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Summary.  Subcompositional coherence is a fundamental property of Aitchison’s 

approach to compositional data analysis, and is the principal justification for using 

ratios of components.  We maintain, however, that lack of subcompositional coherence, 

that is incoherence, can be measured in an attempt to evaluate whether any given 

technique is close enough, for all practical purposes, to being subcompositionally 

coherent.  This opens up the field to alternative methods, which might be better suited 

to cope with problems such as data zeros and outliers, while being only slightly 

incoherent.  The measure that we propose is based on the distance measure between 

components.   We show that the two-part subcompositions, which are the most 

sensitive to subcompositional incoherence, can be used to establish a distance matrix 

which can be directly compared with the pairwise distances in the full composition.  The 

closeness of these two matrices can be quantified using a stress measure that is 

common in multidimensional scaling, providing a measure of subcompositional 

incoherence.  Furthermore, we strongly advocate introducing weights into this 

measure, where rarer components are weighted proportionally less than more 

abundant components.  The approach is illustrated using power-transformed 

correspondence analysis, which has already been shown to converge to logratio 

analysis as the power transform tends to zero. 
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1.   Introduction 

 

In his seminal Biometrika paper John Aitchison (1983) stated:  

“A desirable feature of any form of compositional data analysis is an ability to 

study subcompositions, that is subvectors rescaled to give unit sum.  One important 

requirement is an ability to quantify the extent to which a subcomposition retains a 

picture of the variability of the whole composition.”   

The property of subcompositional coherence is indeed one of the cornerstones of Aitchison’s 

approach to compositional data analysis: results should be the same for components in a full 

composition as in any subcomposition, where the subcomposition has been closed again to give 

unit sum, or “reclosed”.  An example that is often given of subcompositional incoherence is that 

the correlation coefficient between two components in a (reclosed) subcomposition is not the 

same as that for the same two components in the full composition.  Using ratios as the basic 

input data for analysis solves this paradox and the logratio transformation has become a 

standard procedure to guarantee subcompositional coherence.  

For ease of exposition we shall often refer to subcompositional coherence simply as 

coherence.  Coherence is an absolute property which a procedure either possesses or not.  But if 

it does not, that is if it is incoherent, we maintain that there are levels of incoherence that can be 

usefully measured and exploited.  For example, what if our method was ‘close’ to being 

coherent – would that not be useful if in the process we fixed up other problems, such as the 

treatment of zeros in the data?   As a context for our investigation, we have chosen the area of 

visualization of compositional data in the form of maps, in the style of principal component 

analysis (PCA) and multidimensional scaling (MDS), because these are based on the concept of 

distance and distance is one of the most fundamental aspects of multivariate analysis.   

The logratio approach to PCA of compositional data originates in the papers of 

Aitchison (1983, 1986, 1990), which we call logratio analysis, abbreviated as LRA.   Simply 

stated, LRA is the principal component analysis (PCA) of a matrix of positive compositional 



data – assumed to be closed row-wise – after logarithmically transforming the data and 

centering each row of the log-transformed values by its respective row mean.  Since the first 

step of the ensuing PCA is to center the columns of the table, it is said that the log-transformed 

table is double-centered – the dimension-reduction step is then performed using the singular 

value decomposition.  Interestingly, even though the rows and columns are different entities 

(samples and components) LRA treats them totally symmetrically and the results would be 

identical if the matrix were transposed. 

 A different approach, also symmetric with respect to rows and columns, is to use 

correspondence analysis (CA), a method applicable to any table of nonnegative numbers, as 

long as they are all on the same ratio-scale of measurement, and hence suitable for 

compositional data as well, even with zeros. (In fact, it is its ability to handle zeros, even lots of 

zeros in very sparse tables, that has made CA so popular in environmental and archeological 

research).   The table is first centered with respect to the ‘expected values’ based on the row and 

column margins of the table, a term that is borrowed from contingency table analysis.  The rows 

and columns are weighted proportional to these marginal values – in the case of compositional 

data samples (rows) would have the same weights but components (columns) would be 

weighted proportionally to their average in the data set.  The subsequent dimension-reduction 

step is similar to that of PCA apart from the row and column weighting factors (for a recent 

account of CA, see Greenacre 2007, 2008a).   

Greenacre (2008b) has shown that LRA and CA are actually part of a common family 

parameterized by a power transformation – a summary of these findings aimed at compositional 

data analysts is given by Greenacre (2008c).  Putting this result simply, if you power up your 

compositional data by a power α, reclose row-wise (although closure is entirely optional here), 

and then perform a regular CA of the transformed data, with a rescaling of the solution by 1/α, 

then this procedure converges exactly at the LRA solution as the power parameter α  tends to 0.   

In fact, this is nothing else but the Box-Cox transformation in disguise (Box and Cox, 1964) – 

see Greenacre (2008b).   This means that we can come arbitrarily close to Aitchison’s LRA by 



performing a CA: numerically, there is hardly any difference between the CA just described 

using α = 0.001, for example, and LRA.  Now while LRA is coherent, CA is not.  But it follows 

intuitively from the limiting result mentioned above, and we shall indeed show this to be true, 

that CA comes closer and closer to being coherent as the power parameter approaches 0.   

Since CA can handle zeros in a completely natural way, whereas LRA can not, benefit 

can be gained by using power-transformed CA instead of LRA and coming “close enough” to 

coherence for all practical purposes.  This is the background to our need to be able to measure 

coherence and study its behavior in different scenarios.     

 

 

2.   Logratio and chi-square distances for compositions and 

subcompositions 

 

As intimated in the introduction we adopt a distance-based approach where the concept of 

between-component distance will be fundamental.  Notice that we are not interested here in 

between-sample distance since the property of coherence applies to the relationships between 

components.  For our purposes coherence will mean that distances calculated between the 

components in the full composition will be identical in the subcomposition.  Since we will be 

generally concerned with Euclidean type distances, which are embeddable in an inner product 

space, this distance-based property of coherence will mean that all the classical statistics such as 

variance, correlation and covariance will also be coherent. 

Suppose that the compositional data table of I samples (rows) and J components 

(columns) is denoted by X (I × J).  The two equivalent definitions of Aitchison’s logratio 

distance of relevance to us here, between two components j and j', are as follows (Aitchison, 

1983, 1986), expressed in squared distance form: 
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where  g(x j)  is the geometric mean of the j-th column corresponding to the j-th component (i.e., 

log(g(x j)) is the arithmetic average of log(xij), i=1,…,I).  The alternative definition is in terms of 

all pairwise ‘odds-ratios’ across all pairs of samples: 
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Notice that compared to Aitchison’s original definition, which is in general use, we have 

averaged the squared terms over the samples, so that the distance is not sample-size dependent – 

this is the form of the distance that is compatible with the chi-square distance in CA, which is 

also averaged over samples.   Although definition (1) involves centering each log(xij) with 

respect to the average (1/I)Σi log(xij), definition (2) shows that the distance is actually 

independent of this centering – this is another reason for using distance as the fundamental 

concept for judging and measuring coherence. Definition (2) also shows quite clearly that the 

logratio distance is coherent: if any subcomposition involving components j and j' is considered 

and reclosed row-wise, the ratios row-wise xij/xij'  remain identical, and so (2) remains the same. 

 In CA it is the chi-square distance that defines distance between columns.  First the 

column profiles are calculated by dividing the elements of each column j by their sum x+j .  Then 

the sum of squared distances between profile elements is calculated, weighted inversely by the 

profile of the row sums.  Since for X these row sums are all 1, the marginal row profile has 

constant values (1/I), hence the squared chi-square distance between columns j and j' is: 
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Clearly, the chi-square distance is incoherent, but from the results of Greenacre (2008b, 2008c) 

mentioned previously it follows that the chi-square distance on the power-transformed data 

tends to the logratio distance as the power parameter α  tends to 0.  The convergence of CA to 

LRA is a direct result of the Box-Cox transformation (1/α)(xα – 1) which tends to log(x) as α 

tends to 0.  To illustrate this convergence empirically in the case of the chi-square distance, 



Table 1 shows four versions of a subset of distances calculated on the 11 components (mostly 

oxides) of the 47×11 compositional data set on Roman glass cups published by Baxter, Cool and 

Heyworth (1990), reproduced by Greenacre and Lewi (2008: Table 2).  The chi-square distances 

are at top right, then reading clockwise the chi-square distances based on a double square root 

transformation (α = ¼), then a power transformation close to zero (α = 0.001) and finally the 

logratio distances.  Figure 1 shows the maximum absolute difference between the chi-square 

distances and the logratio distances for 1000 different CAs, starting with α = 1 (untransformed 

CA) and descending in steps of  0.001, i.e., 0.999, 0.998, and so on, until α = 0.001.   This 

effectively shows that one can get as close as one likes to coherence by lowering the value of α 

towards 0.  The concept of coherence is more, however, than just showing that the chi-square 

distance converges to the logratio distance – it actually concerns the behavior of the distance 

function on subcompositions, as treated in the next section. 

 

 

3.   A measure of subcompositional coherence 

 

Coherence is the invariance of the statistical procedure, in this case the distance computation 

which affects all our subsequent multivariate analyses, when applied to subsets of components 

that are reclosed.  Since we know that CA is incoherent, let us see to what extent it is by 

calculating the chi-square distances for different subsets of the components of the Roman glass 

cup data set.  The chi-square distances for the full 11-part composition serve as a reference to 

which we will compare the chi-square distances for every relevant subset of components: the 

55
2
11)( = subsets of size 2, the 165

3
11)( = subsets of size 3, and so on, until the 

11
10
11)( = subsets of size 10.  For example, the top left table of Table 1 shows the chi-square 

distances between the first five components of the full composition.  If we select these five 

components and then reclose then to form a five-part subcomposition, the chi-square distances 



turn out as the first table in Table 2.  This table is remarkably similar to the original chi-square 

distances in Table 1, and their maximum absolute difference is only 0.00066.  This is because 

we have included in the subcomposition some of the highest components, so that the reclosure 

does not affect the values too much.  However, if we consider the last five elements, which 

happen to be amongst the rarest, the second distance table in Table 2 is obtained, which is much 

further away from the original ones (maximum absolute difference = 0.0368).     

 So far, to compare two distance matrices we have simply used the maximum absolute 

difference, a quantity with a scale which is hard to get to grips with because it depends on the 

scale of distance.  In the MDS literature there are several well-known normalized measures for 

quantifying the fit of one distance matrix to another, called measures of ‘stress’.  Of these we 

have selected the so-called ‘stress formula 1’ (see, for example, Borg and Groenen 2005):  
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where d denotes the target distances in the full composition and δ  the distances in the 

subcomposition.  The denominator serves to normalize the sum of squared differences in the 

numerator, and the stress value is often multiplied by 100 and thought of as a percentage of 

badness of fit.  For the two subcompositions analyzed in Table 2, the stress values are reported 

as 0.00245 (i.e., 0.245%) and 0.06574 (i.e., 6.574%).  To get an idea how this deviation from 

coherence varies across subsets of different sizes, Figure 2 plots the average stress against 

subset size for regular CA and repeats this for chi-square distances from two power-transformed 

CAs – this demonstrates what we hinted at before, namely that CA becomes closer and closer to 

coherence as the power parameter decreases.   

In addition, this shows what might have been suspected before: subcompositions of size 

2 are the ‘worst case scenario’ for deviation from coherence, since they are the most affected by 

reclosure.  In other words, if we can bring the stress of subcompositions of size 2 acceptably 

low enough then we are guaranteeing that all other subcompositions will be at least more 

coherent on average.  This is a very convenient result, because all the pairwise distances from 



two-part subcompositions can be placed in a square distance matrix, which can then be 

compared directly with the pairwise distances in the full composition using just one overall 

stress measure.   Notice that this calculation is different to the one used to calculate average 

stress for two-part subcompositions in Figure 2 – there we averaged stress values calculated for 

each subcomposition, where in each of the 55 cases stress formula (4) consisted of a single term 

in the numerator and denominator; whereas here the stress formula will have numerator and 

denominator equal to the sums of those 55 numerators and denominators respectively.  Table 3 

gives three examples, showing just the last five out of the 11 components, for α = 1, 0.25 and 

0.001 – the distances on the left are computed in the full composition, and the distances on the 

right are those obtained by forming each subcomposition corresponding to the row-column 

pairs.  Again we witness the convergence as α decreases.  Figure 4 shows a continuous version 

of the stress as a function of α .  If a 1% level of stress were acceptable as being ‘close enough’ 

to coherence, then the power transform with  α = 0.106 would be appropriate. 

 

 

4.  To weight or not to weight 

 

So far we have treated each component equally, as is general practice in compositional data 

analysis, even in the paper on logratio biplots by Aitchison and Greenacre (2002).  However, 

Greenacre and Lewi (2008) have brought to attention the necessity for and benefits of weighting 

the components when doing LRA.  Convenient weights are the so-called “masses” in CA, 

namely the marginal averages of the components – thus a rare component with low average 

value in the data set is downweighted compared to the abundant components.  Although this 

appears to be an issue only when analyzing the data, for example visualizing the compositional 

distances in a subspace of reduced dimension, it is also an issue when measuring stress, as we 

now demonstrate. 



 We have just come to the conclusion that a power-transformed CA of these data with 

power parameter α = 0.106 would reduce the incoherence of CA to 1% , but let us look at this 

1% lack of coherence in a bit more detail.  The stress measure is a sum of positive numbers for 

each cell in an 11×11 table – Figure 4 shows a graphical display where the contribution of each 

of these values is indicated by the area of a circle.  It is immediately obvious that this 

incoherence, albeit small, is almost totally due to the element Mn (manganese).  In previous 

analyses of these data Mn has already been singled out by Greenacre and Lewi (2008) as a 

problem, because it takes on only three small values: 0.03%, 0.02%  and 0.01% (i.e., 0.0003, 

0.0002 and 0.0001 on a proportion scale), engendering large values on the ratio and logratio 

scale.  Their proposal to weight the components in proportion to their marginal averages 

eliminates the influence of this rare but outlying component.  Our stress measure of incoherence 

can also be easily modified to take the ‘abundance’ of each component into account in the 

measure, in which case Mn would not feature so prominently.  Then the measure would be 

measuring incoherence weighted by the average level of each component, with incoherence in 

higher-abundance components being taken into account more than incoherence in rare 

components.  This weighted stress measure is then: 
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where cj denotes the weight of the j-th component, usually taken to be equal to its marginal 

average proportion.  The lower curve in Figure 3 traces out weighted stress as a function of the 

power parameter – it is considerably lower than the unweighted curve at the top, and now even 

regular untransformed CA is seen to have less than 1% incoherence overall.  Figure 5 shows the 

contribution-to-weighted-stress plot for regular CA – Mn is no longer an important contributor, 

the highest contributions to incoherence come from two distances involving calcium, Ca to Si 

(silica) and Ca to Na (sodium).      

 



5.  Discussion and conclusions 

 

The main proposal of this paper is to measure subcompositional coherence by the stress 

between the inter-component distance matrix calculated using the full composition and the 

matrix of pariwise component distances computed from all the two-part subcompositions.  From 

the results of the previous section and from the discussion of Greenacre and Lewi (2008), we 

strongly advise to supplement this proposal with the weighting of the components proportional 

to their average value in the data set.   We have seen in the example of the Roman glass 

compositional data set that regular CA owes most of its incoherence (when measured without 

weights) to one problematic component that is rare.   Weighting eliminates this problem and 

then we see that CA is, in fact, very close to coherence.   Application of this idea to a wider 

spectrum of compositional data sets will show to what extent CA, with or without power 

transformations, can be used as an alternative to LRA.  It will also allow alternative methods, 

such as PCA with or without standardization, to be judged with respect to their 

subcompositional coherence properties. Incidentally, we measured the subcompositional 

incoherence for the present data set, using the Euclidean distance with and without 

standardization of the components.  The weighted stress measures are 0.3442 (34.42%) and 

0.1828 (18.28%) respectively – if one compares these values with those for CA shown in Figure 

3, one realizes how high these measures are and how far away from coherence PCA is.  There is 

also a quirk in the two-part compositions in PCA, due to the centering with respect to 

component means.  Since the pair of closed values has the property xij'  = 1 – xij, the two centered 

values have the property yij' = – yij, and thus also have the same variance, sj say, and it can be 

easily deduced that the unstandardized Euclidean distance between components j and j' is a 

constant multiple of the standard deviation, jsn 12 − , while the standardized Euclidean 

distance is a constant 12 −n for all two-part subcompositions.  The correlation between the 

components of any two-part subcomposition is –1, independent of the data.  It seems that PCA 



on unstandardized or standardized data is out of the question for compositional data analysis if 

one places importance on the principle of subcompositional coherence1. 

Coming back to CA with possible power transformations, where the implicit chi-square 

distance appears to be close to coherence, an obvious benefit is that for CA with nonzero power 

parameters, zeros in the data can still be analyzed – hence this holds promise for the analysis of 

compositional data with zeros, which is a perennial problem with the logratio transformation 

(see, for example, Martín-Fernández, Barceló-Vidal and  Pawlowsky-Glahn 2003).   

Greenacre and Lewi (2008) already showed that a regular CA of these data and a 

weighted LRA gave almost the same two-dimensional biplot, so the fact that CA is almost 

coherent (using weighted stress) fits in with this result.  It is already known that CA gives 

similar results to association modeling (Goodman 1968) when the variance in the data is low 

(for example, see Cuadras, Cuadras and Greenacre 2006) and that weighted LRA has strong 

theoretical similarities to association modeling (see Greenacre and Lewi 2008).  Here low 

variance means that the observed data are close to their expected values based on the table 

margins.  It follows that CA and weighted LRA will give similar results in such a low variance 

situation where the samples are very similar to one another, which is the case of the present 

example and often the case in archeological data.  But when the variance is high, which is often 

the case for geological and geochemical data where there can be many data zeros, the power 

family of CAs will show greater differences across the range of power transformations.  It 

remains to be shown whether we can use a power transformation to come close enough to 

coherence while being able to analyze zeros as zeros without having to resort to replacing them 

artificially with some small positive number.  But, at least, we now have a tool to measure 

incoherence to be able to judge how close we are to subcompositional coherence in different 

situations. 

                                                           
1 The performance of 10-part subcompositions should be the most favourable for evaluating PCA, but the 
incoherence is large even for these: for this example, the average stress for all 10-part subcompositions 
was calculated as 0.1371 (13.71%) for unstandardized PCA and 0.0425 (4.25%) for standardized PCA. 
Average weighted stresses are 0.1906 (19.06%) and 0.0940 (9.40%) respectively.  Compare these to 
regular (untransformed) CA, which for the 11 10-part subcompositions of these data has average 
unweighted and weighted stresses of 0.0029 (0.29%) and 0.0021 (0.21%) respectively. 
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Table 1: Three sets of chi-square distances based on CAs with different power transformations 

(starting at top right with power α = 1, the regular untransformed CA), and finally at bottom 

left, the logratio distances from LRA.  Parts of each 11×11 table of distances are shown, as well 

as the maximum absolute difference between the distances in the full table and their 

corresponding logratio distances. 

  

 

 
 
 
 
 
 
 
 

  

α = 1 (untransformed CA) 

      Si     Al     Fe     Mg     Ca  ... 

Si 0.0000 0.0920 0.2259 0.1850 0.1241 ... 
Al 0.0920 0.0000 0.1441 0.1261 0.0855 ... 
Fe 0.2259 0.1441 0.0000 0.1280 0.1472 ... 
Mg 0.1850 0.1261 0.1280 0.0000 0.1387 ... 
Ca 0.1241 0.0855 0.1472 0.1387 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...   
 .    .      .      .      .      .   ...   

         Max abs diff = 0.0797 

 

α = 0.25 

      Si     Al     Fe     Mg     Ca  ... 

Si 0.0000 0.0909 0.2207 0.1878 0.1209 ... 
Al 0.0909 0.0000 0.1404 0.1282 0.0850 ... 
Fe 0.2207 0.1404 0.0000 0.1190 0.1468 ... 
Mg 0.1878 0.1282 0.1190 0.0000 0.1404 ... 
Ca 0.1209 0.0850 0.1468 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...   
 .    .      .      .      .      .   ...   

         Max abs diff = 0.0142 

 

α = 0.001 

      Si     Al     Fe     Mg     Ca  ... 

Si 0.0000 0.0913 0.2209 0.1882 0.1213 ... 
Al 0.0913 0.0000 0.1403 0.1280 0.0849 ... 
Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ... 
Mg 0.1882 0.1280 0.1168 0.0000 0.1404 ... 
Ca 0.1213 0.0849 0.1471 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...   
 .    .      .      .      .      .   ...   

         Max abs diff = 0.000042 

 

α = 0 (LRA) 

      Si     Al     Fe     Mg     Ca  ... 

Si 0.0000 0.0913 0.2209 0.1882 0.1213 ... 
Al 0.0913 0.0000 0.1403 0.1279 0.0849 ... 
Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ... 
Mg 0.1882 0.1279 0.1168 0.0000 0.1404 ... 
Ca 0.1213 0.0849 0.1471 0.1404 0.0000 ...  
 .    .      .      .      .      .   ...  
 .    .      .      .      .      .   ...   
 .    .      .      .      .      .   ...   

         Max abs diff = 0 

 



Figure 1: Maximum absolute difference between chi-square distances from power-transformed 

CA and the logratio distances, for powers from 1 to 0.001 (calculations made for 1000 values of 

the power α = 1, 0.999, 0.998, …, 0.001).  
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Table 2: Two sets of chi-square distances based on CAs of subcompositions of size 5.  

 

 

 
 
 
 

  

Subset 1 

      Si     Al     Fe     Mg     Ca  

Si 0.0000 0.0922 0.2264 0.1849 0.1247 
Al 0.0922 0.0000 0.1445 0.1256 0.0857 
Fe 0.2264 0.1445 0.0000 0.1280 0.1472 
Mg 0.1849 0.1256 0.1280 0.0000 0.1385 
Ca 0.1247 0.0857 0.1472 0.1385 0.0000  
   

         Max abs diff = 0.00066 

         Stress = 0.00245 

      

Subset 2 

       K     Ti      P     Mn     Sb   

K  0.0000 0.1562 0.1235 0.3396 0.2648 
Ti 0.1562 0.0000 0.1505 0.3339 0.3152 
P  0.1235 0.1505 0.0000 0.3407 0.2527 
Mn 0.3396 0.3339 0.3407 0.0000 0.4351 
Sb 0.2648 0.3152 0.2527 0.4351 0.0000  
  

         Max abs diff = 0.03682 

         Stress = 0.06574 

 



Figure 2: Average stress between chi-square distances calculated in subcompositions of 

different sizes and corresponding chi-square distances in the full composition, for regular CA 

and two power-transformed CAs, α = 0.25 and α = 0.001.  In the last case there is almost no 

subcompositional incoherence.  Subcompositions of size 2 are seen to be the ‘worst case’.  
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Table 3: Inter-component chi-square distances for the regular CA and two power-transformed 

CAs (α = 0.25 and 0.001), showing on the left the distances for the full composition and on the 

right the corresponding distances based on two-part subcompositions.  Only the last five 

components are shown, but the maximum absolute differences and the stress values are 

computed for the whole 11×11 matrix of distances in each case.   

 

 

 
 
 
 

  

 

 

 

 

 
 
 
 

  

 

 

 

 
 
 
 

  

Two part subcompns, untransformed CA(α = 1) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1586 0.1274 0.3358 0.2647 
Ti ... 0.1586 0.0000 0.1527 0.3030 0.3182 
P  ... 0.1274 0.1527 0.0000 0.3095 0.2677 
Mn ... 0.3358 0.3030 0.3095 0.0000 0.4196 
Sb ... 0.2647 0.3182 0.2677 0.4196 0.0000  
  

         Max abs diff = 0.07415 

         Stress = 0.06441 

 

Full composition, untransformed CA(α = 1) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1573 0.1217 0.3704 0.2611 
Ti ... 0.1573 0.0000 0.1615 0.3500 0.3191 
P  ... 0.1217 0.1615 0.0000 0.3739 0.2407 
Mn ... 0.3704 0.3500 0.3739 0.0000 0.4719 
Sb ... 0.2611 0.3191 0.2407 0.4719 0.0000  
  

         

 

Two part subcompns, transformed CA(α = 0.25) 

          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1534 0.1248 0.2946 0.2699 
Ti ... 0.1534 0.0000 0.1526 0.2830 0.3213 
P  ... 0.1248 0.1526 0.0000 0.2991 0.2581 
Mn ... 0.2946 0.2830 0.2991 0.0000 0.4053 
Sb ... 0.2699 0.3213 0.2581 0.4053 0.0000  
  

         Max abs diff = 0.01514 

         Stress = 0.02114 

 

Full composition, transformed CA(α = 0.25) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1534 0.1242 0.3072 0.2678 
Ti ... 0.1534 0.0000 0.1543 0.2957 0.3206 
P  ... 0.1242 0.1543 0.0000 0.3142 0.2531 
Mn ... 0.3072 0.2957 0.3142 0.0000 0.4178 
Sb ... 0.2678 0.3206 0.2531 0.4178 0.0000  
  

         

 

Two part subcompns, transformed CA(α = 0.001) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1530 0.1246 0.2906 0.2703 
Ti ... 0.1530 0.0000 0.1526 0.2815 0.3218 
P  ... 0.1246 0.1526 0.0000 0.2985 0.2575 
Mn ... 0.2906 0.2815 0.2985 0.0000 0.4046 
Sb ... 0.2703 0.3218 0.2575 0.4046 0.0000  
  

         Max abs diff = 0.000059 

         Stress = 0.000108 

 

Full composition, transformed CA(α = 0.001) 
          K     Ti      P     Mn     Sb 
          .      .      .      .      . 
          .      .      .      .      . 
          .      .      .      .      . 
K  ... 0.0000 0.1530 0.1246 0.2907 0.2703 
Ti ... 0.1530 0.0000 0.1526 0.2816 0.3218 
P  ... 0.1246 0.1526 0.0000 0.2985 0.2574 
Mn ... 0.2907 0.2816 0.2985 0.0000 0.4047 
Sb ... 0.2703 0.3218 0.2574 0.4047 0.0000  
  

         

 



Figure 3: Stress between chi-square distances calculated in two-part subcompositions and the 

corresponding chi-square distances in the full composition for the Roman glass cup data, for 

power transformations α = 1, 0.999, 0.998, …, 0.001. The power parameter corresponding to a 

stress of 0.01 (1%) has value 0.106, as indicated.  The weighted stress takes into account the 

average level of the components, discussed later. 
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Figure 4: Values that constitute the stress measure for measuring incoherence in the CA with 

power transformation α = 0.106.   The area of the circles is proportional to the contribution to 

stress (function table.dist in the R package ade4 – by Chessel, Dufour and Thioulouse 

2004).  The lack of coherence is concentrated almost entirely in the Mn (manganese) oxide 

component. 

  

 

 

 

 



Figure 5: Values that constitute the weighted stress measure for measuring incoherence in a 

regular CA.   The area of the circles is proportional to the contribution to weighted stress.   

  

 


