Testing for convergence clubs in income per-capita: A predictive density approach

Welcome to the UPF Digital Repository

International Economic Review, 45(1), 2004, 49-77
http://hdl.handle.net/10230/487
To cite or link this document: http://hdl.handle.net/10230/487
dc.contributor.author Canova, Fabio
dc.contributor.other Universitat Pompeu Fabra. Departament d'Economia i Empresa
dc.date.issued 1997-07-01
dc.identifier.citation International Economic Review, 45(1), 2004, 49-77
dc.identifier.uri http://hdl.handle.net/10230/487
dc.description.abstract The paper proposes a technique to jointly test for groupings of unknown size in the cross sectional dimension of a panel and estimates the parameters of each group, and applies it to identifying convergence clubs in income per-capita. The approach uses the predictive density of the data, conditional on the parameters of the model. The steady state distribution of European regional data clusters around four poles of attraction with different economic features. The distribution of income per-capita of OECD countries has two poles of attraction and each group has clearly identifiable economic characteristics.
dc.language.iso eng
dc.relation.ispartofseries Economics and Business Working Papers Series; 404
dc.rights L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.title Testing for convergence clubs in income per-capita: A predictive density approach
dc.type info:eu-repo/semantics/workingPaper
dc.date.modified 2014-06-03T07:13:59Z
dc.subject.keyword Macroeconomics and International Economics
dc.subject.keyword heterogeneities
dc.subject.keyword panel data
dc.subject.keyword predictive density
dc.subject.keyword income inequality
dc.rights.accessRights info:eu-repo/semantics/openAccess


See full text
This document is licensed under a Creative Commons license:

Search


Advanced Search

Browse

My Account

Statistics