Impaired Fast-Spiking, Suppressed Cortical Inhibition, and Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K⁺ Channel Proteins

David Lau,¹ Eleazar Vega-Saenz de Miera,¹ Diego Contreras,² Ander Ozaita,¹ Michael Harvey,¹ Alan Chow,¹ Jeffrey L. Noebels,³ Richard Paylor,⁴ James I. Morgan,⁵ Christopher S. Leonard⁶ and Bernardo Rudy¹

¹Departments of Physiology and Neurosciences, and Biochemistry, New York University School of Medicine, New York, New York 10016, ²Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19106, Departments of ³Neurology and ⁴Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, ⁵Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, and ⁶Department of Physiology, New York Medical College, Valhalla, New York 10595

Voltage-gated K⁺ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2−/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

Key words: K⁺ channels; neocortex; fast spiking; knock-out inhibitory interneurons; high-frequency firing; seizure susceptibility; GABA; epilepsy

Approximately 10–20% of the neurons in the cerebral cortex are inhibitory GABAergic interneurons. These cells play a critical role in a number of important functions, including the gating and processing of sensory information, the establishment and plasticity of sensory receptive fields, the synchronization of cortical circuits, the generation of rhythms, and the limiting of seizure activity (McCormick et al., 1985; Celio, 1986; Cauli et al., 1997; Kawaguchi and Kubota, 1997). These neurons are interconnected by electrical synapses and form a network of fast-spiking cells, suggesting a role in the generation of synchronized cortical activity (Galarreta and Hestrin, 1999; Gibson et al., 1999).

Several lines of evidence have led to the hypothesis that specific voltage-gated, delayed rectifier-type K⁺ channels composed of K⁺ channel pore-forming subunits of the Kv3 subfamily (Kv3.1–Kv3.3) are critical for the ability of neurons to fire at high frequencies in a sustained or repetitive fashion. First, the properties of these channels, which include activation at voltages positive to −10 mV and very fast deactivation rates on membrane repolarization, naturally lend themselves to a specific role in spike repolarization. Second, there is a strong correlation between the specific expression of Kv3 RNA transcripts and Kv3 proteins in neuronal populations that fire at high frequencies. Third, pharmacological experiments show that blockade of native Kv3-like currents with low concentrations of tetraethylammonium (TEA) or 4-aminopyridine (4-AP) impairs the ability of these neurons to fire sustained and/or repetitive action potentials at high frequency. Fourth, computer modeling indicates that selective blockade of Kv3 currents impairs high-frequency firing (Perney et al., 1992; Lenz et al., 1994; Weiser et al., 1994, 1995; Du et al., 1996; Massengill et al., 1997; Sekirnjak et al., 1997; Martina et al., 1998; Wang et al., 1998; Chow et al., 1999; Erisir et al., 1999; Atzori et al., 2000) (for review, see Coetzee et al., 1999; Rudy et al., 1999).

To further test the hypothesis, and given the absence of selective channel blockers, we used gene-targeting methods to produce mice lines that do not express Kv3.2 K⁺ channel subunits (McCormack et al., 1990; Rudy et al., 1992), which are prominently expressed in PV-containing interneurons in deep cortical layers (Chow et al., 1999).
Figure 1. Generation of the Kv3.2 −/− mouse. A. Targeting the Kv3.2 gene via homologous recombination. Top. Restriction map of the mouse genome in the area around exon I (the first coding exon) of the Kv3.2 gene. Exon I is indicated as the solid box and introns as lines. Arrows under genetic elements indicate transcriptional orientation. Middle. Kv3.2 gene-targeting vector. The neomycin resistance gene replaced the portion of exon I downstream of the EcoRI site and −4 kb of intron I. PGKNeo, Neomycin resistance gene driven by the phosphoglycerate kinase promoter; PGKTk, thymidine kinase gene driven by the phosphoglycerate kinase promoter; pBlueScript, bacterial vector backbone. Crosses indicate crossover regions in homologous recombination. Bottom. Null Kv3.2 allele generated after proper targeting. The 5′ probe is the XbaI–Sacl fragment used as a template to synthesize the probe for genotyping. As indicated, the 5′ probe should identify a 3.0 kb fragment in the wild-type allele and a 5.0 kb band in the null allele when genomic DNA is digested with XbaI. Restriction enzymes are as follows: EcoRI, HindIII, SacI, XbaI, XhoI. Molecular characterization of Kv3.2 knockout mice. B. Genotyping by Southern blot analysis. Genomic DNA was isolated from tail biopsies of juvenile mice and digested with XhoI. Kv3.2 knockout (−/−) mice possess two copies of the engineered null allele and consequently show the 5.0 kb fragment after hybridization with the 32P-labeled 5′ probe. Heterozygotes (+/−) show both wild-type and mutant alleles, and the wild-type (+/+) littersmates only possess wild-type alleles. C. Northern analysis of Kv3.1 and Kv3.2 mRNA expression in Kv3.2 null mice. Ten micrograms of total brain RNA was loaded into each lane from a wild-type, a heterozygote, and a Kv3.2 knock-out mouse. The Northern blots were probed with Kv3.2 (right) or Kv3.1 (left) 32P-labeled cDNA probes. Notice that the Kv3.2 knock-out does not express mature Kv3.2 RNA species and the heterozygote has lower expression levels than the wild type. In all three Kv3.2 genotypes, Kv3.1 mRNA levels are constant. The blots were then hybridized with β-actin cDNA probe to quantitate the amount of RNA per lane. The sizes of the RNA standard marker for both blots are located on the left.

999), and compared the properties of fast-spiking neurons in the neocortex from these mice with those from normal wild-type littermates. Results from these experiments provide direct evidence that Kv3 channels are critical for both sustained and repetitive high-frequency firing. Moreover, the Kv3.2 −/− mice show both an enhanced susceptibility to seizures and disturbed cortical rhythmic activity. The availability of mice in which fast-spiking is compromised in specific neuronal populations provides a model to investigate the consequences of this impairment on the behavior of cortical circuits, which in turn can help in the understanding of the function of fast-spiking, the roles of the interneurons in cortical function, and the mechanisms by which they achieve these functions.

MATERIALS AND METHODS

Generation of mice lacking Kv3.2 proteins

Isolation of a mouse 129 genomic clone containing exon I of Kv3.2. A mouse 129 genomic library (−1 × 109 pfu) in ADashII (kind gift from Drs. J. Rossant and A. G. Reaume, Mount Sinai Hospital, Toronto, Canada) was screened at high density with a 380 bp fragment containing the first 301 bp of the coding region of Kv3.2 and 79 bp of the 5′ untranslated region, derived from a rat Kv3.2 cDNA (McCormack et al., 1990).

Bacteriophage DNA from positive clones was isolated with the Midiprep kit (Biorad, Hercules, CA). We mixed 40 μg of the NotI linearized targeting construct (in sterile PBS) with the suspended cells and electroporated it with a Gene-Pulser electroporator (Biorad) at 0.23 kV, 500 μF. The pulsed ES cells were cultured onto 60 mm feeder plates at 37°C in an atmosphere of 5% CO2. The basic culture medium consisted of DMEM plus 15% serum. The basic culture medium consisted of DMEM plus 15% serum. Leukemia inhibitory factor (10 ng/ml) used to retard ES cell differentiation, was added to all culture media except replica plates (see below). After a day in culture, G418 (350 μg/ml Geneticin; Life Technologies, Gaithersburg, MD) and 1-[(2-deoxy-2-fluoro-α-D-arabinofuranosyl)-5-iodouracil (2 μg/ml; a gift from Eli Lilly, Indianapolis, IN) were added to the culture medium. The medium was changed 2 d after drug introduction and then daily afterward. Five days after drug introduction, surviving undifferentiated ES cell colonies were transferred individually to multwell cell culture plates (Falcon).

A total of 380 ES cell colonies were harvested. The medium was changed 2 d after harvesting and then daily. Four days later, the ES cell cultures were trypsinized and passed into two sterile 48-well multidwell cell
culture plates (one colony per well), a master plate that was frozen and stored at −70°C, and a replica plate that was further expanded. The replica plates were fed every 2 d. After 1 week in culture, the cell culture medium was discarded and Tris-EDTA (TE) was added to each well. To each well, 250 μl of lysate buffer (1.0 mM NaCl, 10 mM EDTA, 50 mM Tris, pH 8.0, 0.5% SDS, and 0.2 μg/μl proteinase K) was added, and the plate was incubated overnight at 55°C. We added 250 μl of isopropanol to each well and the genomic DNA was precipitated with 2 vol of ethanol. DNA pellets were resuspended in 50 μl of Tris-EDTA (TE). The DNA was used to genotype the colonies by Southern blot analysis (as described below) to identify ES cells that had undergone homologous recombination before the first membrane-spanning domain in the N-terminal area and recognizes all Kv3.2 isoforms (Chow et al., 1999). The Kv3.1-raf is directed against the C terminal of the predominant isoform of the Kv3.1 gene, Kv3.1b (Weiser et al., 1995).

Chimeric generation. From the master plate, identified, targeted ES cell colonies were expanded in culture. C57BL6 blastocysts that were 2.5 d old were harvested from the uterine tubes of timed pregnant females, and 8–10 targeted ES cells were introduced to the blastocoele with a beveled glass micropipette. The injected blastocysts were implanted into pseudo-colonies were expanded in culture. C57BL6 blastocysts that were 2.5 d old of Tris-EDTA (TE). The DNA was used to genotype the colonies by

Genotyping by genomic Southern blot analysis

Genomic DNA from cultured ES cells or tail biopsies was digested overnight with XbaI (Promega, Madison, WI). The digested samples were electrophoresed through agarose–Tris-borate–EDTA gels at 7.5–9.0 V/cm until DNA fragment sizes from 2 to 6 kb were clearly separated. The gels were stained with ethidium bromide and photographed on a UV light table with a fluorescent ruler for orientation. The agarose gels were incubated in 5 gels volumes of denaturing solution (1.0 mM NaOH and 1.5 mM NaCl) with gentle agitation for 30 min and a change to a fresh solution after 15 min. After denaturing, the gels were incubated in 5 gel volumes of neutralizing solution (1.0 mM Tris-HCl, pH 7.5, and 1.5 mM NaCl) with gentle agitation for 30 min and a change to a fresh solution after 15 min. The DNA in the gels was transferred onto nylon membranes (Stratagene) overnight via capillary action. The blotted membranes were marked, and the DNA was UV-crosslinked to the nylon membrane in a Stratallinker (Stratagene). The membranes were washed at room temperature after several days of hybridization. The probe used for genotyping was a 1.0 kb band between the SacI sites in the 3.6 kb EcoRI fragment of the E2 clone (Fig. 1A, bottom diagram). The probe corresponds to sequences in the intron preceding exon I of the Kv3.2 gene. Probes were labeled with [32P]dCTP with the Redi-Prime random primer labeling kit (Amersham Pharmacia Biotech, Arlington Heights, IL). With Catterall, 1984) and solubilized in Triton X-100 as previously described (Chow et al., 1999). To prepare the Western blots, membrane protein (25 μg/lane for detection with Kv3.1b-Ab and 50 μg/lane for Kv3.2-Ab) were electrophoresed in a 9% SDS polyacrylamide gel and then transferred onto nitrocellulose membranes (NC) as previously described (Chow et al., 1999). The blots were incubated with either Kv3.1b-Ab (Weiser et al., 1995) at 1:1000–1:2000 dilution or Kv3.2-Ab (Chow et al., 1999) at 1:50–1:100 dilution. This was followed by incubation with horseradish peroxidase-labeled goat anti-mouse secondary antibodies. Detection of the secondary antibody was performed using chemiluminescence (Pierce, Rockford, IL). The Kv3.2-raf was derived from immunizing rabbits to a peptide corresponding to a sequence present in the region of the mRNA that codes the N-terminus of the first membrane-spanning domain in the N-terminal area and recognizes all Kv3.2 isoforms (Chow et al., 1999). The Kv3.1-raf is directed against the C terminal of the predominant isoform of the Kv3.1 gene, Kv3.1b (Weiser et al., 1995).

In vivo physiology

Behavioral analysis. The following behavioral tests were all done in the laboratory of Richard Paylor (Department of Molecular and Human Genetics, Baylor College of Medicine) with a battery commonly used in this laboratory (Kimber et al., 1999; Peier et al., 2000). The tests were done on mice that were 13 months old and were housed in pairs (6 male and 9 female, three female, six male) littersmates. The mice had been backcrossed seven times to C57BL6. The tests were performed essentially as described by Paylor et al. (1998) and included the following: (1) general motor activity (in an open field), (2) spontaneous alternation in a Y-maze, (3) social interaction and skill learning, (4) rotarod test for motor coordination and skill learning, (5) acoustic startle and prepulse inhibition of the acoustic startle response for sensorimotor gating, (6) habituation of the response for drug-induced changes in motor behavior, (7) conditioned auditory-ued freezing to assess conditioned fear, and (8) the hotplate test for analgesia-related responses. Data were analyzed using two- or three-way ANOVA.

Chronic EEG. Adult mice were anesthetized with Avertin (1.25% tri-bromoethanol–amyl alcohol) by intraperitoneal injection (0.02 ml/gm). Silver wire electrodes (0.005 inches in diameter) soldered to a microminiature connector were implanted into the subdural space over the left and right cortical hemispheres. After 5 days of recovery, EEG activity was recorded daily during random 2 hr samples for 7–10 d using a TECA digital electroencephalograph. All recordings were performed on mice moving freely in the test cage in the laboratory of Jeffrey L. Noebels at Baylor College of Medicine. EEG recording in anesthetized mice. Knock-out and wild-type mice were anesthetized with intraperitoneal injections of a mixture of ketamine (15 mg/kg) and xylazine (3 mg/kg). Depth of anesthesia was ascertained by recording EEG with monopolar electrodes placed in frontal cortex. Supplemen-tal doses of ketamine–xylazine were given at the slightest sign of EEG desynchronization. After the loss of tail pinch reflexes, the mice were placed in a rodent stereotaxic apparatus (David Kopf Instruments, Tu-junga, CA) equipped with mouse head holders. A midline sagittal incision was made along the scalp, and the skin was reflected. Petroleum jelly was applied over the eyes to prevent ulcer. Burr holes were drilled over the right somatosensory cortex and the right dorsal thalamus according to the following coordinates (Bregma/Lateral/Pial 1.75/1.9/−1.0 mm). The oil was applied over the exposed brain to prevent desiccation. Bipolar tungsten electrodes were fashioned from two monopolar tungsten electrodes with resistance of 1 MΩ that were affixed with dental cement. The bipolar electrode array were lowered into the neocortex with fine micromanipulators (Harish, Tokyo, Japan) through the burr holes, and signals were amplified with a homemade DC amplifier with head stage and capacity compensation. In cortex, the electrodes were located in the pial surface (layer 6 (~1.5 mm deep) and in layers II and IV (90–110 μm)). The electrodes were side by side, separated by 0.4 mm. Electrical stimulation was also delivered through the recording electrodes with an isolated pulse stimulator (AM Systems). Data were sampled at 1 kHz with an InstruNet (GW Instruments, Inc., Berkeley, CA) analog-to-digital converter. The data were analyzed using the Igor (WaveMetrics Inc., Lake Oswego, OR) with customized routines.

Seizure induction with pentyleneetrazole. Pentyleneetrazole (PTZ) (Re-search Biochemicals, Natick, MA) was dissolved in PBS and injected intraperitoneally at the indicated dose. After 5 min, the animal was placed in a transparent Plexiglas cage (30 × 20 × 25 cm) and observed for up to 30 min. Latencies to focal (partial clonic), generalized (generalized clonic), and maximal (tonic-clonic) behavioral seizures were recorded. The bottom of the cage was covered with clean paper towels that were replaced
for each animal. Each cage was cleaned with water after each experiment, before introducing a new mouse. All the animals used in this study were housed in a facility with light (12 hr light/dark cycle) and temperature control, and were handled in a consistent manner. All experiments were performed in the laboratory between 12:00 P.M. and 2 P.M. in mice of similar age (10–14 weeks).

We defined several stages in the behavioral response to PTZ injection. Stage 1, designated as hypoactivity, was characterized by a progressive decrease in activity until the mice stayed in a crouching or sitting position with their abdomens in full contact with the bottom of the cage. Stage 2 was isolated jerks or twitches. Stage 3 was partial or focal clonic seizures affecting the face, head, and/or forelimbs. These seizures were usually very brief, typically lasting less than 1 s. Stage 4 was tonic-clonic seizures. These seizures usually occurred suddenly, could last 30 sec or more, and involved generalized whole-body clonus. Autonomic signs were frequently seen. The seizure was usually followed by a quiescent period. Stage 5 was tonic-clonic (maximal) seizures. Mice reaching this stage displayed wild running and jumping behavior and then had generalized seizures characterized by tonic–hindlimb extension. Tonic-clonic maximal seizures were usually associated with death.

In vitro physiology

Slice preparation. Knock-out and wild-type mice of ages postnatal day 15 (P15) to P21 were used for acute brain-slice preparation (Agmon and Connors, 1991). Mice were anesthetized with an overdose injection of sodium pentobarbital and decapitated after the loss of pain reflexes. The brain was rapidly removed from the skull in a bath of ice-cold artificial CSF (ACSF) (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 MgSO4, 2 CaCl2, and 10 dextrose, pH 7.4, bubble-saturated with 95% O2, 5% CO2. The brain was then cut transversely at 775 μm from the somatosensory cortex. The slices were placed on a vibratome (World Precision Instruments, Sarasota, FL) and in a holding chamber with continuous bubbling ACSF at room temperature. The slices were allowed to rest in the holding chamber for at least 1 hr before transfer to the recording chamber. The submersion-type recording chamber was perfused at a rate of 2–3 ml/min with ACSF saturated with 95% O2, 5% CO2, and all recordings were done at a temperature of 24°C controlled by an in-line solution heater (Warner Instruments, Hamden, CT).

Whole-cell recordings. Neocortical neurons were visualized with near-infrared light (~775 nm) at 400× magnification with a nucavos tube camera (Dage-MTI, Michigan City, IN) and differential interference optics (DIC) on a fixed-stage microscope (Olympus Optical, Tokyo, Japan) (Stuart et al., 1993; Erisir et al., 1999). Nonpyramidal cells were visually selected for current-clamp experiments. Recording microelectrodes of ~6–9 MΩ resistance were made from standard wall borosilicate glass (Sutter Instruments, Novato, CA) with a Flaming/Brown type micropipette puller (Sutter Instruments). The micropipette filling solution consisted of (in mM): 144 K-gluconate, 0.2 EGTA, 3 MgCl2, 10 HEPES, 4 ATP-Mg, and 0.5 GTP-Tris. For subsequent histochemistry, biocytin (0.2% w/v; Sigma) was added to the internal solution just before recording. In the current-clamp mode of an electronic bridge amplifier (Axon Instruments, Foster City, CA), single spiking events and interspike intervals were recorded in the whole-cell configuration. Protocols were delivered under the control of pClamp 7 software (Axon Instruments). Responses were sampled at 1 kHz. Neurons were held at −70 mV with small injection currents, except during protocols for spike frequency and rebound responses when they were held at −60 mV. Action potential shape parameters were measured from action potentials evoked by 150 μs current steps that were just above threshold. Spike amplitude was measured as the difference between the peak and the threshold of the action potential. Spike threshold was determined by finding the potential at which the derivative of the voltage waveform exceeded three times its SD in the period preceding spike onset. The fast afterhyperpolarization (AHP) was measured as the difference between the spike threshold and voltage minimum after the action potential peak. Maximum rates of rise and decay of the action potential were computed from the maximum and minimum of the first derivative of the voltage waveform. Spike width was measured at half the spike amplitude and was recorded for 6–9 consecutive spikes by determining the time at which the rising phase of the action potential crossed a fixed-threshold potential. Instantaneous frequency (one per interspike interval) was computed from trains of action potentials evoked by 600 μs duration pulses. Steady-state firing rate was the average instantaneous frequency for the last five intervals of a train. Current strength was increased until spike failure occurred within the 600 μs duration pulse. The maximum steady-state firing rate was the steady-state firing rate evoked by the current strengths (at increments of 100 pA) before that which produced spike failure. Firing frequency adaptation was calculated by dividing the steady-state firing rate by the first instantaneous frequency of the train. All analysis was performed in customized MATLAB (The MathWorks, Natick, MA). All data are reported as mean ± SEM. TEA (Research Biochemicals) was bath-applied. Only one fast-spike neuron was recorded per brain slice.

Histochemistry and immunolabeling of recorded neurons

After electrophysiological characterization, brain slices were fixed for 1–2 hr at room temperature in 4% paraformaldehyde in PBS. The slices were transferred into 30% sucrose with 0.002% sodium azide and stored at 4°C. Brain slices were washed three times in PBS to remove sucrose and incubated in a blocking-permeabilization solution [1% (w/v) BSA, 0.4% (v/v) Triton X-100, and 10% (v/v) normal goat serum] for 1 hr. For primary labeling, biocytin-labeled sections were incubated in a 1:2000 biocytin (Gould and Banker, 1993) solution (In Situ Research, West Grove, PA) and mouse monoclonal parvalbumin IgG1 (1:4000) (Sigma) were incubated with the brain slices in 10% blocking solution in PBS for 7 d at 4°C. The slices were washed twice in PBS and incubated with the secondary antibody (Cy3-conjugated anti-mouse IgG) for 5 d at 4°C. After three washes in PBS, the slices were mounted onto glass slides in 0.001 M phosphate buffer and allowed to air dry. The sections were coverslipped with a polyvinyl alcohol–glycerol medium with 2% 1,4-diazobicyclo[2.2.2]octane (Gould and Banker, 1993). The sections were examined and scored on a Zeiss (Oberkochen, Germany) Axiopt axiophot epifluorescence microscope. Sections containing biocytin-labeled neurons were examined for PV immunoreactivity without knowledge of the physiological characteristics of the neurons. Only sections with distinct PV labeling and no other labeling were scored. PV immunoreactivity present at the depth of the biocytin-labeled somata, as determined using a 40× objective, were considered for scoring. This precaution was taken to reduce the possibility of falsely scoring double-labeled cells as PV-negative because of incomplete antibody or chromophore penetration. Digital images were acquired on an Axiopt Axiovert 35 M confocal microscope with a 40× objective lens, a scanning laser attachment, and a krypton–argon mixed-gas laser, and transferred into a graphics program (Photoshop 5.0).

RESULTS

Generation of mice lacking Kv3.2 proteins

Gene targeting by homologous recombination in ES cells (Thomas and Capecchi, 1987) was used to generate mouse lines in which the Kv3.2 gene has been disrupted. The targeting construct used to modify the mouse Kv3.2 gene was derived from a mouse 129 genomic clone and is shown diagrammatically in Figure 1A, which also illustrates the structure of the gene in the mutated area before and after the targeting. The 3′ end portion of the first coding exon (exon I) of Kv3.2 was deleted and replaced by a neomycin gene. The portion of exon I that was deleted encodes the subunit (or tetramerization) domain (T domain) that is critical for the oligomerization of Kv channel subunits (Li et al., 1992; Shen and Pfaffinger, 1995; Xu et al., 1995). Therefore, if a truncated protein were to be made at the normal starting methionine of Kv3.2, it would lack the T domain and would not oligomerize with products of other Kv3 genes and produce dominant negative effects (Mccormack et al., 1991; Babila et al., 1994; Ribera et al., 1996). ES cells with a targeted allele were selected and implanted in foster mothers. Several chimeras were obtained, from which two independent lines of Kv3.2+/− mice were established. Both have been backcrossed (7 and 10 times so far) to C57BL/6 mice and are being maintained in this genetic background. Kv3.2+/− mice lack Kv3.2 mRNA and protein products (Figs. 1C,D, 2), whereas heterozygous mice have reduced mRNA and protein levels (Fig. 1C,D). In contrast, the levels of products of the closely related Kv3.1 gene were not affected (Fig. 1C,D). We also determined whether the distribution of Kv3.1 protein was altered in the Kv3.2+/− mice by immunohistochemistry (Fig. 2). Kv3.1 proteins have a wider expression pattern than Kv3.2 proteins (Weiser et al., 1995; Rudy et al., 1999) and overlap in several neuronal populations, including PV-containing neurons in the neocortex, globus pallidus, and hippocampus, in which Kv3.1 and Kv3.2 proteins may form heteroleptic channels (Chow et al., 1999; Hernandez-Pineda et al., 1999). In the Kv3.2+/− mice, Kv3.1 proteins were detected in both these regions of overlap and the other structures in which they are normally found (Fig. 2). The overall brain histology (Fig. 2; see also Fig. 4) and the barrel structure (data not shown) of somatosensory cortex also appeared normal in these mice.

Phenotypic characterization of Kv3.2+/− mice:

Increased susceptibility to epileptic seizures

Kv3.2+/− mice in the mixed 129-C57BL6 or in the C57BL6 background have a healthy appearance and grow normally. Both male and female, homozygote (−/−) and heterozygote (+/−) mice are fertile. All the behavioral and functional analysis of the mice have been done in the nearly pure C57BL6 background. The mice show no evidence of severe sensory or motor abnormalities during neurological screens. Moreover, there were no significant differ-
Proteins in brain sections from: Top row, Kv3.2 wild-type (+/+); bottom row, Kv3.2 knock-out (−/−) littermates. Sections were overexposed to emphasize the lack of Kv3.2 staining in knock-out mice. Kv3.2 products have a highly specific pattern of expression in brain and have not been detected outside the CNS (Rudy et al., 1999).

In the brain, Kv3.2 proteins are prominently expressed in thalamocortical projections, the axons of the thalamic relay neurons in the dorsal thalamus (Moreno et al., 1995). The immunostaining of the collaterals of these axons in the reticular thalamic (RT) nucleus produces the labeling seen in this structure, and the staining of the thalamocortical terminals produces the labeled barrel structure seen in layer IV of the neocortex (Ctx). The staining of the hippocampus (Hip) and deep neocortical layers is produced by the prominent immunolabeling of the somas and axons of all PV-containing and a subset of somatostatin-containing GABAergic interneurons (Chow et al., 1999; Atzori et al., 2000). Kv3.2 proteins are also present in GABAergic neurons in other forebrain structures, including the caudate, basal forebrain, and globus pallidus (GP). Kv3.2 proteins are found as well in yet to be identified neurons in the inferior colliculus, the nucleus of the lateral lemniscus, and dorsal cochlear (DCh), trigeminal, deep-cerebellar (Den), and vestibular nuclei (Weiser et al., 1994; Moreno et al., 1995; Chow et al., 1999; Hernandez-Pineda et al., 1999; Atzori et al., 2000). Note the absence of Kv3.2 proteins and the normal distribution of Kv3.1 proteins in the knock-out mice. Cer, Cerebellum; Gr, granule cell layer of the cerebellar cortex; Mol, molecular layer of the cerebellar cortex; VB, ventrobasal nucleus of the thalamus; VCh, ventral cochlear nucleus.

Figure 2. Normal distribution of Kv3.1 protein and lack of Kv3.2 protein in the Kv3.2 −/− mouse. Immunoperoxidase detection of Kv3.2 and Kv3.1 proteins in brain sections from: Top row Kv3.2 wild-type (+/+); bottom row, Kv3.2 knock-out (−/−) littermates. Sections were overexposed to emphasize the lack of Kv3.2 staining in knock-out mice. Kv3.2 product have a highly specific pattern of expression in brain and have not been detected outside the CNS (Rudy et al., 1999).

In the brain, Kv3.2 proteins are prominently expressed in thalamocortical projections, the axons of the thalamic relay neurons in the dorsal thalamus (Moreno et al., 1995). The immunostaining of the collaterals of these axons in the reticular thalamic (RT) nucleus produces the labeling seen in this structure, and the staining of the thalamocortical terminals produces the labeled barrel structure seen in layer IV of the neocortex (Ctx). The staining of the hippocampus (Hip) and deep neocortical layers is produced by the prominent immunolabeling of the somas and axons of all PV-containing and a subset of somatostatin-containing GABAergic interneurons (Chow et al., 1999; Atzori et al., 2000). Kv3.2 proteins are also present in GABAergic neurons in other forebrain structures, including the caudate, basal forebrain, and globus pallidus (GP). Kv3.2 proteins are found as well in yet to be identified neurons in the inferior colliculus, the nucleus of the lateral lemniscus, and dorsal cochlear (DCh), trigeminal, deep-cerebellar (Den), and vestibular nuclei (Weiser et al., 1994; Moreno et al., 1995; Chow et al., 1999; Hernandez-Pineda et al., 1999; Atzori et al., 2000). Note the absence of Kv3.2 proteins and the normal distribution of Kv3.1 proteins in the knock-out mice. Cer, Cerebellum; Gr, granule cell layer of the cerebellar cortex; Mol, molecular layer of the cerebellar cortex; VB, ventrobasal nucleus of the thalamus; VCh, ventral cochlear nucleus.

ences (p > 0.05) detected in overall total distance traveled in the open-field test, light–dark test, rotarod test, prepulse inhibition, startle habituation, conditioned fear, spatial learning, or hotplate test (see Materials and Methods). There was one significant difference in the open-field test. Knock-out mice had a significantly lower (p < 0.04) center-to-total distance ratio, which is an indicator of anxiety in the open field. However, there were no statistically significant differences in the light–dark exploration box (an independent test of anxiety), so one must be cautious about making too significant differences in the light–dark exploration box (an indicator of anxiety in the open field). However, there were no statistically significant differences in the light–dark exploration box (an independent test of anxiety), so one must be cautious about making too significant differences in the light–dark exploration box (an indicator of anxiety in the open field). However, there were no statistically significant differences in the light–dark exploration box (an independent test of anxiety), so one must be cautious about making too significant differences in the light–dark exploration box (an indicator of anxiety in the open field).

The shape of action potentials and the repetitive firing properties of cells from knock-out and wild-type littermate mice in both superficial and deep cortical layers were compared using whole-cell recording methods from nonpyramidal neurons visualized by IR–DIC optics in slices of somatosensory cortex. Nonpyramidal neurons in both knock-out and wild-type mice had different firing patterns that could be classified into three types, similar to those previously reported in rat and mouse neocortex: regular spiking (RS), low-threshold spiking (LTS), and fast spiking (FS) (Kawaguchi and Kubota, 1993, 1997; Cauli et al., 1997; Erisir et al., 1999; Gibson et al., 1999). Under our recording conditions, FS neurons were characterized by having short-duration action potentials and large, brief AHPs. In response to sustained current injection, they
fired high-frequency spike trains with abrupt onset and little spike frequency adaptation. These neurons were easily distinguished from regular spiking neurons that sustained much lower maximum frequencies (mean rates at the end of a 600 msec pulse were 40% of initial rates in RS neurons compared with 70% in FS cells). FS neurons could also be distinguished from LTS cells, which showed pronounced spike frequency adaptation (steady-state rates were, on average, 40% of initial rates) and generated low-threshold spikes or spike bursts in response to depolarization from hyperpolarized potentials [as previously described in rat by Kawaguchi and Kubota (1993) and Gibson et al. (1999)]. FS neurons had firing thresholds 10–15 mV more positive than RS and LTS cells and had significantly lower input resistance than the other two types of cells (133 ± 6.2 MΩ, n = 22 for FS, compared with 222.1 ± 22 MΩ, n = 52 for RS, and 349.7 ± 30.2 MΩ, n = 21 for LTS cells) [similar to observations in rat by Kawaguchi and Kubota (1993)].

The action potential and repetitive firing characteristics of a typical multipolar, PV-positive, layer 5 neuron from a wild-type mouse are compared with those of a multipolar, PV-positive, layer 5 neuron from a knock-out littermate in Figures 5 and 6. The action potential from the knock-out mouse was broader (width at half maximum of 1.1 vs 0.72 msec) (Fig. 5A1) and had a slower maximum rate of repolarization (66 vs 110 mV/msec) (Fig. 5A2, dashed line) than the neuron from the wild-type littermate. In addition, the deceleration of the membrane potential as it entered into the
immunoreactive for parvalbumin (PV) containing neurons, slices were fixed and processed for PV immunohistochemistry using avidin-biotin-peroxidase method. To verify that recordings were made from PV-immunoreactive neurons, several parameters that help distinguish fast-spiking neurons from other interneurons in wild-type animals were unchanged in the mutant mice (see above). FS neurons in knock-out animals had lower input resistance than RS and LTS cells (142 ± 8.6 MΩ, n = 29; 231.8 ± 16.4 MΩ, n = 52; and 329.5 ± 19.7 MΩ, n = 21, respectively), as well as higher firing thresholds (10–15 mV). There were no differences between knock-out and wild-type mice in LTS cells could also be distinguished from RS and FS neurons in normal and knock-out animals by the presence of low-threshold spikes when depolarized from hyperpolarized potentials, as in normal animals (Kawaguchi and Kubota, 1993, 1997; Gibson et al., 1999).

There were no differences between knock-out and wild-type littermates in the firing properties of regular spiking neurons (Fig. 7A). Furthermore, in contrast to the large differences in action potential shape and repetitive firing properties of deep-layer FS neurons from wild-type and knock-out mice, no significant differences were observed when FS neurons in superficial layers were compared (Fig. 7D, Table 1).

Low TEA concentrations eliminate the differences between wild-type and Kv3.2/−/− fast-spiking neurons

The differences in the action potential and repetitive firing properties of fast-spiking neurons from wild-type and knock-out mice resemble the effects produced by application of low concentrations of TEA (≤1 mM) to neurons from normal mice (Erisir et al., 1999). However, although low TEA concentrations also nearly completely blocked the AHP (Erisir et al., 1999), the AHPs in knock-out mice were on the average only ~25% smaller than in wild-type mice.
Figure 6. Impaired high-frequency firing in Kv3.2−/− mice. A, Repetitive firing of an FS PV-positive deep-layer neuron from a wild-type mouse was replaced by a slower AHP in fast-spiking deep-layer neuron from a Kv3.2−/− mouse (same cell as in Fig. 5) in response to same current steps as in A. Firing frequency is much less than in the neuron from the wild-type mouse, and there is more firing frequency adaptation. There is spike failure during the largest current step. Also notice that the AHPs are faster in the neuron from the wild-type mouse. B, Repetitive firing of an FS PV-positive deep-layer neuron from a Kv3.2−/− mouse (same cell as in Fig. 5) in response to two current steps (375 and 975 pA). Firing frequency increases with increased depolarizing current, and there is very little firing frequency adaptation throughout the pulse.

Table 1. Comparison of firing properties between wild-type and mutant FS cells in the neocortex

<table>
<thead>
<tr>
<th>Layer V–VI</th>
<th>Wild-type</th>
<th>Knock-out</th>
<th>Layer I–IV</th>
<th>Wild-type</th>
<th>Knock-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
<td></td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 20</td>
<td></td>
<td>n = 20</td>
<td>n = 10</td>
<td></td>
<td>n = 10</td>
</tr>
<tr>
<td>Resting V_m (mV)</td>
<td>-64.45 ± 0.54</td>
<td>-63.60 ± 0.57</td>
<td>-64.22 ± 0.75</td>
<td>-64.10 ± 0.60</td>
<td></td>
</tr>
<tr>
<td>R_{indep} (MO)</td>
<td>133.37 ± 6.19</td>
<td>142.42 ± 8.61</td>
<td>153.50 ± 17.92</td>
<td>116.10 ± 8.60</td>
<td></td>
</tr>
<tr>
<td>Threshold (mV)</td>
<td>-38.35 ± 0.59</td>
<td>-38.81 ± 1.02</td>
<td>-37.04 ± 1.13</td>
<td>-38.27 ± 0.67</td>
<td></td>
</tr>
<tr>
<td>Maximum rising slope (mV/msec)</td>
<td>155.54 ± 2.90</td>
<td>149.65 ± 8.04</td>
<td>151.65 ± 6.33</td>
<td>165.36 ± 7.53</td>
<td></td>
</tr>
<tr>
<td>Maximum falling slope (mV/msec)</td>
<td>-84.07 ± 1.84</td>
<td>-61.11 ± 5.07</td>
<td>-79.37 ± 5.75</td>
<td>-86.08 ± 4.75</td>
<td></td>
</tr>
<tr>
<td>Spike width at half amplitude (msec)</td>
<td>0.74 ± 0.018</td>
<td>0.94 ± 0.038</td>
<td>0.78 ± 0.031</td>
<td>0.75 ± 0.036</td>
<td></td>
</tr>
<tr>
<td>AHP Amp (mV)</td>
<td>16.14 ± 0.68</td>
<td>12.34 ± 0.79</td>
<td>17.64 ± 1.06</td>
<td>15.86 ± 0.69</td>
<td></td>
</tr>
<tr>
<td>AHP deceleration (mV/msec2)</td>
<td>133.88 ± 5.71</td>
<td>84.11 ± 7.34</td>
<td>130.00 ± 8.63</td>
<td>135.96 ± 12.49</td>
<td></td>
</tr>
<tr>
<td>SS firing rate (Hz)</td>
<td>152.11 ± 7.04</td>
<td>116.63 ± 10.21</td>
<td>134.47 ± 7.52</td>
<td>155.21 ± 13.35</td>
<td></td>
</tr>
<tr>
<td>SS firing rate/initial frequency</td>
<td>0.85 ± 0.018</td>
<td>0.71 ± 0.031</td>
<td>0.80 ± 0.023</td>
<td>0.83 ± 0.035</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Comparison of firing properties between wild-type and mutant FS cells in the neocortex

FS cells are organized by the cortical layer in which they were found. Spike width, AHP, and slope measurements are from single action potentials. V_m, Membrane potential; R_{indep}, input resistance of the cell; Amp, amplitude; SS, steady state. p values determined by Student’s t test. *$p < 0.01$; **$p < 0.001$; ***$p < 0.0001$; dashed lines indicate non-significance ($p > 0.05$).

(Table 1). Moreover, although submillimolar concentrations of TEA affect the magnitude but not significantly the kinetics of the AHP (Erisir et al., 1999), we found that the kinetics of the AHP was different in Kv3.2-deficient and wild-type animals (Fig. 5A, A1). The fast AHP characteristic of fast-spiking neurons from wild-type mice was replaced by a slower AHP in fast-spiking neurons from Kv3.2−/− mice (Fig. 5C). We hypothesize that the slow AHP in FS neurons from Kv3.2−/− mice is generated by the increased activation of an unidentified K^+ conductance (perhaps mediated by Ca^{2+}-activated K^+ channels), which deactivated at rates slower than those of Kv3 channels. There is increased activation of this conductance in Kv3.2-deficient mice because of the increase in the duration of the action potential. We further like to suggest that this is not seen when TEA is used to block Kv3 channels because the drug also blocks this unidentified K^+ conductance. Consistent with this idea, low TEA concentrations blocked the slow AHP in neurons from knock-out mice (Fig. 8).

Other than these differential effects on the AHP, all of the effects of the Kv3.2−/− mutation on the spike and repetitive firing properties of deep-layer fast-spiking neurons resembled the effects of a partial block of Kv3 channels with TEA ($\sim \text{0.2 mM}$) on wild-type FS neurons (Erisir et al., 1999). We expected the mutation to
be equivalent to a partial block of Kv3 channels because FS neurons in the Kv3.2 /− mice still express normal levels of Kv3.1 proteins (Figs. 1, 2), and Kv3.1 and Kv3.2 proteins express similar currents in heterologous expression systems (Hernandez-Pineda et al., 1999; Rudy et al., 1999). To test this hypothesis, we compared the effects of TEA on the spike width, steady-state firing rate, and degree of adaptation of fast-spiking neurons from wild-type and knock-out mice. The values of these parameters in FS neurons from knock-out animals in the absence of the channel blocker were close to those in wild-type animals in the presence of submillimolar concentrations of TEA. For example, the spike width of deep-layer FS neurons from Kv3.2-deficient mice (0.94 ± 0.04 msec, n = 20) was comparable with the spike width of wild-type mice in 0.2 mM TEA (0.95 ± 0.03 msec, n = 16; and 0.62 ± 0.04, n = 15, in 0.2 mM TEA) (Fig. 9). Furthermore, although TEA still had effects on spike width and repetitive firing properties of FS neurons from knock-out animals, the effects were smaller than those observed in neurons from wild-type animals (Fig. 9). In 1.0 mM TEA, a drug concentration expected to block ≥80% of the total Kv3 channels, knock-out and wild-type neurons had similar properties (e.g., 63 ± 6 spikes/sec, n = 15; and 55 ± 3 spikes/sec, n = 18, for the steady-state firing rate of wild-type and knock-out FS neurons, respectively, in 1 mM TEA) (Fig. 9C). This would be expected if the mutation and the drug (at concentrations of ≤1 mM) are acting, for the most part, on the same conductance. These data are also consistent with the notion that we are recording from similar neurons in the two types of animals and that, other than the

Figure 7. Disruption of the Kv3.2 gene affects the action potential duration and fast-spiking properties (but not the input resistance) of FS interneurons from deep cortical layers but not from superficial layers. The fraction of the initial firing frequency remaining at the end of a 600 msec depolarization (A), the width at half amplitude (B), and the input resistance (C) of FS layer V–VI neurons from wild-type (open symbols) and knock-out (filled symbols) mice are plotted against the maximum steady-state firing rate of each cell. Parameters from deep-layer regular spiking nonpyramidal (RSNP) neurons of both genotypes are included in A for comparison. Mean values for each parameter are indicated by the symbol with the error bars that indicate the SEM. The values from knock-out neurons clustered at lower maximum firing rates (A, B), increased firing frequency adaptation (A), and longer action potential duration (B). However, there was no difference in the input resistance of FS neurons from wild-type and knock-out animals (C). Also notice the quasi-linear relationship between steady-state firing rate and firing frequency adaptation (A) or spike width (B) in both wild-type and knock-out mice, indicating that these parameters depend on common underlying factors. D, Same as A for layer II–III neurons from knock-out and wild-type mice, illustrating the lack of effect of the mutation on superficial layer FS neurons. Similarly, no differences were detected in action potential duration (Table 1).

Figure 8. Low TEA concentrations block the AHP in FS neurons from wild-type (WT) and knock-out (KO) mice. The AHP is slower in the FS neuron from the Kv3.2 /− mouse. However, low TEA concentrations block the AHP nearly completely in both cases.
lack of the mutated channel proteins, the cells have not changed significantly in active conductances or other membrane properties. Moreover, these results also suggest that the dispersion in steady-state firing frequency values between different FS neurons might be the result of differences in the number of active Kv3 channels. Because Kv3 channel activity can be modulated by neurotransmitters and second messengers (Moreno et al., 1995; Atzori et al., 2000), different cortical neurons could have different proportions of active channels depending on having been recent targets of these modulators.

FS neurons can repetitively fire spike doublets at 40 Hz, an ability that requires Kv3 channels

Under certain physiological conditions, fast-spiking neurons may not undergo long, steady depolarizations such as those used in the previous experiments. For example, it has been shown in both the neocortex and the hippocampus (Traub et al., 1996, 1999; Steriade et al., 1998) that, when stimulated, fast-spiking neurons generate fast rhythmic (~40 Hz) spike bursts. The bursts consist of two (spike doublets) to three spikes with intraburst frequencies that are similar to the steady-state frequencies observed during long, steady depolarizations (100–200 Hz at room temperature; 300–400 Hz at 37°C). We asked whether the ability to generate such rhythmic bursts repetitively is impaired in FS neurons from the Kv3.2 −/− mice. Cortical neurons were stimulated repetitively with brief depolarizations that generated one or more spikes per stimulus, repeated at various frequencies. We focus on the results at 40 Hz, the characteristic frequency observed in the EEG during periods of brain activation (Bouyer et al., 1981; Llinas and Ribary, 1993; Murthy and Fetz, 1996a,b; Steriade et al., 1996). In wild-type mice, both regular-spiking and fast-spiking GABAergic interneurons in both superficial and deep cortical layers could follow 40 Hz stimuli that generated a single spike per stimulus for periods up to 1 min (the longest tested; data not shown). However, only fast-spiking neurons could follow larger stimuli that generated a spike doublet without failing (Fig. 10). In contrast, deep-layer, fast-spiking neurons from knock-out mice failed in their ability to fire spike doublets repetitively much more rapidly than did neurons from wild-type animals (Fig. 10A–B). In fact, in Kv3.2 −/− mice, during the first stimulus, the second spike was already smaller than the first spike, and it got smaller, slower, and more delayed with subsequent depolarizations (Fig. 10A), suggesting a reduction in the available Na+ current. This is consistent with the hypothesis that Kv3 channels facilitate fast spiking by increasing Na+ channel recovery from inactivation (Erisir et al., 1999). This behavior was similar to that observed after application of low concentrations of TEA on deep-layer FS neurons from wild-type mice (data not shown).

Increased cortical excitability in the Kv3.2 −/− mouse

The cellular analysis showed that the ability of fast-spiking interneurons to fire at high frequencies for long durations or repetitively is impaired in Kv3.2 −/− mice. The knock-out mice are thus useful to test hypotheses of the function of these neurons and the significance of fast spiking in their performance. The presence of sporadic epileptic seizures in Kv3.2-deficient mice suggests that the mice have an increased susceptibility to seizures. Here we present a series of observations that provide further evidence of increased cortical excitability and susceptibility to seizures in the Kv3.2 −/− mouse.

The first experiment consisted of recording spontaneous EEG from cortex and thalamus in ketamine–xylazine anesthetized Kv3.2 −/− and wild-type mice. Results were obtained with multisite extracellular and field potential recordings using arrays of high-impedance tungsten electrodes. As shown in Figure 11A, wild-type mice (n = 21) showed the characteristic slow rhythm observed during natural slow-wave sleep and during ketamine–xylazine anesthesia in other species (Steriade et al., 1993a; Contreras and Steriade, 1995). In wild-type mice, the slow rhythm was characterized by recurring sequences at <1 Hz of depth-negative followed by depth-positive waves in the EEG, which occurred in synchrony with the corresponding thalamic territory. Such sequences correspond intracellularly to neuronal depolarization and hyperpolarization, respectively (Steriade et al., 1993a; Contreras and Steriade, 1995). The EEG of the Kv3.2 −/− mice (n = 18) showed, superimposed on the underlying slow rhythm, spontaneous high-amplitude sharp potentials, lasting from 30 to 100 msec and with the same polarity as the slow oscillation (depth-negative and surface-positive). Such sharp potentials pervaded throughout all phases of the slow oscillation and produced a very irregular slow rhythm (Fig. 11B). Nevertheless, the slow rhythm is clearly present, suggesting that the cortical synchronization responsible for this rhythm still occurs in the knock-out. The “spikiness” of the slow rhythm in Kv3.2-deficient mice, illustrated with the example in Figure 11B, is the most characteristic effect of the mutation that we have observed until now. All Kv3.2 −/− mice tested showed similar irregularities on the EEG, which we have never seen in wild-type mice.
littermates or in mice from commercial sources. The high degree of spatiotemporal synchrony of the slow rhythm is achieved by massive reentrant corticocortical circuits, as shown by the absence of effects of massive ipsilateral thalamectomy followed by sectioning of the callosum (Steriade et al., 1993b). We propose that the sharp potentials in the Kv3.2−/− mouse reflect a poor local control of the strong synchronized corticocortical inputs that reach the cortex during the slow oscillations.

In the course of the previous experiments, we found that seizures were prevalent in Kv3.2−/− mice under ketamine–xylazine anesthesia. Under these conditions, most (12 of 18) Kv3.2−/− mice, but not their wild-type littermates (0 of 21), showed electrographic seizures that occurred spontaneously (typically every 10–20 min) (Fig. 12A). Similar seizures were easily induced in Kv3.2−/− mice (12 of 12 mice tested) by electrical stimulation of the thalamus (Fig. 12B). In contrast, we were never able to evoke seizures in wild-type animals (n = 19), even with stimuli that were 10 times stronger or longer in duration (and in a variety of patterns) than those required to evoke seizures in knock-out mice. Both spontaneous and evoked seizures were often associated with motor manifestations that varied from small jerks of the limbs and movements of the whiskers to full convulsions. In principle, these seizures could result from increased thalamic input into the cortex or from reduced cortical control in Kv3.2-deficient mice. This is an important consideration, given the prominent expression of Kv3.2 in thalamic relay neurons and thalamocortical projections (Fig. 2) (Rudy et al., 1992; Weiser et al., 1994; Moreno et al., 1995). However, the failure to induce seizures when large doses of bicuculline are injected into the thalamus (Steriade and Contreras, 1998) shows that the feedforward and feedback inhibitory mechanisms of the cortex are capable of handling the entrance into the cortex of thalamic stimuli of increased magnitude. Therefore, the presence of thalamic-induced seizures in the Kv3.2−/− mouse is likely to result from increased cortical excitability.

The last set of experiments consisted of testing seizure susceptibility to chemical convulsants in vivo. Kv3.2−/− mice were more sensitive to the convulsant PTZ, a GABA_A receptor antagonist. When challenged with a single dose of PTZ (50 mg/kg), Kv3.2−/− mice showed more severe responses than wild-type littermates (Fig. 13A). For example, at this dose, 52% of Kv3.2−/− mice (n = 23) compared with 16% of wild types (n = 19) developed severe stage 4 tonic-clonic convulsions associated with death. Similarly, the delay between drug application and the first evidence of epileptic activity was significantly shorter in the knock-out mice (Fig. 13B).

Together, the data provide strong evidence that mice deficient in Kv3.2 subunits have susceptibility to seizures probably reflecting an increase in cortical excitability. Because Kv3.2 proteins are expressed in inhibitory but not in excitatory neurons in the cortex (Chow et al., 1999), and assuming that compensatory changes in other cortical elements have not taken place, the inferred increase in cortical excitability most likely arises from impaired cortical inhibition. Deficits in cortical inhibition may occur in the Kv3.2−/− mouse if the fast-spiking ability of GABAergic interneurons is necessary to achieve proper levels of inhibition (see Discussion). This increased cortical excitability is likely to contribute to the spontaneous seizures observed in awake animals.

DISCUSSION

Kv3 channels and high frequency firing

Three (Kv3.1–Kv3.3) of the four Kv3 genes are prominently expressed in brain tissue and show different but overlapping patterns of expression (Perney et al., 1992; Rudy et al., 1992; Vega-Saenz de Miera et al., 1994; Weiser et al., 1994). Many, if not most, of the neuronal populations expressing these genes fire spikes at high frequency. This correlation led to the suggestion that Kv3 channels may play an important role in high-frequency firing (see introduc-
Pineda et al., 1999) support the idea that Kv3 channels play a role in fast-spiking firing in the neocortex, to test directly the role of Kv3 genes in fast spiking. The results show that fast spiking is impaired in neocortical layer FS neurons but not in superficial layer FS neurons in which Kv3.2 is weakly expressed. These results provide strong, independent evidence that Kv3 channels play a critical role in enabling high-frequency firing in FS neurons. Together with data showing that the PKA-dependent modulation of the firing frequency of FS interneurons in the hippocampus is absent in Kv3.2 knockout mice (Atzori et al., 2000), the experiments described here provide the most direct evidence for a critical role of Kv3 channels in sustained or repetitive high-frequency firing.

The ability of Kv3 channels to facilitate sustained or repetitive high-frequency firing is a direct consequence of the special properties of these channels that distinguish them from other voltage-gated K⁺ channels. (1) By activating at very depolarized potentials, the cell can use large numbers of Kv3 channels to produce fast-spike repolarization and a large AHP with minimum effects on input resistance, threshold, or rise time, thus keeping action potentials brief without compromising action potential generation. (2) By keeping action potentials brief, Kv3 channels minimize the inactivation of the Na⁺ conductance during the spike. (3) By generating a large AHP, Kv3 channels accelerate recovery from the Na⁺ channel inactivation that did take place during the spike. (4) The brief duration of the AHP (produced by the fast deactivation of Kv3 channels) restores high-input resistance quickly. The increase in the number of Na⁺ channels that have recovered from inactivation and the fast termination of the AHP minimize the duration of the refractory period, allowing the cell to reach firing threshold sooner than in the absence of Kv3 channels (Sekirnjak et al., 1997; Erisir et al., 1999). The effects of blocking Kv3 channels become stronger during long trains or repetitive activity because there is accumulation of Na⁺ channel inactivation resulting from the repeated activation of the channels. The larger increase in spike rise time during repetitive activity in Kv3.2-deficient mice (Figs. 5A1, A2, 10) supports this view. The results with Kv3.2-deficient mice also suggest that the increased activation of slower K⁺ conductances active during the AHP, produced by the increase in action potential duration, may

Figure 11. Distortions in the cortical EEG in the Kv3.2 −/− mouse. Bipolar EEG from the S1 cortex and the ventrobasal nucleus of the thalamus (VB) in a wild-type (A) and a knockout (B) mouse. Both EEGs show a predominant slow rhythm (~1 Hz) typical of ketamine–xylazine anesthesia. Whereas the EEG of the normal mouse shows a regular pattern in synchrony with the thalamus, the EEG of the knock-out mouse is pervaded by high-amplitude, short-lasting waves in all phases of the slow oscillation. Such sharp waves occur in synchrony with burst firing in the thalamic recording. Because we observed no significant electrophysiological differences in the thalamus of wild-type and Kv3.2 −/− mice (data not shown), we ascribed the generation of burst firing in thalamus to an increased corticothalamic drive probably caused by increased firing of cortical cells during the sharp potentials.

Figure 12. Seizures in the ketamine–xylazine anesthetized Kv3.2 −/− mouse. A and B represent data from two different animals. EEG was recorded from the depth of the primary somatosensory cortex (S1). The seizure in A occurred spontaneously. The seizure in B was triggered by high-frequency stimulation (7 short trains of 100 Hz repeated at −10 Hz) delivered to the ventrobasal nucleus of the thalamus (VB stim). Both spontaneous and evoked seizures were initiated abruptly by a paroxysmal depolarizing shift (PDS) and consisted of runs of 5–7 Hz low-amplitude waves followed by higher amplitude waves usually at ~1 Hz. Seizures also terminated abruptly and were followed by a variable period (10–30 sec) of postictal depression with flat EEG. The background activity preceding seizures was like that seen in Figure 11B. Note the change in gain during the record shown in B. The gain in A had been changed earlier and was 10 times smaller before the seizure.
Kv3.2 Knock-Out Mouse

Figure 13. Susceptibility of Kv3.2-deficient mice to PTZ-induced seizures. A, The maximum response of wild-type (WT; n = 19) and knock-out (KO; n = 23) mice after a single injection of 50 mg/kg PTZ intraperitoneally was scored as follows: 1, only isolated twitches; 2, only partial or focal seizures (stage 3, see Materials and Methods); 3, generalized clonic seizures; and 4, large tonic-clonic epileptic seizures. Knock-out mice tend to progress to more severe stages than wild-type littermates. ρ < 0.01 (Mann-Whitney rank sum test). B, Latency to first seizure. Plotted is the time from the PTZ injection to the first sign of seizure. The latency was shorter for the knock-out mice. p < 0.02, Student’s t test.

Increased cortical excitability in the Kv3.2 −/− mouse

Several observations indicate that Kv3.2-deficient mice have increased cortical excitability. Increased excitability, resulting in increased susceptibility to seizures, if not a full epileptic behavior, has also been observed in two other K⁺ channel knock-out mice lines: Kv1.1 (Smart et al., 1998) and one of the G-protein-gated inward rectifier K⁺ channel genes (GIRK2) (Signorini et al., 1997). Moreover, mutations in the K⁺ channel genes KCNQ2 and KCNQ3, subunits of M-type K⁺ channels, have been found in humans with benign familial neonatal convulsions (Charlier et al., 1998; Singh et al., 1998). A strong association between increased excitability and K⁺ channel dysfunction may not seem surprising. K⁺ channels typically suppress and limit cell excitability by competing with depolarizing currents, and thus, reduced K⁺ channel expression is expected to generate hyperexcitability. Indeed, 4-AP and other K⁺ channel blockers are often used as convulsants in experimental animals (Rutecki et al., 1987; Velluti et al., 1987).

However, it is very likely that the underlying mechanism responsible for the increased cortical excitability of Kv3.2-deficient mice is different from that producing the hyperexcitability phenotypes in the other examples. K⁺ channels containing Kv1.1, GIRK2, and KCNQ2 and KCNQ3 subunits operate close to the resting potential and act as breaks dampening the effects of depolarizing inputs. Moreover, these channels are prominently expressed in excitatory neurons in neocortex, hippocampus, and many other brain areas. Hyperexcitability of these cells, resulting from suppressing these channels, is likely to underlie the hyperexcitability behavior (Signorini et al., 1997; Smart et al., 1998). However, in the neocortex and hippocampus, Kv3.2 is only expressed by inhibitory neurons (Chow et al., 1999; Atzori et al., 2000). The defects in the function of these cells are likely to be key contributors to the observed increases in cortical excitability, although this remains to be conclusively demonstrated.

Hyperexcitability of these interneurons should produce increased cortical inhibition and therefore suppression of hyperexcitability phenotypes, contrary to what we see in the Kv3.2 −/− mouse. The solution to this apparent paradox lies in the unique role of Kv3 channels in neuronal excitability as illustrated by the results obtained with the Kv3.2-deficient mouse, which suggest that suppression of this K⁺ channel results in impaired cellular firing instead of hyperexcitability. Kv3 channels are not active anywhere near threshold potentials, and therefore their removal is not expected to affect much the responsiveness to synaptic inputs. As shown here and in previous pharmacological studies (Du et al., 1996; Massengill et al., 1997; Erisir et al., 1999), suppression of Kv3 channels produces broadening of the action potential. This could increase GABA release from these cells, which should result in increased cortical inhibition. On the other hand, cortical inhibition might be reduced if the ability to sustain repetitive firing at high frequencies is even more important in determining inhibitory levels. Our data suggest that this is the case and that impaired fast spiking decreases the performance of the inhibitory circuits in the cortex. This view is consistent with observations that FS neurons fire long, high-frequency trains or repetitive high-frequency bursts of action potentials in response to synaptic inputs. The present model is that this increased cortical inhibition is due to a dominant role in enabling high-frequency firing. As a result, increased cortical inhibition has allowed us to generate mice lines in which this property is impaired in selective neuronal populations. Preliminary experiments show cellular changes similar to those described here on FS neurons in superficial cortical layers in Kv3.1-deficient mice (Ho et al., 1997), and larger effects resembling those produced by complete Kv3 channel block are expected on mice deficient in both genes. GABAergic interneurons are thought to play important roles in many cortical functions. These mice lines will be interesting models to test hypotheses on the role of GABAergic interneurons in these functions. For example, preliminary observations in

also contribute to reducing firing frequency and increasing firing frequency adaptation after Kv3 channel removal.

Evidence that Kv3 channels are necessary for sustained or repetitive high-frequency firing has now been obtained for FS neurons in the neocortex and hippocampus (Martina et al., 1998; Erisir et al., 1999; Atzori et al., 2000; this study), for neurons in the medial vestibular nucleus (MVN) (S. du Lac and C. Sekirnjak, unpublished observations) and the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem (Wang et al., 1998). Kv3 gene products are found in many other neurons capable of high-frequency firing (Weiser et al., 1994), suggesting a similar role in these neurons. Although it appears that Kv3 channels are necessary for sustained or repetitive high-frequency firing in many (if not all) high-frequency firing neurons, their presence is clearly not sufficient. The effects on excitability of the Kv3 channels will depend on the other conductances active on the cell and their precise localization in the neuron. In fact, the three cell types (FS interneurons in the neocortex and hippocampus, neurons in the MNTB, and neurons in the MVN) for which a role of Kv3 channels in high-frequency firing has been suggested have different firing properties. Both FS interneurons and MVN neurons (du Lac and Lisberger, 1995; du Lac, 1996) fire long, high-frequency spike trains in response to steady depolarizations. However, FS interneurons produce long, high-frequency spike trains abruptly, and the steady-state firing frequency saturates as a function of injected current (as in the examples shown here). In contrast, MVN neurons are spontaneously active, and the relationship between injected current and firing frequency is nearly linear (du Lac and Lisberger, 1995; du Lac, 1996). The presence of low voltage-activating or persistent Na⁺ channels and differences in other conductances probably account for these differences in firing properties.

On the other hand, the MNTB neurons produce one or, at most, two action potentials independently of the duration or strength of the depolarization, probably because depolarization activates large, low voltage-activating “D”-type K⁺ currents that limit repetitive activity (Brew and Forsythe, 1995). However, these neurons can fire action potentials entrained to very high-frequency inputs (>600 Hz), the property which appears to depend on Kv3 (probably Kv3.1 and Kv3.3) channels (Wang et al., 1998).

Kv3 channels are an excellent example of how the specialized properties of certain channels contribute to functional specificity. This helps to explain the biological significance of K⁺ channel diversity as a key factor contributing to the diversity of the electrophysiological properties of neurons and to the specificity of neuromodulator actions (Adams and Galvan, 1986; Llinas, 1988; Rudy, 1988; Baxter and Byrne, 1991; Hille, 1992).
the hippocampus revealed a decrease in high-frequency oscillations in Kv3.2/–/– mice, suggesting impaired synchronization (Atzori et al., 2000), one of the key roles attributed to cortical GABAergic interneurons.

REFERENCES

Sinauer.

