Global Nash convergence of Foster and Young's regret testing

Welcome to the UPF Digital Repository

Games and Economic Behavior (2007) 60: 135-154
http://hdl.handle.net/10230/1237
To cite or link this document: http://hdl.handle.net/10230/1237
dc.contributor.author Germano, Fabrizio
dc.contributor.author Lugosi, Gábor
dc.contributor.other Universitat Pompeu Fabra. Departament d'Economia i Empresa
dc.date.issued 2004-10-01
dc.identifier.citation Games and Economic Behavior (2007) 60: 135-154
dc.identifier.uri http://hdl.handle.net/10230/1237
dc.description.abstract We construct an uncoupled randomized strategy of repeated play such that, if every player follows such a strategy, then the joint mixed strategy profiles converge, almost surely, to a Nash equilibrium of the one-shot game. The procedure requires very little in terms of players' information about the game. In fact, players' actions are based only on their own past payoffs and, in a variant of the strategy, players need not even know that their payoffs are determined through other players' actions. The procedure works for general finite games and is based on appropriate modifications of a simple stochastic learning rule introduced by Foster and Young.
dc.language.iso eng
dc.relation.ispartofseries Economics and Business Working Papers Series; 788
dc.rights L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.title Global Nash convergence of Foster and Young's regret testing
dc.type info:eu-repo/semantics/workingPaper
dc.date.modified 2014-06-03T07:14:12Z
dc.subject.keyword Microeconomics
dc.subject.keyword regret testing
dc.subject.keyword regret based learning
dc.subject.keyword random search
dc.subject.keyword stochastic dynamics
dc.subject.keyword uncoupled dynamics
dc.subject.keyword global convergence to nash equilibria
dc.rights.accessRights info:eu-repo/semantics/openAccess


See full text
This document is licensed under a Creative Commons license:

Search


Advanced Search

Browse

My Account

Statistics