Bradykinin, But Not Muscarinic, Inhibition of M-Current in Rat Sympathetic Ganglion Neurons Involves Phospholipase C-β4

Jane E. Haley, Fe C. Abogadie, Jose M. Fernandez-Fernandez, Mariza Dayrell, Yvonne Vallis, Noel J. Buckley, and David A. Brown

Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, London, WC1E 6BT, United Kingdom

Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (I_{K(M)}) which can be inhibited by activation of M1 muscarinic receptors (M1 mACHR) and bradykinin (BK) B2 receptors. Inhibition by the M1 mACHR agonist oxotremorine methiodide (Oxo-M) is mediated, at least in part, by the pertussis toxin-insensitive G-protein Goq (Caulfield et al., 1994; Haley et al., 1998a), whereas BK inhibition involves Goq and/or Gα11 (Jones et al., 1995). Goq and Gα11 can stimulate phospholipase C-β (PLC-β), raising the possibility that PLC is involved in inhibition by Oxo-M and BK. RT-PCR and antibody staining confirmed the presence of PLC-β1, -β2, -β3, and -β4 in rat SCG. We have tested the role of two PLC isoforms (PLC-β1 and PLC-β4) using antisense-expression constructs. Antisense constructs, consisting of the cytomegalovirus promoter driving antisense cRNA corresponding to the 3’-untranslated regions of PLC-β1 and PLC-β4, were injected into the nucleus of dissociated SCG neurons. Injected cells showed reduced antibody staining for the relevant PLC-β isoform when compared to un.injected cells 48 hr later. BK inhibition of I_{K(M)} was significantly reduced 48 hr after injection of the PLC-β4, but not the PLC-β1, antisense-encoding plasmid. Neither PLC-β2 antisense altered M1 mACHR inhibition by Oxo-M. These data support the conclusion of Cruzblanca et al. (1998) that BK, but not M1 mACHR, inhibition of I_{K(M)} involves PLC and extends this finding by indicating that PLC-β4 is involved.

Key words: M-current; muscarinic receptor; bradykinin; phospholipase C-β; antisense; superior cervical ganglion neuron

The M-type potassium current (I_{K(M)}) is a noninactivating potassium current present in various peripheral and central neurons, including rat superior cervical ganglion (SCG) neurons (for review, see Brown, 1988). It is activated in the subthreshold range for action potentials and increases with membrane depolarization and may, therefore, be involved in controlling cell excitability, because inhibition of this current results in depolarization and increased action potential discharge. I_{K(M)} in SCG can be inhibited by stimulating various receptors including the M1 muscarinic receptor (M1 mACHR; Marrion et al., 1989; Bernheim et al., 1992; Hamilton et al., 1997) and bradykinin (BK) B2 receptor (Jones et al., 1995), both of which couple via Bordetella pertussis toxin (PTX)-insensitive GTP-binding proteins (G-proteins). We have previously demonstrated that the α subunit of Gq mediates inhibition by M1 mACHR agonists (Haley et al., 1998a) and that Goq and/or Gα11 is required for inhibition by BK (Jones et al., 1995). Because both Goq and Gα11 are known to stimulate PLC-β (Singer et al., 1997), we have now used antisense directed at two PLC-β isoforms (PLC-β1 and PLC-β4) to deplete the cells of these enzymes and so determine whether either is required for inhibition of I_{K(M)} by M1 mACHR agonists or BK.

Some of this data has been previously presented in abstract form (Haley et al., 1998b)

MATERIALS AND METHODS

DNA plasmids. The constructs used in this study were made by PCR cloning using standard molecular techniques (Abogadie et al., 1997). Primers that were deemed specific for each target PLC-β isoform were used in PCR, and the products were TA-cloned into pCR3 or pCR3.1 (Invitrogen, San Diego, CA). Antisense orientation was confirmed by sequencing. The clones are as follows, in 5’ to 3’ orientation [nucleotide (nt); plus and minus signs indicating downstream and upstream, respectively, of the stop codon]: PLC-β1 antisense (clone 239–8), nt +22 to +172; PLC-β2 antisense (clone F128–5), nt −536 to −309; PLC-β3 antisense (clone E92–18), nt −93 to +67; PLC-β4 antisense (CS8–13), nt +5 to +386.

Cell culture. Sympathetic neurons were isolated from SCG of 15- to 19-d-old Sprague Dawley rats and cultured using standard procedures as described previously (Delmas et al., 1998).

Microinjection. DNA plasmids, purified using maxiprep columns (Qiagen, Hilden, Germany), were diluted to 400 μg/ml in calcium- and glucose-free Krebs’ solution (290 mOsm/l; pH 7.3) containing 0.5% bovine serum albumin (BSA; Sigma, Poole, Dorset, UK).

This article is published in The Journal of Neuroscience, Rapid Communications Section, which publishes brief, peer-reviewed papers online, not in print. Rapid Communications are posted online approximately one month earlier than they would appear in print. They are listed in the Table of Contents of the next open issue of JNeurosci. Cite this article as: JNeurosci, 2000, 20:RC105 (1–5). The publication date is the date of posting online at www.jneurosci.org.

http://www.jneurosci.org/cgi/content/full/4657
FITC-dextran (70,000 MW) and pressure injected into the nucleus of SCG neurons 2 d in culture using an Eppendorf microinjection (Hamburg, Germany). Cells were maintained in culture for a further 2 d, and a survival rate of 75–85% was obtained.

Electrophysiology. I$_{K(M)}$ was measured from SCG neurons cultured for 5 d, using the amphotericin-B perforated-patch technique (Horn and Marty, 1988; Rae et al., 1991). Patch electrodes (1.5–4 MΩ) were filled by dipping the tip for 40 sec into filtered internal solution that comprised (in mM): NaCl 120, KCl 3, HEPES 5, and 280 mM sucrose (adjusted to pH 7.3–7.4 with KOH, and 280 mOsm/l with K acetate). The pipette was then back-filled with internal solution containing 0.07–0.1 mg/ml amphotericin-B. High resistance seals (>2 GΩ) were initially achieved, and after amphotericin-B permeabilization, access resistances were generally <25 MΩ. SCG neurons were perfused at 5–10 ml/min at 32°C with an external solution consisting of (in mM): NaCl 120, KCl 3, HEPES 5, NaHCO$_3$ 23, glucose 11, MgCl$_2$ 1.2, CaCl$_2$ 2.5, and tetrodotoxin (TTX) 0.0005, pH 7.4. Cells were voltage-clamped at approximately −25 mV to preactivate I$_{K(M)}$ using a switching amplifier (Axoclamp-2A; Axon Instruments, Foster City, CA; switching frequencies 3–5 kHz, filter 0.1 kHz). I$_{K(M)}$ was measured from the slow deactivation relaxation after a 1 sec jump to a command potential of approximately −55 mV (Haley et al., 1998a), and inhibition was measured as the fractional reduction in the amplitude of this deactivation relaxation in response to either cumulatively increasing concentrations of oxotremorine methiodide (Oxo-M; Research Biochemicals, Natick, MA) or a single application of 1 nM BK (Bachem, Torrance, CA) (see Fig. 2). Data were collected and analyzed using pClamp6 software (Axon Instruments) and expressed as mean ± SEM. Statistical analysis of the Oxo-M dose–response curves used two-way ANOVA comparing all treatments across all concentrations of agonist. If a significant effect of treatment was found overall, further analysis was performed using two-way ANOVA to determine which treatment groups contributed to this significance. The bradykinin data were analyzed using Student’s t test with Welch’s correction. p values < 0.05 were considered significant.

Reverse transcription PCR. RNA was extracted from rat SCGs using RNazol B (Biogenesis Ltd.) and reverse-transcribed using oligo-dT and mouse murine leukemia virus reverse transcriptase (Promega, Madison, WI). The oligonucleotide primers used in the PCR were those that were deemed least conserved among the different PLCβ isoforms to ensure specificity in the amplification. The primers are as follows (‘u’ denotes sequence in the 3’ untranslated region, ‘s’ denotes sense primer, and ‘a’ denotes antisense primer): PLCβ-1 u22 s/u199a; PLCβ-2 s311l s/s331la; PLCβ-3 3564 s/u45a; PLCβ-4 s5 u/s360a. Cycling conditions were 95°C for 5 min and then 35 cycles of 95°C for 30 sec, 58°C for 30 sec, and 72°C for 1 min followed by a final extension step of 72°C for 10 min.

Immunocytochemistry. SCG neurons, cultured and injected as described above, were fixed and stained using specific polyclonal antibodies against PLCβ-1 (sc-205), PLCβ-2 (sc-206), PLCβ-3 (sc-403), and PLCβ-4 (sc-404) (Santa Cruz Biotechnology, Santa Cruz, CA). Diluted either 1:1000 or 1:500. Specificity of the antibodies was confirmed by pre-absorbing the antibody with 6–10-fold excess (by weight) of the relevant immunogenic peptides (also from Santa Cruz Biotechnology). All dishes of SCG neurons recorded in the electrophysiology experiments were subsequently fixed and stained. The alkaline phosphatase substrate system used was 5-bromo-4-chloro-3-indoxyl phosphate and nitroblue tetrazolium chloride (BCIP/NBT) (Dako, Carpinteria, CA). Substrates used were 5-bromo-4-chloro-3-indoxyl phosphate and nitroblue tetrazolium chloride (BCIP/NBT) (Dako, Carpinteria, CA). Because the purple–blue product was too dark to quantitate photometrically, we have assessed whether there was an overall qualitative reduction in staining by comparing each injected cell with its nearest uninjected neighbor and determining (by eye) whether the level of staining was equal to or less than that of the uninjected cell. Using this method, we have estimated the proportion of cells with a visible reduction in staining (regardless of the magnitude of this reduction) 48 hr after injection of the antisense plasmid.

RESULTS

PLC-β isoforms expressed in SCG

RT-PCR demonstrated the presence of mRNA for all four isoforms of PLC-β (1, 2, 3, and 4) in rat SCG (Fig. 1A) while the protein for all isoforms was detected immunocytochemically in cultured SCG neurons. Intracellular injection of antisense against PLCβ-1 and PLCβ-4 resulted in a reduction in the level of staining for the relevant enzyme 48 hr later (Fig. 1B, C).

PLCβ-1 antisense was highly effective and clearly reduced PLCβ-1 staining in 37 of 53 neurons (70%; n = 7 dishes of cells) without altering levels of PLCβ-2 (1 of 12 cells showed reduced staining; 8%; n = 3 dishes), PLCβ-3 (1 of 12 cells; 8%; n = 3 dishes), or PLCβ-4 (0 of 13 cells; n = 2 dishes). The PLCβ-4 antisense was less effective but still reduced visible PLCβ-4 staining in 12 of 32 cells (38%; n = 10 dishes of cells). Although the PLCβ-4 antisense was designed to specifically target the PLCβ-4 isofrom, it also reduced levels of PLCβ-1 (11 of 21 cells; 52%; n = 6 dishes) but did not alter PLCβ-3 staining (1 of 9 cells; 11%; n = 3 dishes) or PLCβ-2 staining (1 of 21 cells; 5%; n = 2 dishes). Antisense-encoding plasmids were also designed against the remaining PLCβ isoforms, but neither the PLCβ-2 antisense (2 of 39 cells; 5%; n = 5 dishes) nor the PLCβ-3 antisense (1 of 9 cells; 11%; n = 5 dishes) reduced staining of its respective protein. Electrophysiological data with these ineffective antisense clones is not shown although, as expected, they did not alter I$_{K(M)}$ modulation by Oxo-M or BK, confirming that injection of DNA plasmids per se does not alter modulation of I$_{K(M)}$.

Effect of PLC-β antisense plasmids on I$_{K(M)}$ inhibition by a muscarinic agonist and by bradykinin

Intracellular injection of antisense against PLCβ-1 or PLCβ-4 did not alter the amplitude of I$_{K(M)}$. Mean values (in picoamperes per
picofarad) ± SEM were: uninjected cells, 2.91 ± 0.41 (n = 8); PLC-β1 antisense, 2.39 ± 0.52 (n = 10); and PLC-β4 antisense, 2.33 ± 0.36 (n = 10). The resting membrane potential was not altered in cells with reduced PLC-β1 or -β4 levels (uninjected: −58.1 ± 2.0 mV, n = 10; PLC-β1 antisense: −60.3 ± 1.9 mV, n = 13; PLC-β4 antisense: −58.8 ± 1.5 mV, n = 11).

Neither antisense affected M4 mAChR-mediated inhibition of \(I_{K(M)} \) tested 48 hr later (when a reduction in the levels of these enzymes was observed). The dose–response curves to the muscarinic agonist Oxo-M in PLC-β1 or PLC-β4-depleted cells were not significantly different from one another or from that in uninjected neurons; IC\(_{50}\) values and Hill slopes were 0.4 μM and 1.1 for uninjected neurons, 0.8 μM and 1.0 for PLC-β1 antisense-injected neurons, and 0.5 μM and 1.1 for PLC-β4 antisense-injected cells (Figs. 2, 3). In contrast, inhibition by BK was reduced in cells injected with the PLC-β4, but not PLC-β1 antisense-expressing plasmid: 1 nm BK produced 28.5 ± 6.8% inhibition in uninjected cells (n = 8), 30.8 ± 7.9% in PLC-β1 antisense-injected neurons (n = 10), but only 12.5 ± 20.0% inhibition in PLC-β4 antisense-injected cells (n = 10; p < 0.05 compared with uninjected or PLC-β1 antisense-injected neurons) (Fig. 4).

DISCUSSION

The principal inference to be drawn from these experiments is that activation of PLC-β4 probably contributes to the inhibition of \(I_{K(M)} \) produced by stimulating BK receptors, but not to that produced by activating M4 muscarinic acetylcholine receptors. This differentiation accords with, and amplifies, previous conclusions of Cruzblanca et al. (1998) regarding the differential participation of the PLC pathway in M-current inhibition after stimulation of these two G protein-coupled receptors.

RT-PCR clearly demonstrated the presence of mRNA for PLC-β1, -β2, -β3, and β4 in rat SCG. Staining of cultured SCG neurons using specific antibodies also confirmed the presence of these proteins. Using antisense-encoding DNA plasmids we were able to reduce the levels of PLC-β1 and PLC-β4 in SCG neurons. Although both PLC-β1 and PLC-β4 have been shown to exist as two splice variants (Bahk et al., 1994; Kim et al., 1998), the antisense sequences we have used should target both variants of each enzyme. Indeed, the PLC-β1 antisense reduced PLC-β1 staining in both the cytosol and the nucleus of cultured SCG neurons (Fig. 1B) suggesting that levels of both splice variants were reduced because, in C6Bu-1 cells, PLC-β1a has been shown to be present mainly in the cytosol, whereas PLC-β1b was present in the nucleus (Bahk et al., 1998). As we found previously with antisense against Goq and Gs1 (Haley et al., 1998a), not all the antisense sequences designed were effective, and the constructs driving expression of antisense PLC-β2 and antisense PLC-β3 were unable to reduce staining of their target proteins.

Although the PLC-β1 antisense resulted in a robust reduction of PLC-β1 levels (Fig. 1B), there was no reduction in either Oxo-M or BK inhibition of \(I_{K(M)} \). By contrast, the PLC-β4 antisense reduced BK inhibition of \(I_{K(M)} \) but left Oxo-M inhibition...
unaffected. This difference between BK and Oxo-M is unlikely to
be caused by the fact that Oxo-M is a more “efficacious” inhibitor of $I_{K(M)}$ (in the sense that it produced a larger maximum inhibition), because the response to even a low concentration (0.3 μM) of Oxo-M that matched that produced by BK was unaffected by the PLC-β4 antisense (Fig. 3). Also, the concomitant reduction in PLC-β1 staining produced by the PLC-β4 antisense is unlikely to be responsible for the loss of BK inhibition because the PLC-β1 antisense produced a greater and more consistent reduction in those described in the present paper lead to the conclusion that $I_{K(M)}$, but leaves Oxo-M inhibition intact (Cruzblanca et al., 1998).

Thus, both the experiments of Cruzblanca et al. (1998) and those described in the present paper lead to the conclusion that the inhibition of M-current in rat SCG neurons produced by stimulating muscarinic or bradykinin receptors proceeds via different intracellular pathways. Because both receptors can couple to the same family of G-proteins and because both are intrinsically capable of inducing inositol phosphate production within these neurons (del Rio et al., 1999), the reason for this divergence in M channel signaling is not yet clear. Nevertheless, it highlights
the point that M channels may be regulated by more than one mechanism.

REFERENCES

