Numerical simulation of shallow water equations and some physical models in image processing

Welcome to the UPF Digital Repository

Haro Ortega, Glòria. Numerical simulation of shallow water equations and some physical models in image processing. 2005
http://hdl.handle.net/10230/12287
dc.contributor.author Haro Ortega, Glòria
dc.contributor.other Caselles, Vicente
dc.contributor.other Donat Beneito, Rosa M.
dc.contributor.other Universitat Pompeu Fabra. Departament de Tecnologia
dc.date.accessioned 2013-07-12T01:51:30Z
dc.date.available 2013-07-12T01:51:30Z
dc.date.issued 2005-07-11
dc.identifier.uri http://hdl.handle.net/10230/12287
dc.description.abstract There are two main subjects in this thesis: the first one deals with the numerical simulation of shallow water equations, the other one is the resolution of some problems in image processingThe first part of this dissertation is devoted to the shallow waters. We propose a combined scheme which uses the Marquina's double flux decomposition (extended to the non homogeneous case) when adjacent states are not close and a single decomposition otherwise. This combined scheme satisfies the exact C property. Furthermore, we propose a special treatment of the numerical scheme at dry zones.The second subject is the digital simulation of the Day for Night (or American Night in Europe). The proposed algorithm simulates a night image coming from a day image and considers some aspects of night perception. In order to simulate the loss of visual acuity we introduce a partial differential equation that simulates the spatial summation principle of the photoreceptors in the retina.The gap restoration (inpainting) on surfaces is the object of the third part. For that, we propose some geometrical approaches based on the mean curvature. Then, we also use two interpolation methods: the resolution of the Laplace equation, and an Absolutely Minimizing Lipschitz Extension (AMLE). Finally, we solve the restoration problem of satellite images. The variational problem that we propose manages to do irregular to regular sampling, denoising, deconvolution and zoom at the same time.
dc.description.abstract Los temas tratados en esta tesis son, por un lado, la simulación numérica de las ecuaciones de aguas someras ("shallow waters") y por otro, la resolución de algunos problemas de procesamiento de imágenes. En la primera parte de la tesis, dedicada a las aguas someras, proponemos un esquema combinado que usa la técnica de doble descomposición de flujos de Marquina (extendida al caso no homogéneo) cuando los dos estados adyacentes no están próximos y una única descomposición en caso contrario. El esquema combinado verifica la propiedad C exacta. Por otro lado, proponemos un tratamiento especial en las zonas secas.El segundo tema tratado es la simulación digital de la Noche Americana ("Day for Night"). El algoritmo propuesto simula una imagen nocturna a partir de una imagen diurna considerando varios aspectos de la percepción visual nocturna. Para simular la pérdida de agudeza visual se propone una ecuación en derivadas parciales que simula el principio de sumación espacial de los fotoreceptores situados en la retina.La restauración de agujeros ("inpainting") en superficies es objeto de la tercera parte. Para ello se proponen varios enfoques geométricos basados en la curvatura media. También se utilizan dos métodos de interpolación: la resolución de la ecuación de Laplace y el método AMLE (Absolutely Minimization Lipschitz Extension).Por último, tratamos la restauración de imágenes satelitales. El método propuesto consigue obtener una colección de muestras regulares a partir de un muestreo irregular, eliminando a la vez el ruido, deconvolucinando la imagen y haciendo un zoom.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Universitat Pompeu Fabra
dc.rights ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.rights info:eu-repo/semantics/openAccess
dc.title Numerical simulation of shallow water equations and some physical models in image processing
dc.date.modified 2013-07-10T11:42:19Z
dc.subject.keyword variational methods
dc.subject.keyword interpolation
dc.subject.keyword restoration
dc.subject.keyword análisis numérico
dc.subject.keyword aguas someras
dc.subject.keyword total variation
dc.subject.keyword seco
dc.subject.keyword balanceado
dc.subject.keyword mojado
dc.subject.keyword procesamiento imágenes
dc.subject.keyword noche americana
dc.subject.keyword percepción visual
dc.subject.keyword difusión
dc.subject.keyword restauración
dc.subject.keyword interpolación
dc.subject.keyword variación total
dc.subject.keyword métodos variacionales
dc.subject.keyword diffusion
dc.subject.keyword inpainting
dc.subject.keyword day for night
dc.subject.keyword image processing
dc.subject.keyword visual perception
dc.subject.keyword drying
dc.subject.keyword flooding
dc.subject.keyword well balanced
dc.subject.keyword shallow water
dc.subject.keyword numerical analysis
dc.subject.keyword 004

See full text
http://hdl.handle.net/10803/7533

Search


Advanced Search

Browse

My Account

Statistics