to207

quantify 3D morphological changes. And since a reference image is available in 3D, we first208

obtain one approximated 3D shape of the region using a threshold-based method, and then209

define the region by simply projecting it on each projection. A unique property of a 3DRA210

volume is that, looking at the histogram of this 3D image, there is a sharp differentiation211

of the contrast agent (CA) filled regions (i.e. aneurysms and vessels) from the background.212

This results in clearly separated classes with the CA filled regions mapped to high voxel213

value range and the background to low voxel value range10,30. Meanwhile, on the contrast214

filled boundaries in the projection images, in general a region of progressive intensity change215

exists. This is mainly due to the changes in length of the X-ray traversing the contrast-filled216

region on the boundaries, resulting in a continuous change of the accumulated attenuation.217

Consequently, this results in a similar pattern in the 3D reconstructed volume. Based on this218

observation, the SOR is calculated for each projection as follows. First, a boundary value of219

the studied object is selected by identifying the CA filled regions from the histogram. Second,220

on the corresponding ray for a specific pixel, as long as there is one sampled point having221

larger intensity than this boundary value, the pixel is considered to be part of the SOR. The222

obtained region is comparable to the projected “shadow” of a 3D object from thresholding.223

Similarly for the SBR, we first obtain two of these regions from different threshold values, by224

repeating the process of the SOR region for two thresholds. One overestimates (i.e. higher225

threshold) and the other underestimates (i.e. lower thresholds) the contrast filling region.226

The SBR region is obtained by subtraction of the two resulting regions. These boundary227

identifying values or thresholds in the histogram can be obtained empirically or using e.g.228

Otsu’s method31. Note that this gradually changing intensity pattern on the boundaries229

between the contrast-filled region and the background also helps the recovery of a subvoxel230

displacement estimated through the deformation of the reference image. The reason is231

that such an intensity function follows a smooth transition that gives information on the232

boundaries at a finer scale than the voxel grid, i.e. subvoxel resolution.233
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FIG. 2. (a) An illustration of the DRRs computation process. For each pixel x, the corresponding

ray is split into two parts: inside and outside the VOI. The constant outside part is precomputed,

and at each iteration only the inside part is integrated and updated to the sum of both parts. The

sampling region SVR contains the projected VOI. We introduce here two object-adaptive sampling

regions: (b) the projected object region SOR and (c) the projected boundary region SBR.

II.C. Strain map computation234

A number of mechanical and anatomical parameters can be used to characterize the235

morphological and dynamic wall properties of the vasculature. We consider the strain map236

extracted from the non-rigid wall motion estimation as a simplified but adequate way towards237

characterizing the vascular wall tissue. Such quantities provide a measure of the relative238

deformation to which the arterial wall is exposed.239

We study the distension of the vascular wall, which is related to the changes in wall240

thickness. This relationship is more evident, for instance, under the volume-preserving241

assumption as in3, where the radial Cauchy strain is used. Specifically, it is computed242

from triangular meshes that are extracted from the estimated volume images. Assuming243

the volume of the material is preserved, the changes of the area Atr for each triangle are244

inversely proportional to the changes in wall thickness Lw: Atr × Lw = A
′
tr × L

′
w. Thus the245

radial Cauchy strain εc is calculated as:246

εc =
∆Lw

Lw

=
−∆Atr

A
′
tr

where ∆Lw = L
′
w − Lw and ∆Atr = A

′
tr − Atr. This means that the strain value is positive247

if the material is stretched, or negative if it is compressed.248
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III. VALIDATION249

III.A. Experimental data250

Our method has been currently applied to cerebrovascular wall motion with a particular251

emphasis on cerebral aneurysm pulsation. We present here experiments on in silico and in252

vitro aneurysm models, and also in vivo patient data.253

In silico: Twelve cases of digital aneurysm phantom models were created with dome di-254

ameters of 8, 10, and 12mm and parent vessel diameter of 4mm. They also have an emerging255

bleb on the dome. The phantom motion was modeled as smooth geometry changes accord-256

ing to a sinusoidal pulsation waveform and was sampled at a finite number of time points.257

According to the values on in vivo data presented in recent studies7–9, maximum pulsation258

amplitudes were set to be 1%-4% of the dome diameter (i.e. 0.08-0.48mm). A sequence259

of volume images with an isotropic spacing of 0.3mm was generated from the sequence of260

ground-truth geometries. Voxel intensities were obtained as a function of the signed dis-261

tance from the voxel to the object surface. The result is an image with a constant value262

inside the object and another value outside, but with a blurred band of 0.5mm around the263

object boundary. Afterwards, this ground-truth volume sequence was used to generate the264

synthetic measured projections with 0.16mm spacing. In order to simulate other attenuated265

vessels, air, bones, and soft tissues, we embedded the phantom images into a 3DRA patient266

image that serves as background. An illustration is shown in Fig. 3(a). Once each phantom267

was placed within the patient image, the voxels corresponding to aneurysm and vessel were268

set to a typical intensity value of the CA filled regions.269

In addition, in this paper we simulated spurious projection intensity variations in order270

to analyze the sensitivity of our method and compare with other techniques. Such intensity271

inhomogeneity is in general caused by the contrast filling following the blood flow. However,272

the instantaneous local inhomogeneity might be caused by multiple factors. In order to273

simulate realistic intensity variations, we sampled the RA image intensities from a patient274

data where the aneurysm dome presented substantial nonuniform intensities including strong275

blood turbulence. For the phantom dome region in each measured projection, an image patch276

of the same shape was taken from the dome of the patient case and mapped directly to the277

phantom image (Fig. 3(b)).278
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FIG. 3. (a) An example of an in silico phantom image, where the phantom model is embedded

into a 3DRA patient image. (b) Projections with contrast inhomogeneity synthesized based on a

RA patient data with strong blood turbulence.

In vitro: A silicone side-wall aneurysm phantom (Elastrat, Geneva, Switzerland) was279

used. The model has a spherical dome with 10mm diameter and a straight cylindrical280

parent vessel with 4mm diameter. It was placed in a rectangular container with dimensions281

comparable to a human head. The container was water-filled to mimic the attenuation282

of head tissue. In addition, two other phantoms with straight tubes were also placed in283

the container to simulate background. The phantom was water-filled and connected to a284

customized pulsatile pump, a continuous flow pump (Elastrat, Geneva, Switzerland), and a285

liquid tank to create a continuous and pulsatile flow circuit (Fig. 4(a)).286

The image acquisitions were performed using an Allura Xper FD20 scanner (Philips287

Healthcare, Best, The Netherlands) equipped with a 220mm detector field of view (diagonal288

dimension) allowing a coverage of 75mm of a cubic volume during a single rotation. For289

these acquisitions, the injection protocol consisted of 18 mL of iodinated contrast material290

(Iomeron 400, Bracco Imaging SpA, Milan, Italy) with a flow rate of 3mL/s. RA imaging291

was performed at a frame rate of 30 Hz during contrast injection, with a 2s delay. These292

settings of the model and the imaging conditions give a realistic amount of scattering,293

beam hardening and noise. An example RA image of the in vitro phantom is shown in294

Fig. 4(b). In total, 121 images were acquired (10242 pixels with (0.154mm)2/pixel) spanning295

∼ 210◦ along the gantry trajectory, from which a 3D volume of 2563 voxels ((0.3mm)3296

per voxel) was reconstructed. X-ray source and detector positions were recorded for each297

projection, allowing the spatial relationship between the reconstructed reference volume and298

each projection to be known. The scanning procedure and the imaging parameters of the299
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FIG. 4. (a) In vitro phantom experiments setup: 1. the silicone side-wall aneurysm; 2. the

customized pulsatile pump; 3. the liquid tank; 4. the pulsatile signal generator; 5. the continuous

flow pump. (b) An example X-ray angiography of the in vitro phantom. The phantom was placed

in a water-filled rectangular container (arrow head) with dimensions comparable to a human head.

Two additional aneurysm phantoms with straight tubes (arrows) were also placed in the container,

to act as background.

system followed a standard clinical protocol, which were also used for the in vivo cases300

presented below. Detailed values are summarized in Table. I.301

Three acquisitions were performed at different pump piston movement settings, resulting302

in three phantom pulsation states: large pulsation (LP), small pulsation (SP), and non-303

pulsation (NP). Although exact aneurysm pulsation amplitudes were unknown, the pulsation304

range was in accordance with the expected range from visual inspection.305

In vivo: Two 3DRA acquisitions from two patients with cerebral aneurysms were an-306

alyzed in this paper. Both examinations were collected at Rothschild Foundation Paris,307

using an Allura Xper FD20 scanner (Philips Healthcare, Best, The Netherlands). For these308

examinations, the injection protocol consisted of 24 mL of contrast agent (Iomeron 350,309

Bracco Imaging SpA, Milan, Italy) with a flow rate of 4mL/s, with a 2s delay. Patients310

were under general anesthesia during the whole examination. We have estimated motion at311

various locations as indicated in Fig. 5. Three types of motion were visually observed from312

these regions: aneurysm wall motion, vessel wall motion, and catheter tip displacement.313

For patient #1, aneurysm motion could not be confirmed from the RA sequence, but we314

observed it from an available digital subtraction angiography (DSA) sequence. For patient315

#2, aneurysm motion was not visible in the RA sequence, but we did observe vessel motion316

and longitudinal displacements of the catheter.317
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TABLE I. 3DRA imaging settings for the in vitro and in vivo data, using the Allura FD20 imaging

system.

Parameters Unit Value

Tube Voltage KV 78-89

Tube Current mA 180-280

Exposure Time ms 6-8

Detector Dose nGy/fr ∼200

Detector Format cm 22, 27

Focal Spot Size mm 0.4

Source-To-Isocenter Distance mm ∼810

Source-To-Detector Distance mm ∼1195

Geometric Magnification - ∼1.475

Rotation Range ◦ ∼210

Number of Projections - 121

Frame Rate fps 30

Pixel Spacing mm 0.154

Voxel Spacing mm 0.3

Contrast Injection Time s 6

Contrast Injection Rate mL/s 3-4

Iodine Density mg/mL 350-400

Collimator Filter (Alu) mm 1.0

Collimator Filter (Cu) mm 0.1

Anti-Scatter Grid lp/cm 80

For all the experiments tested on these data, we chose a VOI of approximately 503 voxels.318

The number of sampled pixels in the sampling regions SVR, SOR and SBR at each projection319

view were in the order of 5000, 3000 and 500, respectively. The B -spline control point grid320

spacing was about 1.5mm for the spatial dimension, and 10-12.5% of the canonical motion321

cycle for the temporal dimension.322
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FIG. 5. Details of in vivo datasets, indicating with arrows the aneurysms and with an arrow head

the catheter tip. Data from two patients are used in this work, where our method has been applied

to different regions: (A) aneurysm with visible motion; (B) aneurysm without visible motion;

(C) vessel segment with visible motion, and the imaged catheter (lower part) with longitudinal

displacement.

III.B. Accuracy evaluation323

In order to quantitatively evaluate the accuracy of the estimated motion, a set of deformed324

3D volume images at discrete time points was extracted according to the estimated 4D325

transformation. A relative error was measured at each time point t as a percentage of the326

pulsation range,327

e(t) =
(
mr(t)−mg(t)

)
/m̂g × 100%, (4)

where mg(t) is the ground-truth pulsation measurement (e.g., volume changes) at t, mr(t)328

the corresponding estimated measurement, and m̂g the variation range of mg(t) over the329

canonical cycle.330

In terms of volume change measurements, they were calculated using a method similar331
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FIG. 6. Boxplots of eV at 16 equally distributed time points for 12 in silico phantom cases of

different diameter (8, 10, and 12mm) and maximum pulsation range (1%-4%).

to the one as in32, by transforming a binary mask image using the deformation field and332

subsequently summing up the intensities. The partial volume of the boundary voxels was333

calculated by dividing the sum of the interpolated intensities by the interval length.334

IV. RESULTS335

IV.A. In silico aneurysm wall motion336

For each case, we extracted 16 volume images at equally distributed time points along337

the canonical motion cycle. As the ground-truth is known for these phantom data, a quan-338

titative accuracy evaluation is possible. In the presented experiments, we used the relative339

error in volume changes, eV , calculated according to Eq. 4. Except for two cases in which340

the maximum pulsation was below 0.1mm (being the 8mm and the 10mm dome with 1%341

maximum pulsation), the relative error in volume changes, eV , was below 10%, as can be342

seen in Fig. 6.343

In the example shown in Fig. 7, eV and the computational time are plotted for the344

same number of registration iterations. In this experiment, we investigated the effects of345
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estimation error eV and computational time. The three schemes are: sampling regions (SVR, SOR,

SBR), angular resolutions along the C-arm gantry trajectory (downsampling factor being 1-4), and

the GPU implementation. Results were obtained from an in silico phantom with 12mm diameter

and 3% pulsation (i.e. maximum amplitude of 0.36mm).

using a combination of three different schemes: sampling region, angular resolution along346

the C-arm gantry trajectory, and the GPU implementation. The angular resolution of the347

measured projection sequence was downsampled by a factor of 1 to 4. Results show similar348

accuracy (eV < 5% up to three quartiles) achieved from the three sampling regions combined349

with an angular resolution downsampling factor up to 3. Therefore, given the fact that less350

projections can be used, it can be speculated that this also enables discarding the use of a few351

undesirable projections, e.g. the ones with severe artifacts. No significant differences were352

obtained when DRRs were generated using either the CPU or GPU implementation. The353

slight GPU/CPU discrepancies can be attributed to the difference in data type specifications354

between the processors33. Due to the speedup introduced at the GPU-based DRR generation355

stage, the image registration process can be reduced by an additional factor of up to 2x with356

respect to the corresponding CPU-based implementation. Therefore, the estimation results357

for the complete motion cycle can be obtained in 5-10 minutes when using SBR on the GPU358

DRR implementation using a downsampling factor of 3.359

Fig. 8 shows the color maps of the amplitude wall displacements and the radial Cauchy360

strain estimated at the maximum and minimum pulsation states of an in silico phantom361
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FIG. 8. Wall displacement amplitude and radial Cauchy strain at the maximum (top) and minimum

(bottom) deformation states for an in silico phantom with diameter of 12mm and pulsation of 3%

(i.e. maximum amplitude of 0.36mm).

with diameter of 12mm and pulsation of 3% (i.e. maximum amplitude of 0.36mm). In362

regions with similar surface curvatures like the dome, the strain field presents a similar363

pattern to the displacement field, whereas in regions with higher curvatures, such as the364

bleb and the neck, the strain scales faster. This suggests that the strain field might enhance365

more efficiently regions having a different deformation pattern as strain is less insensitive to366

passive motion but focuses on differential motion.367

IV.B. In vitro aneurysm wall motion368

For the three pulsation states under evaluation, we obtained larger motion in the LP369

case, smaller motion but with a similar pattern in the case of SP, and no motion for the NP370

case. We show here the results of the LP case in Fig. 9. As the ground-truth is unknown,371

the results are qualitatively presented. In Fig. 9(a-b), a measured projection is compared372

with its corresponding DRRs calculated from the reference volume and from our estimated373

volume. From the visual inspection in the projection space, our technique demonstrates its374

ability in correcting the misalignment between the measured projection and the DRR. In375

Fig. 9(c-d), color maps show the wall displacement amplitude and the strain at the time376

point with the largest motion. An inhomogeneous wall displacement distribution is observed377

and is especially concentrated on a lateral side of the aneurysm dome. This is caused by a378
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FIG. 9. Results from in vitro LP phantom: (a,b) Example of checkerboard images for the in vitro

phantom comparing respectively the measured projection with the equivalent DRR computed from

the reference volume and our estimation. The color maps of the wall displacement amplitude (c)

and the radial Cauchy strain (d) for the frontal and lateral views at the instant presenting the

largest displacement.

slight axial tilting of the phantom tube position during the acquisition. This is in agreement379

with the reduced effect in terms of strain distribution observed at the same location, since380

part of the displacements came from a global movement.381

IV.C. In vivo cerebrovascular motion382

Our estimation recovered the visually observed aneurysm motion from patient #1 and383

vessel motion from patient #2. For patient #2, aneurysm motion was neither observed nor384

recovered. Fig. 10 and Fig. 11 summarize the recovered motion from patients #1 and #2,385

respectively. The color maps show the displacements and the radial Cauchy strain at the386

end-systolic (ES) phase, which coincided with the cardiac time of the measured projections387

where maximum motion was visually observed. This phase represented also the time of the388

maximum motion estimated from our technique, as can be seen in the displacement curves389
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FIG. 10. Results of aneurysm wall motion in patient #1. (a) A close view indicating the region

where our motion estimation method has been applied (dashed frame) in an X-ray angiography.

(b) The color map (line in (a) indicating the viewing plane) of the displacements around the end-

systolic (ES) phase (indicated by the arrow in (d)). (c) The radial Cauchy strain at the same

phase as in (b). (d) Aneurysm wall displacement amplitude over the cardiac cycle at the location

indicated by the arrow head in (a) and the circles in (b,c).

over time in both figures. These curves show that the aneurysm in patient #1 and the vessel390

motion in patient #2 presented a similar pattern with respect to the cardiac phases indicated391

by the ECG signal. Spatially, for instance in Fig. 10, the motion was clearly observed in the392

projections only in a small area of the aneurysm dome, which coincides with the maximum393

estimated wall displacement region using our technique. Also, we observed that, in Fig. 11394

the upper part of the vessel (i.e. internal carotid artery) did not show any visible motion.395

This is consistent with the fact that this particular vessel segment, i.e. the petrous segment,396

is surrounded by stiff bony structures preventing any motion at this location.397

IV.D. Catheter displacement398

From the measured projections for patient #2, we observed substantial longitudinal dis-399

placement of the catheter, corresponding to the catheter tip moving vertically along the400

direction of the vessel and following the blood flow. To further verify the feasibility of401

our method in recovering general motion other than vascular wall motion from a rotational402
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FIG. 11. Results of vessel wall motion in patient #2. (a) A close view indicating the region where

our motion estimation method has been applied (dashed frame) in an X-ray angiography. (b) The

color map of the displacements around the end-systolic (ES) phase (indicated by the arrow in (d)).

(c) The radial Cauchy strain at the same phase as in (b). (d) The vessel diameter change over the

cardiac cycle at the location as indicated by the arrow head in (a).

angiography acquisition, we have applied it to the imaged catheter region and recovered403

the displacement of the catheter tip. Results are shown in Fig. 12. The color maps show404

respectively the displacements (Fig. 12(a)) at 10 equally sampled time instants over the405

cardiac cycle. And the catheter tip displacement (along the vessel longitudinal direction)406

is plotted with the ECG signal in Fig. 12(c). The cardiac phase when the maximum value407

of this movement occurred was similar to the maximum vessel motion phase (Fig. 11(d)).408

This confirms that the catheter moved back and forth according to the pulse of the blood409

flow. We have also plotted the calculated strain maps at the catheter surface in Fig. 12(b).410

As the strain represents deformation instead of rigid movement, it should be ideally zero411

everywhere and for all time instants. As expected, at the lower and homogeneous part of the412

catheter, zero radial displacements and strain values were obtained. However, they were not413

zero everywhere at the catheter tip. A first explanation for such behavior of the results is414
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FIG. 12. Results of catheter tip movements in patient #2. (a) A close view indicating the region

where our motion estimation method has been applied (dashed frame) in an X-ray angiography.

The color maps of the estimated catheter movements (b) and the strain (c) at ten selected time

points. (d) The catheter tip (arrow head in (a)) longitudinal displacement plotted together with

the ECG signal.

that the catheter used during the intervention had a flexible tip and therefore was prone to415

deformation. Second, the estimated vessel motion was “propagated” to its immediate vicin-416

ity, the catheter tip, since the B -spline transformation provides a spatially smooth estimate417

of the displacement field. And third, at the catheter tip, larger inhomogeneity of the con-418

trast agent mixing are expected, which in turn might affect our intensity-based registration419

method.420

V. DISCUSSION421

In silico pulsatile aneurysm phantom results have demonstrated that the estimation error422

was below 10% in recovering motion in the sub-millimeter range, e.g. in the order of a voxel,423

even from images with substantial intensity inhomogeneity. In vitro aneurysm phantom424

experiments have allowed verifying that our method is able to detect whether an aneurysm425

pulsates or not. However, in a clinical environment, due to the lack of ground-truth motion426
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information, we were not able to validate quantitatively the performance of the method.427

Nonetheless and for the first time, experiments carried out on in vivo patient data pre-428

senting visible aneurysm and vascular wall motion as well as catheter tip movement, have429

demonstrated the feasibility of our method for motion detection and recovery from RA. In430

regions where motion or deformation is impossible from an anatomical point of view, such431

as the petrous segment and the catheter, the results were consistent with the expected zero432

motion. In summary, although ground-truth was unknown for the in vitro and the in vivo433

data, our results were qualitatively accurate. Given the realistic modeling of spatial and434

temporal imaging conditions as well as the morphology and motion range, the performance435

of our method on in silico data can be expected, to a certain extent, to be translatable436

to patient data acquired in a clinical situation.437

To facilitate the translation of this technique into clinical practice, we proposed the joint438

use of two acceleration strategies together with their implementation on graphics processing439

units. This has demonstrated a successful memory management and speedup for processing440

large 3D and 2D datasets from 3DRA acquisitions. These improvements allowed completing441

the motion estimation process for one entire cycle in 5-10 minutes without degrading the442

overall performance. More specifically, we obtained a 3-4x speedup from the precomputation443

of surrounding vascular structures outside the VOI, and a 10x from the use of SBR. With444

respect to the CPU implementation, an additional speed improvement of up to 2x was445

achieved by integrating the GPU generated DRRs in the motion estimation framework.446

Since the object-adaptive ROIs are calculated based on two selected voxel values as447

described in Section II.B.2, the potential influence of these intensity values on the estimation448

is discussed here. Experiments were performed on an in silico phantom (dome diameter of449

12mm and maximum pulsation of 3%) embedded in a 3DRA patient image. Voxel intensities450

of the phantom dome were set to be constant inside (i.e. a value belonging to the CA filled451

region), and to be smoothly changing on the boundary, depending on the distance from the452

voxel to the ideal wall surface. Results are demonstrated on four SBR regions (denoted as453

R1-R4), chosen from different combinations of four sub-ranges equally spanning the intensity454

range of the phantom. The lower boundary intensity value of R1 was chosen to be higher455

than the actual boundary and thus was inside the phantom. That means, in R1 the aneurysm456

wall was not included, while in R2 to R4 the actual aneurysm wall was always included but457

with the inner boundary identified by three different values spanning the aneurysm intensity458
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FIG. 13. Comparison of the accuracy using four different SBR regions (denoted as R1-R4), chosen

from different combinations of four sub-ranges equally spanning the intensity range of the phantom.

Results in this figure were obtained from an in silico phantom embedded in a 3DRA patient image

(see an illustration in Fig. 3(a)). The phantom has a diameter of 12mm and the maximum pulsation

of 3% (i.e. maximum amplitude of 0.36mm).

range. Detailed distributions of these four regions are illustrated on the histogram of the459

reference volume image, as shown in Fig. 13. Their corresponding relative estimation error460

eV values are also plotted in the figure. Results suggest that the choice of the voxel intensity461

values for the boundary region does not affect much the estimation accuracy, when the462

expected wall motion region is within the chosen SBR. In the case of R1, larger errors were463

obtained because this region excludes the intensity range of the aneurysm wall by focusing464

on too high intensities.465

In the following, we discuss the performance comparison between a previous technique18466

for 3D independent motion estimation at specific time points (denoted as ALG1) and our467

proposed 4D motion cycle estimation technique (denoted as ALG2). In general, similar468

accuracy values could be expected using both techniques, since the plot shown in Fig. 7469

presented comparable error values as reported in18. In terms of computational efficiency,470

the time spent for a full 4D motion estimation in this paper is comparable to what is471

needed for computing only one 3D estimation at a specific time point using ALG1. In the472
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FIG. 14. Results comparing the influence of inhomogeneous contrast filling on the method in18

(denoted as ALG1) and our present technique (denoted as ALG2), using an in silico phantom

with diameter of 10mm and pulsation of 4% (i.e. maximum amplitude of 0.4mm). Results at

two instants are shown graphically: (a,c,e) minimum pulsation and (b,d,f) maximum pulsation.

The ground-truth shape (wireframe representation) at each time instant is overlaid with: (a,b) the

reference, (c,d) the estimation using ALG1, and (e,d) the estimation using ALG2. (g) Comparison

of eV between ALG1 and ALG2 with the three sampling regions: SVR, SOR, and SBR.

situation with large intensity variations in the contrast-enhanced regions in the projection473

images, such as inhomogeneous contrast mixing, our method or ALG2 is however expected474

to be more robust than ALG1. Results shown in Fig. 14 were obtained from the simulated475

inhomogeneous contrast-filled images, as described in Section III.A. The relative volume476

error eV was below 10% using ALG2, whereas using ALG1 it was on average 50% or even477

larger. This large difference is due to the fact that ALG1 failed to recover the motion from478

such input images. This can be visually observed in Fig. 14 from the surface of the ground-479

truth shapes at two example time instants overlaid with the estimations (i.e. maximum and480

minimum shape extension). Constrast inhomogeneity in this case induces an overestimation481

of the phantom motion using ALG1 in comparison with ALG2. This suggests that our482

4D estimation is more robust to large image intensity inhomogeneity, both temporally and483

spatially. Additionally, a slightly higher accuracy was obtained using the projected boundary484

region SBR. This could be possibly due to the exclusion of inner regions with inhomogeneous485

intensities, reducing the noise influence to the registration.486

As the expected cerebral aneurysm wall motion range is very small, the impact of other487
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possible physiological motion that might affect the motion estimation needs to be discussed.488

The most intuitive one is respiratory motion, however in our application its impact is neg-489

ligible. First, from the clinical examination protocol point of view, the respiratory induced490

motion in the head is not likely to happen, given that the patient lies still, either under491

general anesthesia or when instructed to hold their breath for a few seconds during492

the 3DRA acquisition (in our case 4s), with the head in an immobilizing headrest. Second,493

from our methodology point of view, we use projections from one canonical cardiac cycle494

that are built from multiple cardiac cycles, and we model this cycle by a 4D smooth and495

continuous transformation. The method assumes pseudo-periodicity in such a way that acts496

as a filter forcing the reconstructed motion to be just one canonical cycle. This, in effect,497

helps to reinforce motion induced by blood pressure changes occurring over the cardiac498

cycle, and meanwhile, produces an averaging of other physiological motion that does not499

occur with the cardiac cycle, such as respiratory motion. In fact, it works in a similar way500

as how standard 3DRA reconstructions ignore the existence of any kind of motion. This501

reference reconstruction is reliable because the potential motion is small in comparison with502

the size of the reconstructed objects. In our case, the estimated pseudo-periodic vascular503

motion should be reliable while the spontaneous irregular non-periodic motion is small in504

comparison with the periodic motion. These reasons can also justify the ignorance to the505

possible irregular variation (or large deviations) of the cardiac cycles. Recently, after fol-506

lowing over 30 cerebral aneurysm embolization interventions we have found an intrascan507

heart beat variability below 1.5% on average and not exceeding 4%. This variability is small508

enough to be averaged or compensated by our method. Other movements throughout the509

rotational run that might also have an influence is related to highly attenuated structures,510

e.g. bones or the skull. In this case, the possibility and the amount of this motion varia-511

tion are negligible, as the bone movement can be considered to be global and very small.512

Specifically because the skull is covering all the imaged region, and its material and mo-513

tion can be assumed to be homogeneous. Furthermore, this effect is minimal under our514

methodology framework, since the ray traverses through a highly contrast-enhanced object,515

and the projection intensity is mostly determined by the accumulated attenuation of the516

contrast-enhanced vessels. Therefore, the potential projection intensity variation caused by517

the movement of bones for a specific projection pixel can be ignored in principle. This also518

confirms that our acceleration strategy, the precomputation outside the region of interest519

28



is a reliable approximation. However, in the case that a substantial amount of any of520

the aforementioned motion occurs during the acquisition, the reliability of the estimated521

vascular motion could be decreased.522

In general for X-ray imaging applications, the variations of intrinsic detector performance523

parameters could probably play a role in the image quality, as has been studied intensively524

in34–39. These parameters can provide characteristics that consider the complete imaging525

system performance, including the effect of focal spot blurring, magnification and scatter.526

They have more pronounced effects for general applications with less image contrast34 or527

small structures like stent struts (e.g. 0.1mm or lower)35,37 using a microangiographic flu-528

oroscopic imaging system37,38. In our case, the studied objects like selective CA enhanced529

vascular structures are imaged with high dose and are highly contrasted. Also object size is530

expected to be in a larger magnitude. Admittedly, the intrinsic spatial extent of the detector531

limits the motion recovering of our technique to a certain range. But the use of a sparse set of532

B -spline control points means that the estimated motion of each control point is determined533

by many points along the object surface and boundary. This enables us to obtain a realistic534

estimation of the wall motion whose magnitude is equivalent to small fractions of the total535

system mean imaging aperture or unsharpness. Meanwhile, note that this limited resolution536

of currently existing systems is expected to be improved in the future, which will enable537

our method to estimate even smaller motion. This factor is reflected in the results shown in538

Fig. 6 on in silico phantom experiments. In this figure, at least for two phantom cases (8mm539

and 10mm with 1% motion for both), we were not able to recover correctly the motion. Fur-540

ther resolution improvements and thus motion estimation with small magnitude could be541

expected when geometric unsharpness effects can be minimized either through reduction of542

the focal spot size or reduction of the magnification. However, the options for a reduction543

of the aforementioned two factors are limited. As this study serves to show the feasibility of544

4D aneurysm wall motion estimation from rotational angiography, a more detailed analysis545

of the impact of these factors on the estimation accuracy and robustness will be addressed546

in future work and is beyond the scope of this paper.547

The experimental results also emphasize the feasibility of performing strain analysis from548

the estimated motion, making thus possible the use of this information for further estimating549

elastic properties of the vascular wall, using for example an inverse problem approach3.550

Note that the strain map was not obtained through tracking individual points or tissue on551
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the vascular wall. Thus, our approach for strain calculation through quantifying apparent552

motion from images implies that the correspondences over time are approximations of the553

same physical point.554

VI. CONCLUSIONS555

This paper has presented a technique to recover 4D cerebrovascular wall motion that is556

in the order of sub-millimeter, from a single 3DRA acquisition within a clinically acceptable557

computation time. Using this technique, the recovered motion is temporally and spatially558

smooth, which also improves the robustness of the estimation to noise and intensity inhomo-559

geneity. The subsequent strain calculation based on our motion estimation provides further560

progress towards the biomechanical modeling of the cerebrovascular wall. Our technique561

also provides the possibility of detecting vascular wall abnormalities through direct visual-562

ization of motion over time. It is highly desirable to have a technique that offers accurate563

and robust in vivo estimates of such motion. In order to translate our method into a564

clinical setting, future research efforts should be paid to validate our method on a larger565

number of patient data sets.566
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The authors would like to thank Dr. Raphaël Blanc from Rothschild Foundation Paris,568
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Appendix: GPU implementation of DRRs generation578

To further speedup the method, the DRRs generation combined with the acceleration579

strategies is implemented on GPU and is integrated into the image registration process.580

We briefly describe the main idea of the method here. Unlike traditional GPU-based DRR581

generation methods40, our implementation also integrates the two previously introduced582

strategies, thus benefits from both the GPU parallelization and the resultant memory re-583

duction from these strategies.584

The method was implemented using the Cg (C for graphics) toolkit41 and on the pixel585

shader units of a NVIDIA GeForce 8600 GT graphics card with 512MB of memory, hosted586

by an Intel rCoreTM2 Quad CPU Q6600 2.40GHz with 4GB of memory. DRR pixel data587

are stored as stream data in the format of textures, and fed to the GPU fragment units588

so that each fragment works in parallel on a single pixel. Each texture element can store589

up to four components, or the RGBA channels, as they are originally used to represent the590

red, green, blue, and alpha intensities of a color for rendering. In order to reduce redundant591

calculations, we compute first a number of parameters that are constant when updating592

the DRRs during each iteration. As we equidistantly sample points on the ray (Fig. 2(a)),593

only the first intersection point on the volume and the sampling step vector are needed,594
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the remaining points can be derived in a straightforward manner. In total, eight constant595

parameters are needed for each pixel to calculate the DRRs: the first intersection point,596

the sampling step, the number of sampled points and the pre-computed DRR value. Since597

we only calculate the pixel values within the ROIs (SVR, SOR, or SBR), these eight constant598

parameters to calculate the pixel values in the ROI are re-packed into two 2D rectangular599

textures of smaller sizes than the original projections (see an illustration in Fig. 15). They600

are used in a GPU procedure that only performs the main loop over the VOI at every601

registration iteration. This way, the GPU fragment code remains short to maintain the602

stream processing advantage with respect to its equivalent CPU calculations.603
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