Transmit Diversity v. Spatial Multiplexing in Modern MIMO Systems

Angel Lozano∗, and Nihar Jindal†

October 15, 2008

Abstract

A contemporary perspective on the tradeoff between transmit antenna diversity and spatial multiplexing is provided. It is argued that, in the context of most modern wireless systems and for the operating points of interest, transmission techniques that utilize all available spatial degrees of freedom for multiplexing outperform techniques that explicitly sacrifice spatial multiplexing for diversity. In the context of such systems, therefore, there essentially is no decision to be made between transmit antenna diversity and spatial multiplexing in MIMO communication. Reaching this conclusion, however, requires that the channel and some key system features be adequately modeled and that suitable performance metrics be adopted; failure to do so may bring about starkly different conclusions. As a specific example, this contrast is illustrated using the 3GPP Long-Term Evolution system design.

Keywords: Diversity; Spatial Multiplexing; OFDM; MIMO; DMT; Multiantenna Communication

∗Angel Lozano is with Universitat Pompeu Fabra, Barcelona, 08005, Spain.
†Nihar Jindal is with the University of Minnesota, Minneapolis, MN55455, USA.
I Introduction

A Diversity in Wireless Communication

Multipath fading is one of the most fundamental features of wireless channels. Because multiple received replicas of a given transmitted signal sometimes combine destructively, there is a significant probability of severe fades. In Rayleigh fading, for example, the probability of 10-dB and 20-dB fades (below the mean) is 10% and 1%, respectively. Without any means of mitigating such fading, ensuring reasonable reliability requires hefty power margins.

Fortunately, fades, or nulls, are very localized in space and frequency: a change in the transmitter or receiver location (on the order of a carrier wavelength) or in the frequency (on the order of the inverse of the propagation delay spread) leads to a roughly independent realization of the fading process. Motivated by this selectivity, the concept of diversity is borne: rather than making the success of a transmission entirely dependent on a single fading realization, hedge the transmission’s success across multiple realizations in order to decrease the probability of failure. Hedging or diversifying are almost universal actions in the presence of uncertainty, instrumental not only in communications but also in other fields as disparate as economics or biology.

In wireless channels, the effectiveness of diversity at mitigating fading cannot be overstated. Perhaps the simplest manifestation of this efficacy is receive antenna combining: if two receive antennas are sufficiently spaced, the same signal is received over independently faded paths. Even with simple selection combining, this squares the probability of error; optimal MRC (maximum-ratio combining) performs even better.

Based upon the specifics of receive antenna combining, it may appear that multiple, independently faded copies of the same signal are required to mitigate fading. Although this is an accurate description of receive combining, it is an overly stringent requirement in general. This point is clearly illustrated if one considers a frequency-selective channel. One simple but naïve method of mitigating fading in such a channel is to repeat the same signal on two sufficiently spaced frequency channels. Unlike receive combining, this technique doubles the number of symbols transmitted and therefore the necessary bandwidth. Is repetition, which seems inefficient, the only way to take advantage of frequency diversity? It is not—if coding is taken into consideration. By applying a channel code to a sequence of information bits, the same benefit is gained by transmitting different portions of the coded block over different frequency channels. No repetition is necessary; rather, information bits are coded and interleaved, and then the first half of the coded block is transmitted on the first frequency and the other half on the second frequency. The information bits can be correctly decoded as long as both frequencies are not badly
faded. The same principle applies to time selectivity: instead of repeating the same signal at different time instants, transmit a coded and interleaved block over an appropriate time period.\(^1\)

The term ‘diversity’ has, over time, acquired different meanings in communications, to the point of becoming overloaded. It is used to signify:

- Variations of the underlying channel in time, frequency, space, etc.
- Performance metrics related to the error probability. Adding nuance to the term, more than one such metric can be defined (c.f. Section II).
- Transmission and/or reception techniques designed to improve the above metrics.

In this paper, we carefully discriminate these meanings. We use ‘selectivity’ to refer to channel features, which are determined by the environment (e.g., propagation and user mobility) and by basic system parameters (e.g., bandwidth and antenna spacing). In turn, the term ‘diversity’ is reserved for performance metrics and for specific transmit/receive techniques, both of which have to do with the signal. Note that channel selectivity is a necessary condition for diversity strategies to yield an improvement in some diversity metric.

It is imperative to recognize that the notion of diversity is indelibly associated with channel uncertainty. If the transmitter knows the instantaneous channel state, then it can match its transmission to the channel in such a way that the error probability depends only on the noise. Diversity techniques, which aim precisely at mitigating the effects of channel uncertainty, are then beside the point. Although perhaps evident, this point is often neglected. In some models commonly used to evaluate diversity techniques, for instance, the channel fades very slowly yet there is no transmitter adaptation. As we shall see, these models do not reflect the operating conditions of many contemporary systems.

\(^1\)

When explaining the exploitation of selectivity through coding and interleaving, it is important to dispel the misconception that channel coding incurs a bandwidth penalty. If the constellation is kept fixed, then coding does reduce the rate relative to an uncoded system. However, there is no rate penalty if the constellation size is flexible as in modern systems. For instance, a system using QPSK with a rate-1/2 binary code and an uncoded BPSK system both have an information rate of 1 bit/symbol. For a reasonably strong code, though, the coded system will achieve a considerably smaller bit error probability than the uncoded one. More importantly, the advantage of the coded system in terms of block error probability is even larger and this advantage increases with blocklength: the block error probability of a coded system decreases with the blocklength whereas, without coding, it actually increases with the blocklength. As will be emphasized throughout the paper, modern wireless systems cannot be conceived without powerful channel coding.
Antenna Diversity over Time

Archaic electrical communication systems from a century ago already featured primitive forms of diversity, where operators manually selected the receiver with the best quality. Automatic selection of the strongest among various receivers was discussed as early as 1930 [1]. This naturally led to the suggestion of receive antenna combining, initially for microwave links [2]–[5]. MRC, by far the most ubiquitous combining scheme, was first proposed in 1954 [6]. In addition to receive antenna combining, other approaches such as the aforementioned one of repeating the signal on two or more frequency channels were also considered for microwave links [7]. (Systems were still analog and thus coding and interleaving was not an option.) Given the cost of spectrum, though, approaches that consume additional bandwidth were naturally unattractive and thus the use of antennas quickly emerged as the preferred diversity approach. Recognizing this point, receive antenna combining was debated extensively in the 1950’s [8]–[11] and has since been almost universally adopted for use at base station sites. The industry, however, remained largely ambivalent about multiple antennas at mobile devices. Although featured in early AMPS trials in the 1970’s, and despite repeated favorable studies (e.g., [12]), until recently its adoption had been resisted.²

Multiple base station antennas immediately allow for uplink receive diversity. It is less clear, on the other hand, how to achieve diversity in the downlink using only multiple transmit antennas. In Rayleigh fading, transmitting each symbol from every antenna simultaneously is equivalent to using a single transmit antenna [14, Section 7.3.2]. Sub-optimal schemes were formulated that convert the spatial selectivity across the transmit antennas into effective time or frequency selectivity. In these schemes, multiple copies of each symbol are transmitted from the various antennas, each subject to either a phase shift [15] or a time delay [16]. From the standpoint of the receiver, then, the effective channel that the signal has passed through displays enhanced time or frequency selectivity, and thus a diversity advantage can be reaped with appropriate coding and interleaving.

More refined transmit diversity techniques did not develop until the 1990’s. Pioneered in [17], these techniques blossomed into STBC (space-time block codes) [18] and, subsequently, onto space-time codes at large. Albeit first proposed for single-antenna receivers, STBC’s can also be used in MIMO (multiple-input multiple-output) communication, i.e., when both transmitter and receiver have a multiplicity of antennas. This yields additional diversity, and thus reliability, but no increases in the number of information symbols per MIMO symbol.

Concurrently with space-time coding, the principles of spatial multiplexing were also formulated in the 1990’s [19]–[22]. The tenet in spatial multiplexing is to transmit different

²The sole exception was the Japanese PDC system [13], which has supported dual-antenna terminals since the early 1990’s.
symbols from each antenna, and have the receiver discriminate these symbols by taking advantage of the fact that each transmit antenna has a different spatial signature at the receiver (because of spatial selectivity). This does allow for an increased number of information symbols per MIMO symbol, but does not enhance reliability.

Altogether, the powerful thrust promised by MIMO is finally bringing multiantenna devices to the marketplace. Indeed, MIMO is an integral feature of emerging wireless systems such as 3GPP LTE (Long-Term Evolution) [23], 3GPP2 Ultra Mobile Broadband, and IEEE 802.16 WiMAX [24].

C Overview of Work

With the advent of MIMO, it may seem that a choice needs to be made between transmit diversity techniques, which increase reliability (decrease probability of error), and spatial multiplexing techniques, which utilize antennas to transmit additional information but do not increase reliability. Applications requiring extremely high reliability seem well suited for transmit diversity techniques whereas applications that can smoothly handle loss (e.g., voice) appear better suited for spatial multiplexing. It may further appear that the SNR (signal-to-noise ratio) and the degree of channel selectivity should also affect this decision.

Our findings, however, differ strikingly from the above intuitions. The main conclusion is that techniques utilizing all available spatial degrees of freedom for multiplexing outperform, at operating points of interest for modern wireless systems, techniques that explicitly sacrifice spatial multiplexing for transmit diversity. Thus, from a performance perspective there essentially is no decision that need be made between transmit diversity and multiplexing in contemporary MIMO systems. This conclusion holds even when suboptimal spatial multiplexing techniques are used.

There are a number of different arguments that lead to this conclusion, and which will be elaborated upon:

- Modern systems use link adaptation to maintain a target error probability and there is essentially no benefit in operating below this target. This makes diversity metrics, which quantify the speed at which error probability is driven to zero with the signal-to-noise ratio, beside the point.

- Wireless channels in modern systems generally exhibit a notable amount of time and frequency selectivity, which is naturally converted into diversity benefits through coding and interleaving. This renders transmit antenna diversity unnecessary.
• Block error probability is the relevant measure of reliability. Since the channel codes featured in contemporary systems allow for operation close to information-theoretic limits, such block error probability is well approximated by the mutual information outages. Although uncoded error probability is often quantified, this is only an indirect performance measure, and incorrect conclusions are sometimes reached by considering only uncoded performance.

II Preliminaries

A Channel Model and Performance Metrics

Assuming that OFDM (orthogonal frequency division multiplexing), the prevalent signalling technique in contemporary systems, is used to decompose a possibly frequency-selective channel into N parallel, non-interfering tones, the received signal on the ith tone is

$$y_i = H_i x_i + n_i$$

(1)

where H_i is the $n_R \times n_T$ channel matrix on that tone, y_i is the $n_R \times 1$ received signal, n_i is the $n_R \times 1$ thermal noise, IID circularly symmetric complex Gaussian with unit variance, and x_i is the $n_T \times 1$ transmitted signal subject to a power constraint SNR, i.e., $E[||x_i||^2] \leq \text{SNR}$. The receiver has perfect knowledge of the N channel matrices (the joint distribution of which is specified later); the issue of transmitter CSI is further discussed in Section III.

For a particular realization of H_1, \ldots, H_N, the average mutual information thereon is

$$I(\text{SNR}) = \frac{1}{N} \sum_{i=1}^{N} I(x_i; y_i).$$

(2)

This quantity is in bits per (complex) modulation symbol, and thus it represents spectral efficiency in bits/s/Hz under the standard assumption of one symbol/s/Hz. The mutual information on each tone is determined by the chosen signal distribution. If the signals are IID complex Gaussian with $E[x_i x_i^\dagger] = \frac{\text{SNR}}{n_T} I$, then

$$I(x_i; y_i) = \log_2 \det \left(I + \frac{\text{SNR}}{n_T} H_i H_i^\dagger \right).$$

(3)

Since approaching this mutual information may entail high complexity, simpler strategies with different (lower) mutual informations are often used. Expressions for these are given in Section ??.
Once a transmission strategy has been specified, the corresponding outage probability for rate \(R \) (bits/s/Hz) is then

\[
P_{\text{out}}(\text{SNR}, R) = \Pr\{I(\text{SNR}) < R\}.
\] (4)

With suitably powerful codes, the information outage probability is an accurate approximation for the actual block error probability [25]–[28] and we shall therefore use both notions interchangeably henceforth. This entails a very small error probability when not in outage.

As justified in Section III, modern systems operate at a target error probability. Hence, the primary performance metric is the maximum rate, at each \(\text{SNR} \), such that this target is not exceeded, i.e.,

\[
R_{\epsilon}(\text{SNR}) = \max_{\zeta} \{\zeta : P_{\text{out}}(\text{SNR}, \zeta) \leq \epsilon\}
\] (5)

where \(\epsilon \) is the target.

B The Diversity-Multiplexing Tradeoff

From the previous section, it readily follows that there exists a tradeoff between rate, outage and \(\text{SNR} \). Traditionally, notions of diversity order study the speed at which error probability decreases (polynomially) as \(\text{SNR} \) is taken to infinity while \(R \) is kept fixed as in (4). Although meaningful in early wireless systems, where \(R \) was indeed fixed, this is not particularly indicative of contemporary systems in which \(R \) is increased with \(\text{SNR} \).

An alternative formulation was introduced in [29], where \(R \) increases with \(\text{SNR} \) according to some function \(R = f(\text{SNR}) \). The multiplexing gain is defined as

\[
r = \lim_{\text{SNR} \to \infty} \frac{f(\text{SNR})}{\log \text{SNR}},
\] (6)

which is the asymptotic slope of the rate-\(\text{SNR} \) curve in bits/s/Hz per 3 dB, while the diversity order is defined as

\[
d = -\lim_{\text{SNR} \to \infty} \frac{\log P_{\text{out}}(\text{SNR}, f(\text{SNR}))}{\log \text{SNR}}.
\] (7)

Given a number of transmit and receive antennas, diversity and multiplexing are conflicting objectives as succinctly captured by the DMT (diversity-multiplexing tradeoff) [29]. Formulated for a quasi-static channel model where each coded block is subject to a single realization of the fading process, the DMT specifies that, with \(n_T \) transmit and \(n_R \)
receive antennas, \(\min(n_T, n_R) + 1\) distinct DMT points are feasible, each corresponding to a multiplexing gain \(0 \leq r \leq \min(n_T, n_R)\) and a diversity order

\[
d(r) = (n_T - r)(n_R - r). \tag{8}
\]

Stated simply, if the rate is increased with \(\text{SNR}\) as \(r \log \text{SNR}\) then the outage can decrease no faster than \(\text{SNR}^{-(n_T-r)(n_R-r)}\). This is the optimum DMT; then, each specific transmit-receive architecture is associated with a DMT that may or may not achieve this optimum.

Note that, in (8) and throughout the paper, \(d\) quantifies only the antenna diversity order as per the asymptotic definition in (7). If the coded block spans several fading realizations, then this additional time/frequency selectivity leads to larger diversity orders but does not increase the maximum value of \(r\) [29]–[32].

A multiplexing gain \(r = 0\) signifies a rate that does not increase (polynomially) with the \(\text{SNR}\) while \(d = 0\) indicates an outage probability that does not decrease (polynomially) with the \(\text{SNR}\).

Although the DMT is a powerful tool, it has clear limitations that stem from the fact that the diversity order and the multiplexing gain are only proxies for performance measures of real interest (error probability and rate, respectively). The asymptotic nature of the definitions of \(r\) and \(d\) naturally restricts the validity of the DMT insights to the high-power regime.\(^3\) Even in that regime, the diversity order does not suffice to determine the error probability at a given \(\text{SNR}\). It simply quantifies the speed at which the error probability falls with the \(\text{SNR}\). Similarly, the multiplexing gain does not suffice to determine the rate, but it only quantifies how the rate grows with the \(\text{SNR}\).

The quantity of interest \(R_c(\text{SNR})\) introduced in (5) corresponds to the \(d = 0\) DMT point. From the DMT, all we can infer about it is the value of the asymptotic slope

\[
\lim_{\text{SNR} \to \infty} \frac{R_c(\text{SNR})}{\log \text{SNR}} \tag{9}
\]

which can, at most, equal \(\min(n_T, n_R)\). Certain architectures achieve this maximum, while others fall short of it. The traditional notion of diversity, in turn, provides no information about \(R_c\) because it is defined for some fixed rate.

\(^3\)Any feature whose effect is non-polynomial in the \(\text{SNR}\) becomes immaterial in terms of the DMT. In particular, the choice of specific signal combining schemes at the receiver or of specific signal covariances at the transmitter is inconsequential [33]–[35]. Non-asymptotic DMT formulations, valid for arbitrary \(\text{SNR}\), have been put forth but they lack the simplicity and generality of (8) [36, 37].
III Modeling Modern Wireless Systems

Wireless systems have experienced dramatic changes as they evolved from their initial analog forms to today’s advanced digital formats. Besides MIMO, features of modern systems—that in many cases were completely absent in earlier designs—include:

- Wideband channelizations and OFDM.
- Packet switching, complemented with time- and frequency-domain scheduling for low-velocity users.
- Powerful channel codes [38, 39, 40].
- Link adaptation, and specifically rate control via variable modulation and coding [41].
- ARQ (automatic repeat request) and H-ARQ (hybrid-ARQ) [42].

These features have had a major impact on the operational conditions:

- There is a target block error probability, on the order of 1%, at the output of the decoder. (When H-ARQ is in place, this target applies at termination.) Link adaptation loops are tasked with selecting the rate in order to maintain performance tightly around this operating point. The rationale for this is two-fold:

 i) There is little point in spending resources pushing the error probability on the traffic channels much below the error probability on the control plane, which, by its very nature (short messages and tight latency requirements), cannot be made arbitrarily small.

 ii) Lower error probabilities often do not improve end-to-end performance: in some applications (e.g., voice) there is simply no perceivable improvement in the user experience while, in others (e.g., data communication requiring very high reliability), it is more cost effective to let the upper protocol layers handle the losses.

- The channels of low-velocity users can be tracked and fed back to the transmitter thereby allowing for link adaptation to the supportable rate, scheduling on favorable time/frequency locations, and possibly transmitter beamforming and precoding.

- The channels of high-velocity users vary too quickly in time to allow for feedback of CSI or even of the supportable rate. Thus, the signals of such users are dispersed over the entire available bandwidth thereby taking advantage of extensive frequency selectivity. In addition, time selectivity is naturally available because of the high velocity.
Certain traditional wisdoms and models do not apply in these conditions, and this directly affects the role of transmit antenna diversity. The above points evidence the disparity between the low- and high-velocity regimes and hence, in order to organize the discussion, it is necessary to distinguish between them.

A Low Velocity

At low velocities, timely feedback regarding the current state of the channel becomes feasible. This fundamentally changes the nature of the communication problem: all uncertainty is removed except for the noise. With powerful coding handling that remaining uncertainly, outages are essentially eliminated. Transmit diversity techniques, whose goal is precisely to reduce outages, become inappropriate. Rate maximization becomes the overriding transmission design principle, and the optimum strategy in this known-channel setting is spatial waterfilling [21].

Although the above consideration posited perfect CSI at the transmitter, it also extends to imperfect-CSI settings (caused by limited rate and/or delay in the link adaptation loop). At a minimum, the supportable rate can be fed back; this still removes outages. Additional CSI feedback enables adaptive techniques such as scheduling, power control, beamforming and precoding [43].

In multiuser settings, furthermore, CSI feedback is collected from many users and time- and frequency-domain scheduling offers additional degrees of freedom. In this case, transmit diversity techniques can actually be detrimental because they harden the possible transmission rates to different users thereby reducing potential multiuser scheduling gains [44, 45].

These conclusions apply almost universally to indoor systems, which conform to this low-velocity regime, as long as their medium-access control features the necessary functionalities. In outdoor systems, they apply to stationary and pedestrian users.

B High Velocity

This is the regime of interest for vehicular users in outdoor systems. At high velocities, the fading (and therefore the time-varying mutual information) is too rapid to be tracked.

Footnote 4: Feedback mechanisms are sometimes studied under the assumption that they convey information regarding the transmit strategy, e.g., which beamformer or precoder to use, but not regarding rate selection, in which case outages still occur. This, however, is not well aligned with modern system designs in which rate control is paramount.
The link adaptation loops can therefore only match the rate to the average channel conditions. The scheduler, likewise, can only respond to average conditions and thus it is not possible to transmit only to users with favorable instantaneous channels; we thus need not distinguish between single-user and multiuser settings.

It is in this high-velocity scenario where transmit diversity is enticing. Frequency-flat analyses are likely to indicate that dramatic reductions in outage probability can be had by increasing d. On these grounds, transmission strategies that operate efficiently at the full-diversity DMT point have been developed. The value of these strategies for modern wireless systems, however, is questionable because:

1. The outage need not be reduced below the target error probability.
2. Diversity is plentiful already:
 i) By the same token that the fading is too rapid to be tracked, it offers time selectivity.
 ii) Since, in this regime, modern systems distribute the signals over large swaths of bandwidth, there tends to be abundant frequency selectivity.

Within the DMT framework, a fixed outage probability corresponds to $d = 0$, i.e., to the full multiplexing gain achievable by the architecture at hand. Thus, the R-maximizing architectures for $\text{SNR} \to \infty$ are those that can attain the maximum multiplexing gain $r = \min(n_T, n_R)$. Due to the nature of the DMT, however, this holds asymptotically in the SNR. The extent to which it holds for SNR values of interest in a selective channel can only be determined through a more detailed (non-asymptotic) study. Shedding light on this point is precisely the goal of the next section, where a case study is presented.

IV The High-Velocity Regime

Having established that diversity is not an appropriate perspective in the low-velocity regime, we henceforth focus exclusively on the high-velocity regime.

A Case Study: A Modern MIMO-OFDM System

Let us consider the exemplary system described in Table 1, which is loosely based on the 3GPP LTE design [23]. (With only slight modifications, this system could be made to
conform with 3GPP2 UMB or with IEEE 802.16 WiMAX.) Every feature relevant to the discussion at hand is modeled:

- A basic resource block spans 12 OFDM tones over 1 ms. Since 1 ms corresponds to 14 OFDM symbols, a resource block consists of 168 symbols. In the high-velocity regime being considered, the 12 tones are interspersed uniformly over 10 MHz of bandwidth. There are 600 usable tones on that bandwidth, guards excluded, and hence every 50th tone is allocated to the user at hand while the rest are available for other users.\(^5\)

- Every coded block spans up to 6 H-ARQ transmission rounds, each corresponding to a basic resource block, with successive rounds spaced by 6 ms for a maximum temporal span of 31 ms. (This is an acceptable delay for most applications, including Voice-over-IP.) The H-ARQ process terminates as soon as decoding is possible. An error is declared if decoding is not possible after 6 rounds.

- The channel exhibits continuous Rayleigh fading with a Clarke-Jakes spectrum and a 180-Hz maximum Doppler frequency. (This could correspond, for example, to a speed of 100 Km/h at 2 GHz.) The power delay profile is given by the 12-ray TU (typical urban) channel detailed in Table 2. The r.m.s. delay spread equals 1 \(\mu s\).

- The antennas are uncorrelated to underscore the roles of both diversity and multiplexing. Some comments on antenna correlation are put forth in the next section.

The impulse response describing each of the \(n_r n_t\) entries of the channel matrix is

\[
h(t, \tau) = \sum_{j=1}^{12} \sqrt{\alpha_j} c_j(t) \delta(t - \tau_j) \tag{10}\]

where the delays \(\{\tau_j\}_{j=1}^{12}\) and the powers \(\{\alpha_j\}_{j=1}^{12}\) are specified in Table 2 and \(\{c_j(t)\}_{j=1}^{12}\) are independent complex Gaussian processes with a Clarke-Jakes spectrum. Although time-varying, the channel is suitably constant for the duration of an OFDM symbol such that it is meaningful to consider its frequency response. In the frequency domain then, the description in (1) is upheld.

The variability of the channel response over the multiple tones and H-ARQ rounds of a coded block is illustrated in Fig. 1. Note the very high degree of frequency selectivity and how the channel decorrelates during the 6 ms separating H-ARQ retransmissions.

\(^5\)For low velocity users, in contrast, the 12 tones in a resource block are contiguous so that their fading can be efficiently described and fed back for link adaptation and scheduling purposes as discussed in Section III.
Without H-ARQ, rate and outage are defined as in Section II. With H-ARQ, on the other hand, the length of each coded block becomes variable. With IR (incremental redundancy) specifically, mutual information is accumulated over successive H-ARQ transmissions [46]. If we let $\mathcal{M}_k(\text{SNR})$ denote the mutual information after k rounds, then the number of rounds needed to decode a particular block is the smallest integer K such that

$$\mathcal{M}_K(\text{SNR}) > 6 R_\epsilon(\text{SNR})$$

(11)

where $K \leq 6$. A one-bit notification of success/failure is fed back after the receiver attempts to decode following each H-ARQ round. An outage is declared if

$$\mathcal{M}_6(\text{SNR}) \leq 6 R_\epsilon(\text{SNR})$$

(12)

and the effective rate (long-term average transmitted rate) is

$$R_\epsilon(\text{SNR}) = \frac{6 R_\epsilon(\text{SNR})}{E[K]}$$

(13)

The initial rate is selected such that the outage at H-ARQ termination is precisely $\epsilon = 1\%$. This corresponds to choosing an initial rate of $6 R_\epsilon$ where R_ϵ corresponds to the quantity of interest defined in (5) with the mutual information averaged over the 168 symbols within each H-ARQ round and then summed across the 6 rounds.

In order to contrast the benefits of transmit diversity and spatial multiplexing, we shall evaluate two representative transmission techniques:

- A transmit diversity strategy that converts the MIMO channel into an effective scalar channel with signal-to-noise ratio

$$\frac{\text{SNR}}{n_T} \operatorname{Tr} \left\{ \mathbf{H}_i(k) \mathbf{H}_i^\dagger(k) \right\} .$$

(14)

where $\mathbf{H}_i(k)$ denotes the channel for the ith symbol on the kth H-ARQ round. By applying a strong outer code to this effective scalar channel, the mutual information after k rounds is, at most [29]

$$\mathcal{M}_k(\text{SNR}) = \sum_{\ell=1}^k \frac{1}{168} \sum_{i=1}^{168} \log \left(1 + \frac{\text{SNR}}{n_T} \operatorname{Tr} \left\{ \mathbf{H}_i(\ell) \mathbf{H}_i^\dagger(\ell) \right\} \right)$$

(15)

Transmit diversity strategies provide full diversity order with reduced complexity, but their multiplexing gain cannot exceed $r = 1$, i.e., one information symbol for every vector x_i in (1). Note that, when $n_T = 2$, (15) is achieved by Alamouti transmission [17].
A basic MMSE-SIC spatial multiplexing strategy where a separate coded signal is transmitted from each antenna, all of them at the same rate [47]. The receiver attempts to decode the signal transmitted from the first antenna. An MMSE filter is applied to whiten the interference from the other signals, which means that the first signal experiences a signal-to-noise ratio
\[h_{i,1}^\dagger(k) \left(H_{i,1}(k)H_{i,1}^\dagger(k) + \frac{n_T}{\text{SNR}}I \right)^{-1} h_{i,1}(k). \] (16)
during the kth H-ARQ round. If successful, the effect of the first signal is subtracted from the received samples and decoding of the second signal is attempted, and so forth. No optimistic assumption regarding error propagation is made: an outage is declared if any of the \(n_T \) coded signals cannot support the transmitted rate. The aggregate mutual information over the \(n_T \) antennas after \(k \) H-ARQ rounds is
\[M_k(\text{SNR}) = n_T \min_{m=1, \ldots, n_T} \left\{ \sum_{\ell=1}^{k} \frac{1}{168} \sum_{i=1}^{168} \log \left(1 + h_{i,m}^\dagger(\ell) \left(H_{i,m}(\ell)H_{i,m}^\dagger(\ell) + \frac{n_T}{\text{SNR}}I \right)^{-1} h_{i,m}(\ell) \right) \right\} \] (17)
where \(h_{i,m}(\ell) \) is the mth column of \(H_i(\ell) \) while \(H_{i,m}(\ell) = [h_{i,m+1}(\ell) h_{i,m+2}(\ell) \cdots h_{i,n_T}(\ell)] \).

While deficient in terms of diversity order, this strategy yields full multiplexing gain, \(r = \min(n_T, n_R) \), when \(d = 0 \). This MMSE-SIC structure is representative of the single-user MIMO mode in LTE [23].

Let \(n_T = n_R = 4 \), the high-end configuration for LTE, and consider first a simplistic model where the fading is frequency-flat and there is no H-ARQ. Every coded block is therefore subject to a single realization of the Rayleigh fading process. Under such model, the spectral efficiencies achievable with 1% outage, \(R_{0.01}(\text{SNR}) \), are compared in Fig. 2 alongside the corresponding efficiency for the non-MIMO reference \((n_T = 1, n_R = 4)\). Transmit diversity is uniformly superior to spatial multiplexing in the SNR range of interest. In fact, spatial multiplexing results in a loss with respect to non-MIMO transmission with the same number of receive antennas. The curves eventually cross, as the DMT predicts and the inset in Fig 2 confirms (the asymptotic slope of spatial multiplexing is \(r = 4 \) bits/s/Hz per 3 dB while \(r = 1 \) for transmit diversity and for non-MIMO), but this crossover does not occur until beyond 30 dB.

Still with \(n_T = n_R = 4 \), consider now the richer model described in Tables 1–2. The effective mutual information for each block is averaged over tones and symbols and accumulated over H-ARQ transmissions. The corresponding comparison is presented in Fig. 3. In this case, transmit diversity offers a negligible advantage whereas spatial multiplexing provides ample gains with respect to non-MIMO.

6Separate rate control of each coded signal based on instantaneous channel conditions can make this strategy optimal in terms of outage [48], but this is infeasible in this high-velocity regime.
The stark contrast between the behaviors observed under the different models can only be explained by the abundant time and frequency selectivity neglected by the simple model and actually present in the system. This renders transmit antenna diversity superfluous, not only asymptotically but at every \(\text{SNR}\). Under the frequency-flat model, the signal from the first antenna in the spatial multiplexing transmission does not benefit from any spatial diversity and thus a low rate must be used so that this signal (and the subsequent ones) can be decoded with sufficient probability. Under the richer channel model, however, the first signal reaps diversity from time/frequency selectivity and thus the lack of spatial diversity is essentially inconsequential. This behavioral contrast is, moreover, highly robust. Even if the speed is reduced down to where the low-velocity regime might start, as in Fig. 4, the behaviors are hardly affected because there is still significant selectivity. Likewise, the performances are largely preserved if the bandwidth is diminished significantly below 10 MHz or the delay spread is reduced below 1 \(\mu\text{s}\).

B Ergodic Modeling

As it turns out, the time/frequency selectivity in a system such as the one portrayed in the previous section is so substantial as to justify the adoption of an ergodic model altogether. Shown in Fig. 5 is the correspondence between the exact rates achievable with 1\% outage in the channel described in Tables 1–2 and the respective ergodic rates.

From a computational standpoint, this match is welcome news because of the fact that convenient closed forms exist for the rates achievable in an ergodic Rayleigh-faded channel [49]. Moreover, the optimum transmission strategies and the impact upon capacity of more detailed channel features such as antenna correlation, Rice factors, colored out-of-cell interference, etc, can then be asserted by virtue of the extensive body of results available for the ergodic setting [33, 50].

Antenna correlation, for example, leads to a disparity in the distribution of the spatial eigenmodes that effectively reduces the spatial multiplexing capability. Such effects should, of course, be taken under consideration when determining the appropriate transmission strategy.

C Optimal MIMO Detection

While in the case study we considered the performance of a low complexity but suboptimal detection scheme for spatial multiplexing, the continual increase in computational power is now rendering optimal or near-optimal MIMO detection feasible. Rather than transmitting separate coded signals from the \(n_T\) antennas, a single one can be interleaved
over time, frequency and the transmit antennas. At the receiver side, each vector symbol is then fed to a detector that derives soft estimates of each coded bit—possibly by use of a sphere decoder—to a standard outer decoder (e.g., message-passing decoder), with subsequent iterations between the MIMO detector and the decoder [51]. Such techniques and its variants can approach the mutual information in (3).7

In the context of our comparison between transmit diversity and spatial multiplexing, it is worthwhile to note that the mutual information in (3) is greater than or equal to that of transmit diversity for any channel matrix H. Denoting by λ_ℓ the ℓth eigenvalue of HH^\dagger,

$$\log \det \left(I + \frac{\text{SNR}}{n_T} HH^\dagger \right) = \log \left(\prod_{\ell=1}^{n_R} \left(1 + \frac{\text{SNR}}{n_T} \lambda_\ell \right) \right)$$ \hspace{1cm} (18)

$$\geq \log \left(1 + \frac{\text{SNR}}{n_T} \sum_{\ell=1}^{n_R} \lambda_\ell \right)$$ \hspace{1cm} (19)

$$= \log \left(1 + \frac{\text{SNR}}{n_T} \text{Tr} \{ HH^\dagger \} \right)$$ \hspace{1cm} (20)

where (18) holds because the determinant equals the product of the eigenvalues, (19) comes from dropping terms in the product, and (20) follows from $\text{Tr} \{ HH^\dagger \} = \sum_{\ell=1}^{n_R} \lambda_\ell$.

Hence, spatial multiplexing with optimal detection is uniformly superior to transmit diversity: there truly is no decision to be made between the two architectures if optimal MIMO detection is an option. Drawing parallels with the discussion in Section I about the suboptimality of repeating the same signal on two frequency channels versus transmitting different portions of a coded block thereon, one could equate transmit diversity with the former and the optimum MIMO strategy with the latter.

There is another interesting parallel to our earlier discussion regarding the importance of channel modeling. In Fig. 6, the spectral efficiencies of Alamouti transmission and spatial multiplexing (with optimal detection and MMSE-SIC) are shown for $n_T = n_R = 2$, for both the frequency-flat model and the richer model in Tables 1–2. Optimal spatial multiplexing is superior to Alamouti with both models, as per the above derivation, but the difference is considerably larger when the rich model is used. Indeed, based upon the frequency-flat model one might incorrectly conclude that spatial multiplexing provides only a negligible advantage over Alamouti. Note also that MMSE-SIC performs well below Alamouti in the frequency-flat setting, but outperforms it in the rich model.

7It should be emphasized that these approaches perform optimal or near-optimal detection of each MIMO vector symbol, but do not attempt optimal detection of the outer code. Hence, complexity increases exponentially with the multiplexing order and the constellation cardinality, but not with the blocklength.
D Uncoded Error Probability: A Potentially Misleading Metric

Whereas, in earlier sections, the superiority of spatial multiplexing relative to transmit diversity was illustrated in the context of modern wireless systems with powerful outer coding, an opposite but incorrect conclusion can be reached if one compares the error probabilities of the two schemes in the absence of outer coding.

Consider $n_T = n_R = 2$ for the sake of specificity. Comparisons must be conducted at equal SNR and equal rate, e.g., Alamouti with 16-QAM and spatial multiplexing with 4-QAM. These can be thought of as two different space-time modulation formats, both with 4 bits per MIMO symbol. Fig. 7 presents the symbol error probabilities, averaged over the fading distribution, for a maximum-likelihood detector with no outer coding. The difference in slopes is explained by the classical notion of diversity order: for Alamouti the probability of error decreases as SNR^{-4}, whereas for spatial multiplexing it decreases only as SNR^{-2}. Based on these curves, one might conclude that the schemes are roughly equivalently at low and moderate SNR and that Alamouti is markedly superior at high SNR.

How is the comparison of uncoded error probabilities to be reconciled with the mutual-information-based comparison, where spatial multiplexing was found to be decidedly better? The answer lies in the outer code.

In unfaded channels, coding effectively provides a simple horizontal shift of the error probability curve. In fading channels, however, the effect of coding is considerably more important: not only does it provide such horizontal shift, but it also collects diversity over the entire range of symbols spanned by each coded block. In a system such as the one described in Tables 1 and 2, the outer code makes use of frequency selectivity across tones and time selectivity across H-ARQ transmissions. Without an outer code, on the other hand, this selectivity would not be exploited and thus, as the example in Fig 7 attests, averaging uncoded error probabilities does not have the same operational meaning of averaging mutual informations. Since modern communication systems rely on powerful channel codes, inferring their performance on the basis of uncoded error probabilities can be a rather misleading proposition.

V Conclusion

Since the 1970’s, antenna diversity had been a preferred weapon used by mobile wireless systems against the deleterious effect of fading. While narrowband channelizations and non-adaptive links were the norm, antenna diversity was highly effective. In modern systems, however, this is no longer the case. Link adaptivity and scheduling have rendered transmit diversity undesirable for low-velocity users whereas abundant time/frequency
selectivity has rendered transmit diversity superfluous for high-velocity users. Moreover, the prevalence of MIMO has opened the door for a much more effective use of antennas: spatial multiplexing. Indeed, the spatial degrees of freedom created by MIMO should be regarded as additional ‘bandwidth’ and, for the same reason that schemes based on time/frequency repetition are not used for they waste bandwidth, transmit diversity techniques waste ‘bandwidth’.

Of all possible DMT points, therefore, the zero-diversity one stands out in importance. Techniques, even suboptimum ones, that can provide full multiplexing are most appealing to modern wireless systems whereas techniques that achieve full diversity order but fall short on multiplexing gain are least appealing. Although this conclusion has been reached on the premise that coded error probabilities are well approximated by mutual information outages, we expect it to hold in any situation where the code operates at a (roughly) constant gap to the mutual information.

The trend for the foreseeable future is a sustained increase in system bandwidth, which is bound to only shore up the above conclusion. LTE, which for our case study was taken to use 10 MHz, is already moving towards 20 MHz channelizations.

At the same time, exceptions to the foregoing conclusion do exist. These include, for example, control channels that convey short messages. Transmit diversity is fitting for these channels, which do benefit from a lower error probability but lack significant time/frequency selectivity. Other exceptions may be found in applications such as sensor networks or others where the medium access control is non-existent or does not have link adaptation and retransmission mechanisms.

Our study has only required evaluating well-known techniques under realistic models and at the appropriate operating points. Indeed, a more general conclusion that can be drawn from the discussion in this paper is that, over time, the evolution of wireless systems has rendered some of the traditional models and wisdoms obsolete. In particular:

- Frequency and time selectivity should always be properly modeled.
- Performance assessments are to be made at the correct operating point, particularly in terms of error probability.
- The assumptions regarding transmit CSI must be consistent with the regime being considered. At low velocities, adaptive rate control based on instantaneous CSI should be incorporated; at high velocities, only adaptation to average channel conditions should be allowed.
- Coded block error probabilities or mutual information outages, rather than uncoded error probabilities, should be used to gauge performance.
Proper modeling is essential in order to evaluate the behavior of transmission and reception techniques in contemporary and future wireless systems. As our discussion on transmit diversity and spatial multiplexing demonstrates, improper modeling can lead to misguided perceptions and fictitious gains.

VI Acknowledgments

The authors gratefully acknowledge comments, suggestions and discussions with Profs. Jeff Andrews and Robert Heath Jr., from the University of Texas at Austin, Prof. Uri Erez, from Tel-Aviv University, Prof. Andrea Goldsmith, from Stanford University, Prof. Albert Guillen, from the University of Cambridge, Prof. Daniel P. Palomar, from the Hong Kong University of Science and Technology, and Mr. Chris Ramming.

References

Table 1: MIMO-OFDM System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone spacing</td>
<td>15 kHz</td>
</tr>
<tr>
<td>OFDM Symbol duration</td>
<td>71.5 μs</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>10 MHz (600 tones, excluding guards)</td>
</tr>
<tr>
<td>Resource block</td>
<td>12 tones over 1 ms (168 symbols)</td>
</tr>
<tr>
<td>H-ARQ</td>
<td>Incremental redundancy</td>
</tr>
<tr>
<td>H-ARQ transmission spacing</td>
<td>6 ms</td>
</tr>
<tr>
<td>Max. number H-ARQ transmissions</td>
<td>6</td>
</tr>
<tr>
<td>Power delay profile</td>
<td>12-ray TU</td>
</tr>
<tr>
<td>Doppler spectrum</td>
<td>Clarke-Jakes</td>
</tr>
<tr>
<td>Max. Doppler frequency</td>
<td>185 Hz</td>
</tr>
<tr>
<td>Antenna correlation</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 2: TU power delay profile

<table>
<thead>
<tr>
<th>Delay (µs)</th>
<th>Power (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>0.1</td>
<td>-3</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>-2.6</td>
</tr>
<tr>
<td>0.8</td>
<td>-3</td>
</tr>
<tr>
<td>1.1</td>
<td>-5</td>
</tr>
<tr>
<td>1.3</td>
<td>-7</td>
</tr>
<tr>
<td>1.7</td>
<td>-5</td>
</tr>
<tr>
<td>2.3</td>
<td>-6.5</td>
</tr>
<tr>
<td>3.1</td>
<td>-8.6</td>
</tr>
<tr>
<td>3.2</td>
<td>-11</td>
</tr>
<tr>
<td>5</td>
<td>-10</td>
</tr>
</tbody>
</table>
Figure 1: (a) TU channel fading realization over 600 tones. The circles indicate the locations of the 12 tones that map to a given resource block. (b) TU channel fading realization, for a given tone, over 30 ms. The circles indicate the locations of the 6 H-ARQ transmissions.
Figure 2: Main plot: MMSE-SIC spatial multiplexing v. transmit diversity with $n_T = n_R = 4$ in a frequency-flat Rayleigh-faded channel with no H-ARQ. Also shown is the non-MIMO reference ($n_T = 1, n_R = 4$). Inset: Same curves over a wider SNR range.
Figure 3: MMSE-SIC spatial multiplexing v. transmit diversity with $n_T = n_R = 4$ in the channel described in Tables 1–2. Also shown is the non-MIMO reference ($n_T = 1$, $n_R = 4$).
Figure 4: MMSE-SIC spatial multiplexing, transmit diversity and non-MIMO transmission as function of velocity for the channel described in Tables 1–2 at $\text{SNR} = 20 \text{ dB}$. (Below some point, the system transitions to the low-velocity regime and thus the curves are no longer meaningful.)
Figure 5: In solid lines, 1%-outage rate achievable with MMSE-SIC spatial multiplexing in the channel described in Tables 1–2. In circles, corresponding ergodic rate for the same numbers of antennas.
Figure 6: Spectral efficiencies achievable with Alamouti transmission and with spatial multiplexing (optimal and MMSE-SIC) for $n_T = n_R = 2$. The comparisons are shown for both a frequency-flat channel without H-ARQ and for the channel described in Tables 1–2.
Figure 7: Uncoded symbol error probability for transmit diversity and spatial multiplexing with $n_T = n_R = 2$.