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Abstract. There is growing evidence that nonlinear time series analysis techniques

can be used to successfully characterize, classify, or process signals derived from real-

world dynamics even though these are not necessarily deterministic and stationary. In

the present study we proceed in this direction by addressing an important problem

our modern society is facing, the automatic classification of digital information. In

particular, we address the automatic identification of cover songs, i.e. alternative

renditions of a previously recorded musical piece. For this purpose we here propose a

recurrence quantification analysis measure that allows tracking potentially curved and

disrupted traces in cross recurrence plots. We apply this measure to cross recurrence

plots constructed from the state space representation of musical descriptor time series

extracted from the raw audio signal. We show that our method identifies cover songs

with a higher accuracy as compared to previously published techniques. Beyond the

particular application proposed here, we discuss how our approach can be useful for

the characterization of a variety of signals from different scientific disciplines. We

study coupled Rössler dynamics with stochastically modulated mean frequencies as

one concrete example to illustrate this point.
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1. Introduction

An unprecedented growth in the availability of and access to digital information is

taking place in today’s society, and music is a paradigmatic example. Online digital

music collections are in the order of millions of tracks, and personal collections can

easily exceed the practical limits on the time to listen to them [1]. This huge amount

of information readily accessible for end users poses major challenges for automatically

describing, understanding, searching, retrieving, and organizing musical contents. Music

information retrieval (MIR) is the interdisciplinary research field that deals with these

challenges [2].

MIR systems use multiple sources of information: the raw audio signal, symbolic

music representations, audio metadata, tags provided by users or experts, music and

social networks data, etc. In content-based MIR, much effort is focused on extracting

information from the raw audio signal to represent certain musical aspects such as

timbre, melody, main tonality, chords, or tempo [1]. Usually, these features are

computed in a short-time moving window either from a temporal, spectral, or cepstral

representation of the audio signal [1], leading to a descriptor time series reflecting

the temporal evolution of a given musical aspect. While common MIR strategies

characterize these time series by means of statistical modeling or machine learning

techniques [3, 4, 5], raw descriptor time series are used for many tasks such as audio

alignment and matching [6], song structure analysis [7], music similarity [8], audio

fingerprinting [9], or cover song identification [10, 11, 12, 13, 14, 15, 16, 17, 18].

A cover song is an alternative version, performance, rendition, or recording of a

previously recorded musical piece. While cover songs might differ from their originals

in several musical aspects such as timbre, tempo, song structure, main tonality,

arrangement, lyrics, or language of the vocals, they resemble their originals with regard

to other features. A robust so-called “mid-level feature” that is largely preserved

under the mentioned musical variations is the tonal sequence. Tonal sequences can

be understood as series of different notes. These notes can be played alone for each time

slot (a melody) or can be played simultaneously with other notes (chord or harmonic

progressions). Methods for automatic cover song identification usually exploit tonal

sequence similarity and attempt to be robust against common changes in other musical

aspects [18]. In general, they either aim to extract the predominant melody, a chord

progression, or a chroma time series (a mid-level feature representing harmonic content)

from the raw audio signal and make it independent of the main tonality. Then, for

obtaining a similarity measure between songs, tonality descriptor time series are usually

compared by means of techniques like dynamic time warping, edit-distance variants,

string matching algorithms, subsequence hashing, or by common similarity functions

(for an overview see [18]).

Cover song identification has recently become a very active area of study in the

MIR community [10, 11, 12, 13, 14, 15, 16, 19, 17, 18]. From a research point of

view, cover song identification is a task where the relation between songs is context-
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independent and can be quantitatively defined and objectively measured. It expands

the notions of music similarity beyond acoustic resemblance to include the important

idea that musical works retain their identity despite variations in many musical aspects

[20]. From a practical and commercial point of view, quantifying music similarity is key

to automatically searching and organizing music collections. Furthermore, identifying

cover songs has a direct implication to musical rights management and licenses. In

addition, from a user’s point of view, finding all versions of a particular song can be

valuable and fun.

The music information retrieval evaluation exchange (MIREX) is an international

community-based framework for the formal evaluation of MIR systems and algorithms

[21]. Among other tasks, MIREX allows comparing different algorithms for artist

identification, genre classification, or music transcription (‡). In particular, MIREX

allows for an objective assessment of the accuracy of different cover song identification

algorithms. For that purpose, participants can submit their algorithms as binary

executables, and the MIREX organizers determine and publish the algorithms’

accuracies and runtimes. The underlying music collections are never published or

disclosed to the participants, either before or after the contest. Therefore, participants

cannot tune their algorithms to the music collections used in the evaluation process.

For the 2007 edition of the MIREX cover song identification contest, our group

submitted an algorithm that we subsequently described in [17]. This algorithm, which

used a specifically designed chroma similarity measure and a subsequence matching

method, yielded the highest accuracy of all algorithms submitted in 2007 and in earlier

editions. For the 2008 edition, we used a qualitatively novel approach. The cover song

identification measure that we derived from this approach (Qmax) and a composition

of this measure with a simple post-processing step (Q∗

max) yielded the two highest

accuracies of all algorithms submitted in 2008 and in earlier editions. In particular,

the accuracy of both Qmax and Q∗

max clearly surpassed our earlier algorithm proposed

in [17].

The Qmax algorithm was submitted to the MIREX contest as a binary executable,

and we here disclose for the first time the underlying procedure. While this algorithm

shares MIR pre-processing steps with [17], the crucial difference is that it involves

techniques derived from nonlinear time series analysis [22]. More specifically, Qmax is a

recurrence quantification analysis (RQA) measure [23, 24, 25, 26] that is extracted from

cross recurrence plots (CRP) [27], which are the bivariate generalization of classical

recurrence plots (RP) [28]. The framework of nonlinear time series analysis offers

a variety of techniques to quantify similarities between dynamics based on signals

measured from them. Among these techniques, the CRP seems most suitable to analyze

pairs of musical descriptor time series since it is defined for pairs of signals of different

lengths and can easily cope with variations in the time scale and non-stationarities

of the dynamics [29, 30]. Here we construct CRPs from delay coordinate state space

‡ http://www.music-ir.org/mirexwiki/index.php/Main Page

http://www.music-ir.org/mirexwiki/index.php/Main_Page
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representations of multivariate descriptor time series of songs.

CRPs and RQA measures are known as very intuitive and powerful tools in various

disciplines such as astrophysics, earth sciences, engineering, biology, cardiology, or

neuroscience (see [26] and references therein). However, to the best of our knowledge,

there are no previous applications of CRPs and RQA measures to musical signals. In

general, only few studies apply nonlinear time series analysis to musical signals. In

[31, 32], delay coordinates are applied to raw audio signals with regard to audio analysis

and visualization. In [33, 34, 35], delay coordinates are applied to musical descriptor time

series with regard to genre classification, user preferences, and timbre modeling. In [36],

delay coordinates are applied to human speech signals for the purpose of local projective

noise reduction. Subsequently, in [37], an RQA measure was defined to automatically

adjust the best neighborhood size for this local projection.

It should be noted that RPs and CRPs have certain analogies with commonly used

MIR methods. In particular, the so-called self similarity matrix was introduced in [38] to

visualize music and audio tracks and later used in [39] for song structure segmentation or

in [40] for identifying components of an audio piece. Currently, self similarity matrices

are commonly used for diverse tasks such as song structure analysis [7] or musical meter

detection [41]. Cross similarity matrices are used, either directly or indirectly, in audio

matching algorithms [6] and in some cover song identification methods [18]. However,

in contrast to CRPs, these similarity matrices do not apply any delay coordinate state

space representation and are, in general, not thresholded.

A brief overview of the Qmax algorithm and the resulting structure of this article

can be outlined as follows. Given two songs, we first extract their chroma descriptor

time series and transpose one song to the main tonality of the other (Sec. 2.1). From

this pair of multivariate time series, we form state space representations of the two

songs using delay coordinates involving an embedding dimension m and time delay τ

(Sec. 2.2). From this state space representation, we construct a CRP using a fixed

maximum percentage of nearest neighbors κ (Sec. 2.3). Subsequently, we use Qmax to

extract features that are sensitive to cover song CRP characteristics, which results in

two additional parameters γo and γe. In particular, we derive Qmax from a previously

published RQA measure (Lmax, [28]), but adapt it in two steps (via Smax) to the problem

at hand (Sec. 2.4). We evaluate our approach using a large collection of musical pieces

(Sec. 3.1). This music collection was compiled prior to and independently from the

present study and our participation in the MIREX contest. We use a subset of this music

collection and a standard information retrieval evaluation methodology (Sec. 3.2) to, at

first, perform an in-sample optimization of parameters m, τ , κ, γo, and γe (Sec. 4.1).

We subsequently report the out-of-sample accuracy with optimized parameters of Lmax,

Smax, and Qmax in identifying cover songs (Sec. 4.2). All these steps were carried out

before we submitted the resulting algorithm to the 2008 MIREX cover song identification

contest as a further out-of-sample validation. We review results of this 2008 and the 2007

editions (Sec. 4.3) before we draw our conclusions (Sec. 5). As an outlook (Sec. 6), we

provide concrete perspectives for future applications of our technique. For this purpose
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we use coupled Rössler dynamics with stochastically modulated mean frequencies.

2. Method

2.1. Pre-processing

The tonal sequence is the most important characteristic shared among covers. To

estimate tonal sequences of musical pieces one can employ chroma or pitch class profile

(PCP) features. These are widely used in the MIR community [42, 43, 44, 45] and are

proven to work well as primary information for cover song identification systems [18].

For systems employing PCP see [10, 13, 16, 15, 19, 17].

In general, PCP features are robust against non-tonal components (e.g. ambient

noise or percussive sounds) and independent of timbre and the specific instruments

used [45]. Furthermore, they are independent of a musical piece’s loudness and volume

fluctuations. PCP features are derived from the frequency dependent energy in a given

range (typically from 50 to 5000 Hz) in short-time spectral representations (e.g. 100

milliseconds) of audio signals computed in a moving window. This energy is usually

mapped into an octave-independent histogram representing the relative intensity of each

of the 12 semitones of the western music chromatic scale (12 pitch classes). To normalize

with respect to loudness, this histogram can be divided by its maximum value, thus

leading to values between 0 and 1 (Fig. 1).
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Figure 1. Example of a PCP feature vector extracted from an audio window of

464 milliseconds. This PCP corresponds to a C minor chord environment (it mostly

contains C, D# and G pitch classes), where the root pitch class (C) is predominant.

We here use harmonic pitch class profiles (HPCP) [45]. These features share the

aforementioned PCP properties, but are based only on the peaks of the spectrum

within a certain frequency band, thereby they diminish the influence of noisy spectral

components. Furthermore, HPCPs are tuning independent, so that the reference tone

can be different from the standard tone A 440 Hz. In addition, they take into account

the presence of harmonic frequencies. Except for that we here use 12 instead of 36

HPCP bins, we use the same HPCP extraction procedure and parameters as in [17], to

which we refer for further details.

The computation of HPCPs in a moving window results in a multidimensional

time series x for each song, expressing its temporal tonal evolution x = {xh,i} for
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Figure 2. Example of an HPCP time series extracted using a moving window from

the song Day Tripper as performed by The Beatles.

h = 1, . . . , H and i = 1, . . . , N∗

x , where H = 12 is a routinely employed number of

HPCP bins [42, 43, 44, 45] and N∗

x represents the total number of windows (Fig. 2). We

here use windows of 464 milliseconds with no overlap between subsequent windows.

The last pre-processing step consists in transposing one HPCP time series to the

main tonality of the other. A change in the main tonality is a common alteration

when musicians perform cover versions. This is usually done to adapt the original

composition to a different singer or solo instrument, or just for aesthetic reasons. In

HPCP representations, a change in the main tonality is represented by a circular pitch

class shift. Accordingly, one can reverse this change using an appropriate circular shift

of the pitch class components along the vertical axis of an HPCP time series (e.g. to

transpose the time series depicted in Fig. 2 from D to C, one has to shift the pitch

class components circularly up by two bins, i.e., two semitones, for all windows). To

determine the number of bins to transpose, we use the optimal transposition index

procedure proposed in [17] and extended and evaluated in [46].

2.2. State space embedding

An HPCP time series is a multivariate representation of the temporal tonal evolution

of a given song X. Certainly, it does not represent a signal measured from a stationary

dynamical system which could be described by some equation of motion. Nonetheless,

delay coordinates [47], a tool that is routinely used in nonlinear time series analysis [22],

can be pragmatically employed to facilitate the extraction of information contained in

an HPCP time series x (c.f. [36, 37]). In particular, by evaluating vectors of sample

sequences, delay coordinates allow one to assess systems recurrences more reliably than

by using only the scalar samples. One should note that such a use of sequences of notes

instead of isolated ones is essential in music [48] and is important for melody perception

and recognition [49].

Considering the temporal evolution of each individual pitch class, we construct a

time series of delay coordinate state space vectors x = {xi} for i = 1, . . . , Nx, with

Nx = N∗

x − (m− 1)τ and



Cross recurrence quantification for cover song identification 7

xi = (x1,i, x1,i+τ , ...x1,i+(m−1)τ , x2,i, x2,i+τ , ...x2,i+(m−1)τ , ...xH,i, xH,i+τ , . . . xH,i+(m−1)τ ), (1)

where m is the unitless embedding dimension, and τ is the time delay in units of the

number of windows. For nonlinear time series analysis, an appropriate choice of m and

τ is crucial to extract meaningful information from noisy signals of finite length [22].

While recipes for the estimation of optimal fixed values of m and τ exist (e.g. the false

nearest neighbors method and the use of the auto-correlation function decay time [22]),

we here study cover song identification accuracy under variation of these parameters

and select the best combination (Sec. 4).

2.3. Cross recurrence plot

An RP is a straightforward way to visualize characteristics of similar system states

attained at different times [28]. For this purpose, two discrete time axes span a square

matrix which is filled with zeros and ones, typically visualized as white and black cells,

respectively. Each black cell at coordinates (i, j) indicates a recurrence, i.e., a state at

time i which is similar to a state at time j. Thereby, the main diagonal line is black.

CRPs are constructed in the same way as RPs, but now the two axes span a rectangular,

not necessarily square matrix [27]. A CRP allows one to highlight equivalences of states

between two systems attained at different times. When a CRP is used to characterize

distinct systems, the main diagonal is, in general, not black, and any diagonal path of

connected black cells represents similar state sequences exhibited by both systems [26].

To analyze dependencies between two different signals x and y, here representing

two songs, we compute a CRP R from

Ri,j = Θ(εx
i − ‖xi − yj‖)Θ(εy

j − ‖xi − yj‖) (2)

for i = 1, . . . , Nx and j = 1, . . . , Ny, where xi and yj are state space representations

of songs X and Y at windows i and j, respectively, Θ(·) is the Heaviside step function

(Θ(v) = 0 if v < 0 and Θ(v) = 1 otherwise), εx
i and ε

y
j are two different threshold

distances, and ‖ · ‖ is some norm. We here use the Euclidean norm. Notice that by

Eq. (2) Ri,j = 1 if and only if xi is a neighbor of yj and yj is a neighbor of xi.

The thresholds εx
i and εy

j are adjusted such that a maximum percentage of neighbors

κ is used for both xi and yj. In this way, the total number of non-zero entries in each

row and column never exceeds κNy and κNx, respectively. In-line with studies on the

identification of deterministic signals in noisy environments [27], in pre-analysis we found

the use of a fixed percentage of neighbors κ superior to the use of a fixed threshold ε.

We study the influence of the parameter κ in Sec. 4.

In general, pairs of unrelated songs result in CRPs that exhibit no evident structure,

while CRPs constructed for two cover songs show distinct extended patterns (Fig. 3).

These extended patterns usually correspond to similar sections, phrases, or progressions

between both musical pieces X and Y .
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Figure 3. CRPs for the song Day Tripper as performed by The Beatles, taken as song

X, versus two different songs, taken as song Y . These are a cover made by the group

Ocean Colour Scene (a) and the song I’ve got a crush on you as performed by Frank

Sinatra (b). Parameters are m = 9, τ = 1, and κ = 0.08.

2.4. Recurrence quantification measures for cover song identification

Given a CRP representation of two songs, we need a quantitative criterion to determine

whether they are covers or not. In pre-analysis, we tested different RQA measures [26]

as input for binary classifiers such as trees or support vector machines in combination

with several feature selection algorithms (§) [50]. This analysis showed that the maximal

length of diagonal lines (Lmax) feature yielded by far the highest discriminative power

between CRPs from covers and non-covers. All other RQA measures that we tried

(recurrence rate, determinism, average diagonal length, entropy, ratio, laminarity,

trapping time, maximal length of horizontal or vertical lines [26], and combinations

of them) were found to have no or very low discriminative power.

The Lmax measure introduced in [28] can be expressed as the maximum value of

a cumulative matrix L computed from the CRP. We initialize L1,j = Li,1 = 0 for

i = 1, . . . , Nx and j = 1, . . . , Ny, and then recursively apply

Li,j =







Li−1,j−1 + 1 if Ri,j = 1

0 if Ri,j = 0
(3)

for i = 2, . . . , Nx and j = 2, . . . , Ny, and define Lmax = max{Li,j} for i = 1, . . . , Nx and

j = 1, . . . , Ny.

To understand why Lmax is performing so well we depict some example CRPs,

where we use the same song for X and three different songs for Y (Fig. 4). A high Lmax

value is obtained when X and Y are covers [Fig. 4(a)], whereas a low value is obtained

when that is not the case [Fig. 4(c)]. An intermediate value is obtained for two songs

that share a common tonal progression, but only for brief periods [Fig. 4(b)]. It turns

§ http://www.cs.waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka
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Figure 4. CRPs for the song Gimme, gimme, gimme as performed by the group

ABBA, taken as song X, versus three different songs, taken as song Y . These are a

cover made by the group A-Teens (a), a techno performance of the song Hung up by

Madonna (b), and the song The robots by Kraftwerk (c). In (a) Lmax = 43 starting

at windows (118,121), in (b) Lmax = 34 starting at windows (176,130), and in (c)

Lmax = 16 starting at windows (373,245). Parameters are the same as in Fig. 3.

out that this particular example of Fig. 4(b) is a border case where one would consider

the two songs to be covers or not. The two songs are very different even in terms of

main melody and tonality, but still they share a very characteristic sample featuring a

flute hook that forms the basis of both songs (‖).

Diagonal patterns are clearly discernible in Figs. 4(a) and 4(b), and the longest

of these diagonals corresponds to the maximum time that X and Y evolve together

without disruptions (i.e. the maximal length of their shared tonal sequence). Notice

that only in Fig. 4(a) the longest diagonal is found close to the main diagonal. However,

that is not a necessary criterion of Y being a cover of X [Fig. 4(b)]. In general, this

depends on the musical structure of the cover song. Often, new performers add, delete,

or change the introduction, solo sections, endings, verses, and so forth. Thus, to account

for structure changes, it is necessary to consider any diagonal regardless of its position

in the CRP. This allows one to detect passages of a song that have been inserted in

any part of another song. However, while Lmax can account for such structural changes,

it cannot account for tempo changes. When covering a musical piece, musicians often

adapt the tempo to their needs and, even in a live performace of the original artist, this

feature can change with respect to the original recording. Tempo deviations between

two cover songs result in the curving of CRP diagonal traces.

To quantify the length of curved traces we therefore extend Eq. (3) and compute

a cumulative matrix S from the CRP. We initialize S1,j = S2,j = Si,1 = Si,2 = 0 for

i = 1, . . . , Nx and j = 1, . . . , Ny, and then recursively apply

Si,j =







max{Si−1,j−1, Si−2,j−1, Si−1,j−2} + 1 if Ri,j = 1

0 if Ri,j = 0
(4)

for i = 3, . . . , Nx and j = 3, . . . , Ny. Here, the maximum value Smax = max{Si,j} for

i = 1, . . . , Nx and j = 1, . . . , Ny, corresponds to the length of the longest curved trace

‖ http://news.bbc.co.uk/2/hi/entertainment/4354028.stm

http://news.bbc.co.uk/2/hi/entertainment/4354028.stm
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in the CRP. This formulation is inspired by common alignment algorithms [51, 52],

but constrains the possible alignments by excluding horizontal and vertical paths. We

should note that these particular path connections (Si−1,j−1, Si−2,j−1, Si−1,j−2), which are

only one aspect of Eq. (4), were used before. They were found to work well for speech

recognition in application to distance matrices [53], and for cover song identification in

application to the so-called optimal transposition index-based binary similarity matrices

[17].

Apart from tempo deviations, musicians might skip some chords or part of the

melody when performing cover songs. This practice leads to short disruptions in

otherwise coherent traces [see, e.g., Fig. 3(a)]. Moreover, such disruptions can also be

caused by the fact that HPCP features might contain some energy not directly associated

to tonal content. To account for disruptions, we therefore extend Eq. (4) and compute

a cumulative matrix Q from the CRP. We initialize Q1,j = Q2,j = Qi,1 = Qi,2 = 0 for

i = 1, . . . , Nx and j = 1, . . . , Ny, and then recursively apply

Qi,j =































max{Qi−1,j−1, Qi−2,j−1, Qi−1,j−2} + 1 if Ri,j = 1

max{0, Qi−1,j−1 − γ(Ri−1,j−1),

Qi−2,j−1 − γ(Ri−2,j−1),

Qi−1,j−2 − γ(Ri−1,j−2)} if Ri,j = 0

(5)

for i = 3, . . . , Nx and j = 3, . . . , Ny, with

γ(z) =







γo if z = 1

γe if z = 0.
(6)

Hence γo is a penalty for a disruption onset and γe is a penalty for a disruption extension.

The zero inside the second max clause in Eq. (5) is used to prevent that these penalties

lead to negative entries of Q. Notice that for γo, γe → ∞, Eq. (5) becomes Eq. (4).

For γo = γe = 0, Qi,j becomes a cumulative value indicating global similarity between

two time series starting at sample 0 and ending at samples i and j, respectively. Note

that this has certain analogies with classical dynamic time warping algorithms [51].

Instead of fixing γo and γe a priori, we study their influence on the accuracy of our

cover song identification system (Sec. 4). Analogously to Lmax and Smax, we take

Qmax = max{Qi,j} for i = 1, . . . , Nx and j = 1, . . . , Ny to quantify the length of the

longest curved and potentially disrupted trace in the CRP.

For illustration we depict some examples for the three quantification measures

discussed in this section (Fig. 5). The Lmax measure [Fig. 5(a)] characterizes straight

diagonals regardless of their position. The Smax measure can account for tempo

fluctuations resulting in curved traces [Fig. 5(b)]. Furthermore, the Qmax measure

allows for disruptions of the tonal progression [Fig. 5(c)].
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Figure 5. Day Tripper as performed by The Beatles, taken as song X, versus Ocean

Colour Scene performance, taken as song Y . Example plots of L (a), S (b), and Q (c).

Notice the increase in the maximum values (colorscales). In (a) Lmax = 33 starting

at windows (140,232), in (b) Smax = 79 starting at windows (216,142), and in (c)

Qmax = 136 starting at windows (14,118). CRP parameters are the same as in Fig. 3.

Parameters for (c) are γo = 3 and γe = 7.

3. Evaluation

3.1. Evaluation data

To test the effectiveness of the implemented approaches, we analyze a music collection

comprising a total of 1953 commercial songs with an average song length of 3.5 min,

ranging from 0.5 to 7 min. These songs include 500 cover sets, where cover set refers to

a group of versions of the same song. The average cardinality of these cover sets (i.e.

the number of songs per cover set) is 3.9, ranging from 2 to 18 [Fig. 6(a)]. In composing

this music collection we aimed at including a variety of styles and genres [Fig. 6(b)]. No

further criterion for the inclusion or exclusion of songs was applied. A complete list of

the music collection can be found in (¶). This music collection was compiled prior to

and independently from the present study.
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Figure 6. Distribution of the cover set cardinality (a) and the distribution of genres

across all songs (b). PR stands for pop-rock, E for electronic, JB for jazz-blues, WM

for world music, C for classical, and M for miscellaneous.

In order to form a training and three testing music collections, we split the total

number of 500 cover sets into 3 non-overlapping subsets. The training collection contains

¶ http://mtg.upf.edu/people/jserra/

http://mtg.upf.edu/people/jserra/
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90 songs consisting of 15 cover sets of cardinality 6. The first testing collection contains

330 songs divided into 30 cover sets of cardinality 11. The second testing collection

contains the remaining 455 cover sets each having cardinalities between 2 and 18,

resulting in a total of 1533 songs. A further testing collection is defined as the union of

first and second testing collections.

3.2. Evaluation methodology

Given a music collection with D songs, we calculate Lmax, Smax, and Qmax for all D(D−1)
2

possible pairwise combinations. Once such a similarity matrix is computed as primary

source of information, we can resort to standard information retrieval (IR) measures

to evaluate the discriminative power of this information. We use the mean of average

precision measure [54], which we denote as Ψ. To calculate this measure, the similarity

matrix is used to compute a list Λq of D − 1 songs sorted in descending order with

regard to their similarity to song q. Suppose that the query song q belongs to a cover

set comprising Cq + 1 songs. Then, the average precision ψq is obtained as

ψq =
1

Cq

D−1
∑

r=1

Pq(r)Iq(r), (7)

where Pq(r) is the precision of the sorted list Λq at rank r,

Pq(r) =
1

r

r
∑

l=1

Iq(l), (8)

and Iq(·) is the so-called relevance function (Iq(u) = 1 if the song with rank u in the

sorted list is a cover of q, and Iq(u) = 0 otherwise). Hence ψq ranges between 0 and 1.

If the cover songs take the first Cq ranks, we get ψq = 1. If all cover songs are found

towards the end of Λq, we get values close to 0. The Ψ measure is calculated as the

mean of average precisions ψq across all queries q. This evaluation measure is routinely

employed in a wide variety of tasks in the IR [54] and MIR communities, including the

MIREX cover song identification task [20]. Using Eqs. (7) and (8) has the advantage of

taking into account the whole sorted list where correct items with low rank receive the

largest weights.

Additionally, we estimate the accuracy level expected under the null hypothesis

that the similarity matrix has no discriminative power with regard to the assignment of

cover sets. For this purpose, we separately permute Λq for all q and keep all other steps

the same. We repeat this process 19 times, corresponding to a significance level of 0.05

of this Monte Carlo null hypothesis test, and take the average, resulting in Ψnull. This

Ψnull can be used to estimate the accuracy of all measures Lmax, Smax, and Qmax under

the specified null hypothesis.
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4. Results

4.1. Parameter optimization

We use the training collection to study the influence of the embedding parameters m

and τ and the percentage of nearest neighbors κ on our accuracy measure Ψ. Results

for Qmax (Fig. 7) illustrate that the use of an embedding (m > 1) improves the accuracy

of the algorithm as compared to no embedding (m = 1). A broad peak of near-maximal

Ψ values is established for a considerable range of embedding windows [approximately

7 < (m− 1)τ < 17]. From these near-maximal values, Ψ decreases weakly upon further

increasing of the embedding window. Optimal κ values are found between 0.05 and 0.15.

Therefore, within these broad ranges of the embedding window (m− 1)τ and κ values,

no fine tuning of any of the parameters is required to yield near-optimal accuracy. In

the following we use m = 10, τ = 1, and κ = 0.1.

While accuracies shown in Fig. 7 are computed for a disruption onset γo = 2 and

disruption extension γe = 2 penalties, the influence of these penalty parameters is further

studied in Fig. 8. Recall that γo and γe are introduced only in the definition of Qmax

and that for γo, γe → ∞, the measure Qmax [Eq. (5)] reduces to Smax [Eq. (4)]. Using

finite values of these terms generally increases the accuracy, revealing the advantage of
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Figure 7. Qmax iso-τ (a-c) and iso-m (d-f) curves for κ = 0.05 (a,d), κ = 0.1 (b,e),

and κ = 0.15 (c,f).
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Qmax over Smax. Optimal Qmax accuracy values are found for γo = 5 and γe = 0.5.

The same parameter optimization described above for Qmax was carried out

separately for Lmax and Smax, and m = 10, τ = 1 and κ = 0.1 led to near-optimal

accuracies also for these measures. Furthermore, no fine tuning was needed since iso-τ

and iso-m curves for different κ values have similar shapes as the ones depicted for Qmax

in Fig. 7. For the training collection, this in-sample parameter optimization leads to

the following accuracies [Fig. 9(a)]: ΨLmax
= 0.640, ΨSmax

= 0.728, and ΨQmax
= 0.813.

4.2. Out-of-sample accuracy

Accuracies for the testing collections using the parameters determined by the

optimization on the training collection are shown in Figs. 9(b)-9(d). Resulting average

out-of-sample accuracies are ΨLmax
= 0.426, ΨSmax

= 0.543, and ΨQmax
= 0.667.

These good out-of-sample accuracies indicate that our results cannot be explained by a

parameter over-optimization. The accuracy increase gained through the derivation from

Lmax via Smax to Qmax is substantial. Most importantly, this increase in accuracy is

reflected in the testing collections as well. Moreover, all values for Lmax, Smax, and Qmax

are significantly outside the range of Ψnull across the 19 Monte Carlo randomizations.

Therefore, our accuracy values are not consistent with the null hypothesis that the

similarity matrices have no discriminative power.

4.3. Comparison with the state-of-the-art

As stated in the introduction, the algorithm proposed in [17] as well as two algorithms

based on Qmax were submitted to the MIREX contest in 2007 and 2008, respectively.

The MIREX test collection is composed of 30 cover sets of cardinality 11 each [20].

Accordingly, the total cover song collection contains 330 songs. Another 670 individual
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Figure 9. Mean average precision Ψ for the training (a) and the three testing

collections (b-d). Error margins in the leftmost bars correspond to the range across to

the 19 randomizations described in Sec. 3.2.
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Figure 10. Mean average precision Ψ for algorithms submitted to the MIREX 2007

(a) and 2008 (b) contests. A1-A7 and B1-B6 refer to algorithms submitted by other

participants and [17] refers to our previous work.

songs, i.e., cover sets of cardinality 1, are added to make the identification task more

difficult. The entire music collection includes a wide diversity of genres (e.g. pop,

rock, classical, baroque, folk, jazz, etc.), and the variations span a variety of styles and

orchestrations. Beyond this general description, no further information about the test

collection is published or disclosed to the participants. In particular, only the MIREX

organizers know what actual musical pieces are contained in the test collection. Each

of the 330 cover songs were used as query and the submitted algorithms were required

to return a 330 times 1000 distance matrix [one row for each query (+)]. From this

distance matrix, several evaluation measures were computed by the MIREX organizers.

In 2007 and 2008 the same evaluation measures were applied, including Ψ as the main

reference.

The algorithm in [17] was found to be the most accurate one in the 2007 edition (∗)

[Fig. 10(a), Ψ[11] = 0.521]. The two most accurate algorithms in 2008 were based

on Qmax. The raw Qmax algorithm as presented here reached an accuracy (♯) of

ΨQmax
= 0.661 [Fig. 10(b)]. It was only outperformed by an algorithm which included

Qmax as described here, plus one additional simple post-processing step applied to

the similarity matrix derived from Qmax (ΨQ∗

max

= 0.750). This post-processing step

+ http://www.music-ir.org/mirex/2008/index.php/Audio Cover Song Identification
∗ http://www.music-ir.org/mirex/2007/index.php/Audio Cover Song Identification Results
♯ http://www.music-ir.org/mirex/2008/index.php/Audio Cover Song Identification Results

http://www.music-ir.org/mirex/2008/index.php/Audio_Cover_Song_Identification
http://www.music-ir.org/mirex/2007/index.php/Audio_Cover_Song_Identification_Results
http://www.music-ir.org/mirex/2008/index.php/Audio_Cover_Song_Identification_Results


Cross recurrence quantification for cover song identification 16

was proposed by our group and consists detecting cover song sets instead of isolated

songs [55]. More concretely, it applies an unsupervised community detection algorithm

operating to a complex network computed from the pairwiseQmax matrix used in Sec. 3.2

and normalize this matrix according to the detected communities.

Most importantly, the ΨQmax
value obtained for the MIREX music collection is very

close to the ΨQmax
values reported for the testing collections used here (Figs. 9 and 10).

This provides evidence that the out-of-sample accuracy values reported in Sec. 4.2 are

not related to any hidden in-sample optimization which could have been introduced

involuntarily, for example, by a biased selection of songs for the testing collections.

5. Conclusion

In the present work we combine concepts from music signal processing, nonlinear time

series analysis, machine learning, and information retrieval to successfully identify

covers of musical pieces. The composition of concepts from these different disciplines,

naturally results in a modular organization of our method. Given two audio signals

we, at first, use techniques from music signal processing to extract descriptor time

series representing their tonal progression. These time series are then used for

multivariate embedding by means of delay coordinates. To assess equivalences of

states between both systems attained at different times, we use cross recurrence plots

and recurrence quantification measures derived from them. In pre-analysis, existing

recurrence quantification measures were evaluated using machine learning techniques.

The obtained result motivated us to introduce new cross recurrence quantification

measures Smax and Qmax. Using standard information retrieval evaluation measures

we quantify the accuracy for the task at hand.

We here show that our algorithm leads to high accuracy for the cover song

identification task on a comprehensive music collection compiled prior to and

independently from the present study. This music collection is divided into non-

overlapping testing and training collections. We adjust the parameters on the

training collection and then determine the accuracy out-of-sample using different testing

collections. Nonetheless, in such a study design, one could still overestimate the true

accuracy of the algorithm by involuntarily introducing biases in the compilation of

the music collection. However, the close match of the accuracy reported here for our

music collection and the one obtained for the MIREX contest supports the generality

of the reported results (recall that the music collection used here was compiled prior

to and independently from our participation to the MIREX contest). Furthermore,

the proposed algorithm reached the highest accuracies in the MIREX cover song

identification task ever. This illustrates its superiority in respect to current state-of-

the-art algorithms, including our previous approach [17].

One should note that the concept of delay coordinates has originally been developed

for the reconstruction of stationary deterministic dynamical systems from single

variables measured from them [22]. Also, the identification of coherent traces within
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the cross recurrence plot is connected to the notion of deterministic dynamics (see

[26] and references therein). Certainly, musical pieces do not represent the output of a

stationary deterministic dynamical system, and therefore, one could argue that applying

concepts developed for deterministic systems to such signals is inappropriate. However,

if we consider a song as the output of some “complicated system” evolving with time,

and an HPCP as a multivariate time series measured from it, we can use the method

of delay coordinates to facilitate the extraction of the information characterizing the

underlying system. In fact, we find that the accuracy of our cover song identification

system is significantly improved using an embedding, compared to not using it. In

conclusion, our work provides a further example for an application of nonlinear time

series analysis methods to experimental time series where the assumption of some

underlying deterministic dynamics is not fullfilled in a strict sense, but which nonetheless

allows one to successfully characterize the system underlying the time series.

6. Outlook

In closing, we provide evidence that theQmax measure proposed here are not restricted to

MIR nor to the particular application of cover song identification. Indeed, a quantitative

assessment of curved and disrupted traces in RPs and CRPs can be useful for the

characterization of a variety of experimental and artificial signals.

As a concrete example for a physical setting we study two Rössler dynamics

unidirectionally coupled by a diffusive term of strength ε:

ẋ1(t) = −ωx(t)x2(t) − x3(t)

ẋ2(t) = ωx(t)x1(t) + 0.15x2(t)

ẋ3(t) = [x1(t) − 10]x3(t) + 0.2

ẏ1(t) = −ωyy2(t) − y3(t) + ε [x1(t) − y1(t)]

ẏ2(t) = ωyy1(t) + 0.15y2(t)

ẏ3(t) = [y1(t) − 10] y3(t) + 0.2.

(9)

For our context, the key feature of this example is that the mean frequency of the driving

dynamics ωx(t) is varied while ωy = 1 is time-independent. We integrate Eq. (9) using

a 4-th order Runge-Kutta algorithm with fixed step size of ∆t = 0.05 time units and

vary ωx(t) according to

ωx(j∆t) = 1 + 0.02ξj, (10)

where ξj is a strongly correlated first-order autoregressive process

ξj = 0.98ξj−1 + ηj (11)

with j being an integer and ηj corresponding to uncorrelated Gaussian noise with zero

mean and unit variance. Note that ξj has zero mean and a variance of approximately

24. We start the integration of Eq. (9) at random initial conditions and use a sufficient

number of pre-iterations to diminish transients. Time series pairs x1(ti) and y1(ti)
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are then sampled at ti − ti−1 = 6∆t for a time series length of N∗

x = N∗

y = 2048

(i = 1, . . . , 2048).

We compare results for coupled dynamics [Eq. (9) with ε = 0.4] versus uncoupled

dynamics [Eq. (9) with ε = 0]. For both conditions, we generate a set of 2000

independent realizations for each time series x1(ti) and y1(ti). We construct the CRP and

extract Lmax, Smax, and Qmax from all time series pairs. We here use as parameters:

m = 8, τ = 1, κ = 0.0125, and γo = γe = 1. None of these parameters, nor the

parameters of Eqs. (9-11), are optimized in any way for the example presented here.

Regarding the CRP constructed from realizations of x1(t) and y1(t) for the

coupled dynamics, we find curved and briefly disrupted traces along the main diagonal

[Fig. 11(a)]. These reflect the strong coupling and their interruptions and curvatures are

caused by the stochastically varying mean frequency of the driving Rössler oscillator. In

contrast, only dispersed patterns are observed for the uncoupled dynamics [Fig. 11(b)].

In consequence, across all realizations, the distributions of Qmax values obtained

for the coupled versus uncoupled condition are almost non-overlapping [Fig. 12(c)].

Distributions of Lmax and Smax in contrast overlap substantially [Figs. 12(a) and 12(b),

respectively]. Hence, only Qmax allows one to distinguish between these two conditions.

This example of coupled Rössler dynamics with stochastically varying mean

frequencies is meant to sketch only one potential application of Qmax. A systematic

study of this setting and the influence of the various parameters is left for future work.

Results of such a study can have important implications for the analysis of interactions

between brain oscillations and tremors in Parkinson patients or between cardiac and

respiratory dynamics. This holds since these pathological and physiological processes

are known to be characterized by mean frequencies with irregular time-dependencies.

Furthermore, one should note that curved structures have been reported in RPs

and CRPs of artificial and experimental signals. Artificial signals include frequency
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Figure 11. Exemplary CRP regions for x1(ti) and y1(ti) obtained from one realization

of the coupled Rössler dynamics (a) and the uncoupled ones (b).
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Figure 12. Histograms for Lmax (a), Smax (b), and Qmax (c) obtained for the 2000

independent realizations of the coupled (red) and uncoupled (blue) dynamics.

modulated periodic signals [29, 30, 56] or time series derived from Rössler dynamics with

bidirectional couplings close to the onset of phase synchronization [56]. Experimental

data include signals with nonlinearly re-scaled or distorted time axes such as geophysical

data of sediment cores subjected to different compressions [29], symbolic dynamic

representations of EEG recordings from the onsets of epileptic seizures [56], or acoustic

signals from calls of primates [30]. Far beyond these particular examples, it can

be conjectured that important features of further experimental signals, e.g. from

bioinformatics [57], physiology [24], human speech processing [51], or climatology [58],

are reflected in curved and disrupted traces in RPs and CRPs. A quantitative assessment

of these traces by means of the proposed measures can thus help to characterize a

multitude of systems from different scientific disciplines.
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music classification. Machine Learning Journal, 65(2):473–484, 2006.

[6] M. Müller. Information Retrieval for Music and Motion. Springer, 2007.



Cross recurrence quantification for cover song identification 20

[7] B. S. Ong. Structural analysis and segmentation of music signals. PhD thesis, Universitat Pompeu

Fabra, Barcelona, Spain, 2007. Available online: http://mtg.upf.edu/node/508.

[8] M. Casey, C. Rhodes, and M. Slaney. Analysis of minimum distances in high-dimensional musical

spaces. IEEE Trans. on Audio, Speech, and Language Processing, 16(5):1015–1028, July 2008.

[9] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of audio fingerprinting. Journal of VLSI

Signal Processing, 41:271–284, 2005.

[10] H. Nagano, K. Kashino, and H. Murase. Fast music retrieval using polyphonic binary feature

vectors. IEEE Int. Conf. on Multimedia and Expo (ICME), 1:101–104, 2002.

[11] W. H. Tsai, H. M. Yu, and H. M. Wang. Using the similarity of main melodies to identify cover

versions of popular songs for music document retrieval. Journal of Information Science and

Engineering, 24(6):1669–1687, November 2008.
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