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Summary. Subcompositional coherence is a fundamental property of Aitchison’s
approach to compositional data analysis, and is the principal justification for using
ratios of components. We maintain, however, that lack of subcompositional coherence,
that is incoherence, can be measured in an attempt to evaluate whether any given
technique is close enough, for all practical purposes, to being subcompositionally
coherent. This opens up the field to alternative methods, which might be better suited
to cope with problems such as data zeros and outliers, while being only slightly
incoherent. The measure that we propose is based on the distance measure between
components. We show that the two-part subcompositions, which are the most
sensitive to subcompositional incoherence, can be used to establish a distance matrix
which can be directly compared with the pairwise distances in the full composition. The
closeness of these two matrices can be quantified using a stress measure that is
common in multidimensional scaling, providing a measure of subcompositional
incoherence. Furthermore, we strongly advocate introducing weights into this
measure, where rarer components are weighted proportionally less than more
abundant components. The approach is illustrated using power-transformed
correspondence analysis, which has already been shown to converge to logratio

analysis as the power transform tends to zero.
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1. Introduction

In his seminaBiometrikapaper John Aitchison (1983) stated:

“A desirable feature of any form of compositionaltal analysis is an ability to
study subcompositions, that is subvectors resdalgd/e unit sum. One important
requirement is an ability to quantify the extentsoich a subcomposition retains a

picture of the variability of the whole compositibn

The property of subcompositional coherence is idae® of the cornerstones of Aitchison’s
approach to compositional data analysis: resulislghoe the same for components in a full
composition as in any subcomposition, where the@uiposition has been closed again to give
unit sum, or “reclosed”. An example that is oftgmen of subcompositionahcoherences that
the correlation coefficient between two componémts (reclosed) subcomposition is not the
same as that for the same two components in thedmiposition. Using ratios as the basic
input data for analysis solves this paradox anddpeatio transformation has become a

standard procedure to guarantee subcompositiohalence.

For ease of exposition we shall often refer to sutgmositional coherence simply as
coherence. Coherence is an absolute property vehpcbcedure either possesses or not. But if
it does not, that is if it is incoherent, we maintthat there are levels of incoherence that can be
usefully measured and exploited. For example, Whatr method was ‘close’ to being
coherent — would that not be useful if in the pesceve fixed up other problems, such as the
treatment of zeros in the data? As a contexvdminvestigation, we have chosen the area of
visualization of compositional data in the formnadps, in the style of principal component
analysis (PCA) and multidimensional scaling (MDi&cause these are based on the concept of

distance and distance is one of the most fundarnaspacts of multivariate analysis.

The logratio approach to PCA of compositional datginates in the papers of
Aitchison (1983, 1986, 1990), which we call logoaginalysis, abbreviated as LRA. Simply

stated, LRA is the principal component analysisAP&f a matrix of positive compositional



data — assumed to be closed row-wise — after libgmidally transforming the data and
centering each row of the log-transformed valuegdsespective row mean. Since the first
step of the ensuing PCA is to center the columribefable, it is said that the log-transformed
table is double-centered — the dimension-reduddiep is then performed using the singular
value decomposition. Interestingly, even thoughrtiws and columns are different entities
(samples and components) LRA treats them totaltymsgtrically and the results would be

identical if the matrix were transposed.

A different approach, also symmetric with resptxtrows and columns, is to use
correspondence analysis (CA), a method applicablenly table of nonnegative numbers, as
long as they are all on the same ratio-scale of savement, and hence suitable for
compositional data as well, even with zeros. (bt,fa is its ability to handle zeros, even lots of
zeros in very sparse tables, that has made CA polgoin environmental and archeological
research). The table is first centered with resfethe ‘expected values’ based on the row and
column margins of the table, a term that is bormivem contingency table analysis. The rows
and columns are weighted proportional to these makgalues — in the case of compositional
data samples (rows) would have the same weightscboiponents (columns) would be
weighted proportionally to their average in theadsé¢t. The subsequent dimension-reduction
step is similar to that of PCA apart from the romd acolumn weighting factors (for a recent
account of CA, see Greenacre 2007, 2008a).

Greenacre (2008b) has shown that LRA and CA arelgtpart of a common family
parameterized by a power transformation — a sumwifattyese findings aimed at compositional
data analysts is given by Greenacre (2008c). riguttiis result simply, if you power up your
compositional data by a power reclose row-wise (although closure is entireljiaml here),
and then perform a regular CA of the transformed,daith a rescaling of the solution byal/
then this procedure converges exactly at the LR&tism as the power parametertends to 0.

In fact, this is nothing else but the Box-Cox tfanmation in disguise (Box and Cox, 1964) —

see Greenacre (2008b). This means that we cae aduitrarily close to Aitchison’s LRA by



performing a CA: numerically, there is hardly ariffatence between the CA just described
usinga = 0.001, for example, and LRA. Now while LRA ishewent, CA is not. But it follows
intuitively from the limiting result mentioned abmvand we shall indeed show this to be true,
that CA comes closer and closer to being coheretiteapower parameter approaches 0.
Since CA can handle zeros in a completely natuasl, wwhereas LRA can not, benefit
can be gained by using power-transformed CA insté&dRA and coming “close enough” to
coherence for all practical purposes. This isekground to our need to be able to measure

coherence and study its behavior in different sGesa

2. Logratio and chi-square distances for compositions and

subcompositions

As intimated in the introduction we adopt a disebased approach where the concept of
between-component distance will be fundamentalticiddhat we are not interested here in
between-sample distance since the property of eokerapplies to the relationships between
components. For our purposes coherence will ntegtrdistances calculated between the
components in the full composition will be identizathe subcomposition. Since we will be
generally concerned with Euclidean type distaneéch are embeddable in an inner product
space, this distance-based property of coherenteaén that all the classical statistics such as
variance, correlation and covariance will also beezent.

Suppose that the compositional data tablesaimples (rows) andéicomponents
(columns) is denoted by (I x J). The two equivalent definitions of Aitchisontgratio
distance of relevance to us here, between two coengg andj’, are as follows (Aitchison,

1983, 1986), expressed in squared distance form:
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where g(x;) is the geometric mean of th¢h column corresponding to tixth component (i.e.,
log(g(x;)) is the arithmetic average of log)), i=1,...]). The alternative definition is in terms of
all pairwise ‘odds-ratios’ across all pairs of séasp
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Notice that compared to Aitchison’s original deffioin, which is in general use, we have
averaged the squared terms over the samples, tdhehdistance is not sample-size dependent —
this is the form of the distance that is compatibith the chi-square distance in CA, which is

also averaged over samples. Although definitigrir{volves centering each log) with
respect to the average I)®; log(x;), definition (2) shows that the distance is adjual

independent of this centering — this is anothesardor using distance as the fundamental
concept for judging and measuring coherence. Oefin(2) also shows quite clearly that the
logratio distance is coherent: if any subcomposititvolving componentgsand;' is considered

and reclosed row-wise, the ratios row-wigkx; remain identical, and so (2) remains the same.

In CA it is the chi-square distance that definissashce between columns. First the
column profiles are calculated by dividing the edents of each columnby their sumx,;. Then
the sum of squared distances between profile elenecalculated, weighted inversely by the
profile of the row sums. Since firthese row sums are all 1, the marginal row préfde

constant values (I)/ hence the squared chi-square distance betwdamcs) and;' is:
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Clearly, the chi-square distance is incoherentfiom the results of Greenacre (2008b, 2008c)
mentioned previously it follows that the chi-squdistance on the power-transformed data
tends to the logratio distance as the power paeraetends to 0. The convergence of CA to
LRA is a direct result of the Box-Cox transformartid./a)(x“ — 1) which tends to log(x) as

tends tdd. To illustrate this convergence empiricallylire tase of the chi-square distance,



Table 1 shows four versions of a subset of distaoatulated on the 11 components (mostly
oxides) of the 4¥11 compositional data set on Roman glass cupsgtdaliby Baxter, Cool and
Heyworth (1990), reproduced by Greenacre and L2008: Table 2). The chi-square distances
are at top right, then reading clockwise the chiesg distances based on a double square root
transformation & = %4), then a power transformation close to zere 0.001) and finally the
logratio distances. Figure 1 shows the maximunolabs difference between the chi-square
distances and the logratio distances for 1000r@iffieCAs, starting witlr = 1 (untransformed
CA) and descending in steps of 0.001, i.e., 0.9998, and so on, untit= 0.001. This
effectively shows that one can get as close adikeseto coherence by lowering the valuenof
towards 0. The concept of coherence is more, hewévan just showing that the chi-square
distance converges to the logratio distance -titadly concerns the behavior of the distance

function on subcompositions, as treated in the seation.

3. A measure of subcompositional coherence

Coherence is the invariance of the statistical ¢dace, in this case the distance computation
which affects all our subsequent multivariate asedy when applied to subsets of components
that are reclosed. Since we know that CA is inoaie let us see to what extent it is by
calculating the chi-square distances for diffegrisets of the components of the Roman glass
cup data set. The chi-square distances for thé& Tybart composition serve as a reference to

which we will compare the chi-square distancesefary relevant subset of components: the

(121) = 55subsets of size 2, tkél?)l) =165subsets of size 3, and so on, until the

(ié) =11subsets of size 10. For example, the top lefetabTable 1 shows the chi-square

distances between the first five components ofuheomposition. If we select these five

components and then reclose then to form a fivequdoicomposition, the chi-square distances



turn out as the first table in Table 2. This tableemarkably similar to the original chi-square
distances in Table 1, and their maximum absoluterdnce is only 0.00066. This is because
we have included in the subcomposition some ohtbkeest components, so that the reclosure
does not affect the values too much. Howevergifcansider the last five elements, which
happen to be amongst the rarest, the second distalnle in Table 2 is obtained, which is much
further away from the original ones (maximum abtllifference = 0.0368).

So far, to compare two distance matrices we hemplg used the maximum absolute
difference, a quantity with a scale which is harget to grips with because it depends on the
scale of distance. In the MDS literature theresaneeral well-known normalized measures for
quantifying the fit of one distance matrix to arethcalled measures of ‘stress’. Of these we
have selected the so-called ‘stress formula 1’, feeexample, Borg and Groenen 2005):

Zz(dji' - 511")2

stress | <! (4)
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whered denotes the target distances in the full commos#indo the distances in the
subcomposition. The denominator serves to normdfie sum of squared differences in the
numerator, and the stress value is often multighgd00 and thought of as a percentage of
badness of fit. For the two subcompositions amlyim Table 2, the stress values are reported
as 0.00245 (i.e., 0.245%) and 0.06574 (i.e., 6.574P6 get an idea how this deviation from
coherence varies across subsets of different dtigsre 2 plots the average stress against
subset size for regular CA and repeats this foisghare distances from two power-transformed
CAs — this demonstrates what we hinted at befamety that CA becomes closer and closer to
coherence as the power parameter decreases.

In addition, this shows what might have been suspdoefore: subcompositions of size
2 are the ‘worst case scenario’ for deviation frmoherence, since they are the most affected by
reclosure. In other words, if we can bring thesdrof subcompositions of size 2 acceptably
low enough then we are guaranteeing that all athkecompositions will be at least more

coherent on average. This is a very convenienttrésecause all the pairwise distances from



two-part subcompaositions can be placed in a sqiiatence matrix, which can then be
compared directly with the pairwise distances mftlll composition using just one overall
stress measure. Notice that this calculatiorifisrént to the one used to calculate average
stress for two-part subcompositions in Figure Berd we averaged stress values calculated for
each subcomposition, where in each of the 55 cssess formula (4) consisted of a single term
in the numerator and denominator; whereas hersttbss formula will have numerator and
denominator equal to the sums of those 55 numaratat denominators respectively. Table 3
gives three examples, showing just the last fivieobthe 11 components, for= 1, 0.25 and
0.001 — the distances on the left are computelddriull composition, and the distances on the
right are those obtained by forming each subcontipostorresponding to the row-column

pairs. Again we witness the convergenceragcreases. Figure 4 shows a continuous version
of the stress as a function @f. If a 1% level of stress were acceptable asgbeinse enough’

to coherence, then the power transform witl 0.106 would be appropriate.

4. To weight or not to weight

So far we have treated each component equallg, ganieral practice in compositional data
analysis, even in the paper on logratio biplot\lighison and Greenacre (2002). However,
Greenacre and Lewi (2008) have brought to attertiemecessity for and benefits of weighting
the components when doing LRA. Convenient weightsthe so-called “masses” in CA,
namely the marginal averages of the componentas-ahrare component with low average
value in the data set is downweighted comparedg@bundant components. Although this
appears to be an issue only when analyzing the fdetaxample visualizing the compositional
distances in a subspace of reduced dimensionalig@gan issue when measuring stress, as we

now demonstrate.



We have just come to the conclusion that a povearsformed CA of these data with
power parametesr = 0.106 would reduce the incoherence of CA to 1t Jet us look at this
1% lack of coherence in a bit more detail. Thesstrmeasure is a sum of positive numbers for
each cell in an 2411 table — Figure 4 shows a graphical display wheeecontribution of each
of these values is indicated by the area of aecirtlis immediately obvious that this
incoherence, albeit small, is almost totally dughmelement Mn (manganese). In previous
analyses of these data Mn has already been siogtday Greenacre and Lewi (2008) as a
problem, because it takes on only three small wl0®3%, 0.02% and 0.01% (i.e., 0.0003,
0.0002 and 0.0001 on a proportion scale), engemgl&arge values on the ratio and logratio
scale. Their proposal to weight the componengaportion to their marginal averages
eliminates the influence of this rare but outlygamponent. Our stress measure of incoherence
can also be easily modified to take the ‘abundaateach component into account in the
measure, in which case Mn would not feature so prently. Then the measure would be
measuring incoherence weighted by the average ¢éwaslch component, with incoherence in
higher-abundance components being taken into atcoore than incoherence in rare
components. This weighted stress measure is then:

2.2 CiC; (dyy = 4;)”

weightedstress= |1 (5)

2.2 ccdf

IN)

wherec; denotes the weight of thgh component, usually taken to be equal to itsgmat
average proportion. The lower curve in FigureaBés out weighted stress as a function of the
power parameter — it is considerably lower thanuineeighted curve at the top, and now even
regular untransformed CA is seen to have less1Paimcoherence overall. Figure 5 shows the
contribution-to-weighted-stress plot for regular EMn is no longer an important contributor,
the highest contributions to incoherence come fiwmdistances involving calcium, Ca to Si

(silica) and Ca to Na (sodium).



5. Discussion and conclusions

The main proposal of this paper is to measure supositional coherence by the stress
between the inter-component distance matrix caledlasing the full composition and the
matrix of pariwise component distances computenhfadl the two-part subcompositions. From
the results of the previous section and from tlsewdision of Greenacre and Lewi (2008), we
strongly advise to supplement this proposal withwieighting of the components proportional
to their average value in the data set. We haga 81 the example of the Roman glass
compositional data set that regular CA owes mogisafcoherence (when measured without
weights) to one problematic component that is ra¥éeighting eliminates this problem and
then we see that CA is, in fact, very close to cehee. Application of this idea to a wider
spectrum of compositional data sets will show t@aigxtent CA, with or without power
transformations, can be used as an alternativ&#. Lit will also allow alternative methods,
such as PCA with or without standardization, tgualged with respect to their
subcompositional coherence properties. Incidentalymeasured the subcompositional
incoherence for the present data set, using thikdeéaa distance with and without
standardization of the components. The weightegstmeasures are 0.3442 (34.42%) and
0.1828 (18.28%) respectively — if one comparesehvesues with those for CA shown in Figure
3, one realizes how high these measures are andan@away from coherence PCA is. There is
also a quirk in the two-part compositions in PCAgdo the centering with respect to
component means. Since the pair of closed valagshe property; = 1 —x;, the two centered
values have the properyy = —y;, and thus also have the same variagaay, and it can be

easily deduced that the unstandardized Euclidesiardie between componeptnd]' is a

constant multiple of the standard deviatil’m{Flsj , While the standardized Euclidean

distance is a constai2t/n —1for all two-part subcompositions. The correlatimiween the

components of any two-part subcomposition is —-defrendent of the data. It seems that PCA



on unstandardized or standardized data is outeofjtiestion for compositional data analysis if

one places importance on the principle of subcoitipoal coherence

Coming back to CA with possible power transformagiowhere the implicit chi-square
distance appears to be close to coherence, anusbvenmefit is that for CA with nonzero power
parameters, zeros in the data can still be analyzezhce this holds promise for the analysis of
compositional data with zeros, which is a perenpiablem with the logratio transformation

(see, for example, Martin-Fernandez, Barcel6-Vashel Pawlowsky-Glahn 2003).

Greenacre and Lewi (2008) already showed thatw@ae@A of these data and a
weighted LRA gave almost the same two-dimensioimbt so the fact that CA is almost
coherent (using weighted stress) fits in with tieisult. It is already known that CA gives
similar results to association modeling (Goodma@8) vhen the variance in the data is low
(for example, see Cuadras, Cuadras and Greena@6g &0d that weighted LRA has strong
theoretical similarities to association modelingg$sreenacre and Lewi 2008). Here low
variance means that the observed data are cldBeit@xpected values based on the table
margins. It follows that CA and weighted LRA wgiive similar results in such a low variance
situation where the samples are very similar toam@her, which is the case of the present
example and often the case in archeological datd.when the variance is high, which is often
the case for geological and geochemical data where can be many data zeros, the power
family of CAs will show greater differences acrdiss range of power transformations. It
remains to be shown whether we can use a powesforamation to come close enough to
coherence while being able to analyze zeros as zgtbout having to resort to replacing them
artificially with some small positive number. Bat,least, we now have a tool to measure
incoherence to be able to judge how close we asalioompositional coherence in different

situations.

! The performance of 10-part subcompositions shbalthe most favourable for evaluating PCA, but the
incoherence is large even for these: for this exantpe average stress for all 10-part subcompositi

was calculated as 0.1371 (13.71%) for unstandastd?@A and 0.0425 (4.25%) for standardized PCA.
Average weighted stresses are 0.1906 (19.06%) &9d® (9.40%) respectively. Compare these to
regular (untransformed) CA, which for the 11 10tmatbcompositions of these data has average
unweighted and weighted stresses of 0.0029 (0.28%4)0.0021 (0.21%) respectively.
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Table 1: Three sets of chi-square distances based on @Adglifferent power transformations
(starting at top right with power = 1, the regular untransformed CA), and finallypattom

left, the logratio distances from LRA. Parts ofled1x11 table of distances are shown, as well
as the maximum absolute difference between thardist in the full table and their

corresponding logratio distances.

a=1 (untransformed CA) a=0.25
Si Al Fe My Ca ... Si Al Fe My Ca
Si 0.0000 0.0920 0.2259 0.1850 0.1241 ... Si 0.0000 0.0909 0.2207 0.1878 0.1209 ..
Al 0.0920 0.0000 0.1441 0.1261 0.0855 ... Al 0.0909 0.0000 0.1404 0.1282 0.0850 ..
Fe 0.2259 0.1441 0.0000 0.1280 0.1472 ... Fe 0.2207 0.1404 0.0000 0.1190 0.1468 ..
My 0.1850 0.1261 0.1280 0.0000 0.1387 ... My 0.1878 0.1282 0.1190 0.0000 0.1404 ..
Ca 0.1241 0.0855 0.1472 0.1387 0.0000 ... Ca 0.1209 0.0850 0. 1468 0.1404 0.0000 ..
Max abs diff = 0.0797 Max abs diff = 0.0142
a=0 (LRA) a=0.001
Si A Fe My Ca ... Si A Fe My Ca ..
Si 0.0000 0.0913 0.2209 0.1882 0.1213 ... Si 0.0000 0.0913 0.2209 0.1882 0.1213 ..
Al 0.0913 0.0000 0.1403 0.1279 0.0849 ... Al 0.0913 0.0000 0.1403 0.1280 0.0849 ..
Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ... Fe 0.2209 0.1403 0.0000 0.1168 0.1471 ..
My 0.1882 0.1279 0.1168 0.0000 0.1404 ... My 0.1882 0.1280 0.1168 0.0000 0.1404 ..
Ca 0.1213 0.0849 0.1471 0. 1404 0.0000 ... Ca 0.1213 0.0849 0.1471 0. 1404 0.0000 ..
Max abs diff =0 Max abs di ff = 0.000042




Figure 1: Maximum absolute difference between chi-squastadices from power-transformed
CA and the logratio distances, for powers from 0.@01 (calculations made for 1000 values of

the powerx = 1, 0.999, 0.998, ..., 0.001).
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Table 2: Two sets of chi-square distances based on CAslmfompositions of size 5.

Subset
Si

1
Al Fe

Si  0.0000 0.0922 0.2264
Al 0.0922 0.0000 0. 1445

My 0.1849 0.1256 0.1280
Ca 0.1247 0.0857 0.1472

Max abs diff = 0.

Stress = 0.00245

My Ca

0. 1849 0. 1247
0. 1256 0. 0857
Fe 0.2264 0.1445 0.0000 O.
0
0

1280 0. 1472

. 0000 0.1385
. 1385 0. 0000

00066

Subset 2
K Ti

P

K 0.0000 0.1562 0.1235
Ti 0.1562 0.0000 0.1505

Mh 0. 3396 0.3339 0. 3407
Sh 0.2648 0.3152 0.2527

Max abs diff = 0.

Stress

= 0. 06574

vh Sh

0. 3396 0.2648
0. 3339 0. 3152
P 0.1235 0.1505 0.0000 O.
0
0

3407 0. 2527

. 0000 0.4351
.4351 0. 0000

03682




Figure 2: Average stress between chi-square distanceslatdiun subcompositions of
different sizes and corresponding chi-square digtsum the full composition, for regular CA
and two power-transformed CAg,= 0.25 andy = 0.001. In the last case there is almost no

subcompositional incoherence. SubcompositiongzefZare seen to be the ‘worst case’.
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Table 3: Inter-component chi-square distances for theleedDA and two power-transformed

CAs (a=0.25 and 0.001), showing on the left the distarfor the full composition and on the

right the corresponding distances based on twogpdntompositions. Only the last five

components are shown, but the maximum absoluterdiites and the stress values are

computed for the whole ¥11 matrix of distances in each case.

Full composition, untransformed C&=1)

K Ti P Vh

. 0000 0.1573 0.1217 0.3704 0.
. 1573 0.0000 0.1615 0. 3500 O.
. 1217 0. 1615 0. 0000 0.3739 0.
. 3704 0.3500 0.3739 0.0000 O.
. 2611 0.3191 0.2407 0.4719 0.

[cNoNoNoNe]

Sb

2611
3191
2407
4719
0000

Two part subcompns, untransformed (@A 1)

[cNoNeoNoNe]

K Ti P Vh Sb

. 0000 0.1586 0.1274 0.3358 0.2647
. 1586 0.0000 0.1527 0.3030 0.3182
. 1274 0. 1527 0.0000 0.3095 0.2677
. 3358 0.3030 0.3095 0.0000 0.4196
. 2647 0.3182 0.2677 0.4196 0.0000

Max abs diff = 0.07415
Stress = 0.06441

Full composition, transformed GAr=0. 25)

K Ti P Vh

. 0000 0.1534 0.1242 0.3072 0.
. 1534 0. 0000 0.1543 0.2957 0.
. 1242 0. 1543 0.0000 0.3142 0.
. 3072 0.2957 0.3142 0.0000 O.
. 2678 0.3206 0.2531 0.4178 0.

[cNoNoNoNe]

Sb

2678
3206
2531
4178
0000

Two part subcompns, transformed C#=0. 25)

[cNoNoNoNe]

K Ti P Vh Sb

. 0000 0.1534 0.1248 0.2946 0.2699
. 1534 0. 0000 0.1526 0.2830 0.3213
. 1248 0. 1526 0.0000 0.2991 0.2581
. 2946 0.2830 0.2991 0.0000 O.4053
. 2699 0.3213 0.2581 0.4053 0.0000

Max abs diff = 0.01514
Stress = 0.02114

Full composition, transformed GA=0. 001)

K Ti P Vh

. 0000 0.1530 0.1246 0.2907 0.
. 1530 0. 0000 0.1526 0.2816 0.
. 1246 0. 1526 0.0000 0.2985 0.
. 2907 0.2816 0.2985 0.0000 O.
. 2703 0.3218 0.2574 0.4047 0.

[cNoNoNoNe]

Sb

2703
3218
2574
4047
0000

Two part subcompns, transformed C#=0. 001)

[cNoNoNoNe]

K Ti P Vh Sb

. 0000 0.1530 0.1246 0.2906 0.2703
. 1530 0.0000 0.1526 0.2815 0.3218
. 1246 0. 1526 0.0000 0.2985 0.2575
. 2906 0.2815 0.2985 0.0000 0.4046
. 2703 0.3218 0.2575 0.4046 0.0000

Max abs diff = 0.000059
Stress = 0.000108




Figure 3: Stress between chi-square distances calculat®gbipart subcompositions and the
corresponding chi-square distances in the full amsitjpn for the Roman glass cup data, for

power transformations = 1, 0.999, 0.998, ..., 0.001. The power parameigesponding to a
stress of 0.01 (1%) has value 0.106, as indicaid® weighted stress takes into account the

average level of the components, discussed later.
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Figure 4: Values that constitute the stress measure fosuomgey incoherence in the CA with
power transformation = 0.106. The area of the circles is proportiagnahe contribution to
stress (functiom abl e. di st in theR packageade4 — by Chessel, Dufour and Thioulouse

2004). The lack of coherence is concentrated alemtgrely in theMn (manganese) oxide

component.
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Figure 5: Values that constitute the weighted stress medsumeasuring incoherence in a

regular CA. The area of the circles is propowido the contribution to weighted stress.
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