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Abstract

This paper presents a new framework for studying irreversible (dis)investment when

a market follows a random number of random-length cycles (such as a high-tech product

market). It is assumed that a firm facing such market evolution is always unsure about

whether the current cycle is the last one, although it can update its beliefs about the

probability of facing a permanent decline by observing that no further growth phase

arrives. We show that the existence of regime shifts in fluctuating markets suffices for an

option value of waiting to (dis)invest to arise, and we provide a marginal interpretation

of the optimal (dis)investment policies, absent in the real options literature. The

paper also shows that, despite the stochastic process of the underlying variable has a

continuous sample path, the discreteness in the regime changes implies that the sample

path of the firm’s value experiences jumps whenever the regime switches all of a sudden,

irrespective of whether the firm is active or not.
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1 Introduction

Numerous products such as pharmaceuticals, electronics, or more generally high-tech goods,

are characterized by a temporal evolution of demand that alternates between periods of

growth and decline at random times. An additional feature of high-tech products is that

they eventually disappear, replaced by superior substitutes,1 although it is actually rather

hard to predict whether the introduction of an innovation will lead to a permanent decay

in the demand for an established product. The case of floppy disk drives for computers is

especially illuminating in this respect. Such drives dominated the market from the mid-

eighties to the late nineties, and they successfully survived the challenge posed by several

innovations such as zip drives (and a few others less known), which, despite a promising

start, simply led to a transitory decline in demand for floppy drives. The irreversible decline

in the demand for floppy drives had to await until the arrival of USB and CD-ROM/DVD-

ROM drives, whose introduction led to the end of a reign of around fifteen years.2 This

example suggests that when the decline phase of a high-tech industry starts, established

firms (or potential entrants) are unsure about whether a sharp decline in demand is going to

be temporary or permanent. However, a firm can use the length of such a phase as a signal

to update its beliefs about the probability that the downturn in demand is permanent. In

this sense, the longer a decline phase, the less likely that a firm perceives the demand decline

as a transitory shock.

Investment decisions in high-tech industries must certainly account for such stochastically

cyclical evolution of important variables such as market demand (or profit), especially when

the degree of specificity of assets in which to invest is high. For these industries, the dynamics

of the underlying state variable can be better represented by means of a regime-switching

stochastic process rather than the standard diffusion process traditionally employed by the

real options literature.3 For instance, there is no way to explicitly model growth and decline

phases–i.e., the regimes of the process–using a single Geometric Brownian Motion (GBM).

Recently, a few papers such as Drifill, Raybaudi and Sola (2003) or Guo, Miao and Morellec

(2005) have addressed this issue by introducing models of investment behavior in which the

market regime switches at random dates. In particular, these papers propose a perpetual

1See Adner and Zemsky (2005) for a discussion and a formalization of how gradual competition by
"disruptive technologies" can sometimes displace established technologies, leading to their abandoning (or
forcing them to serve a residual market niche).

2As pointed out by McAfee (2002, p. 102), it is worth remarking that "often the decline of one industry
is caused by the growth of another, closely related industry."

3Two classic papers on real options theory are McDonald and Siegel (1986) and Dixit (1989). Pindyck
(1991) or Dixit and Pindyck (1994) provide excellent surveys of some of the most relevant theoretical devel-
opments. See also the recent work by Riedel and Su (2007) for an elegant general approach to irreversible
investment under uncertainty.
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evolution of the market demand such that it alternates between growth and decline phases

at uncertain times. These models are especially well suited for analyzing (dis)investment

decisions in industries that are highly sensitive to business cycle movements. Yet, they do

not capture several properties that characterize the temporal evolution of demand in high-

tech industries, in which perpetual alternation of regimes generally does not take place due

to the very own nature of such industries. At some point, demand for high-tech products

starts an irreversible decline, even if it is reasonable to suppose that such decline is difficult

to forecast, as illustrated by the unexpectedly long life of floppy disk drives.

In this paper, we introduce a piecewise deterministic process in continuous time in which

the regime switches at random dates, but only a random number of times. Our aim is

to provide a stylized model for a high-tech industry whose profit/demand follows a random

number of random-length cycles (where each cycle is characterized by a growth and a decline

phase). In addition to this dual source of uncertainty, economic agents face a simple filtering

problem in that they cannot observe the realized number of regime shifts, that is, agents

are always unsure about whether the decline phase of the current cycle is permanent or not.

However, once a decline phase starts, a firm can revise its beliefs about the probability that

the market decays forever as no growth phase arrives. Our main purpose is to understand

general properties of this type of regime-switching models of market evolution, as well as

study their implications for (dis)investment decisions in high-tech industries. For this reason,

we first characterize some properties of the stochastic process that we introduce, and then

apply them to the analysis and characterization of a single agent’s optimal entry and exit

behavior.

A novel contribution of this paper is to show that, in fluctuating market environments, the

possibility of regime switching suffices for an option value of waiting to (dis)invest to arise.4

Because the length of growth and decline phases is random, a firm has an incentive to wait

and continuously update its information about the duration of the current phase without

making any irreversible decision, and at the same time it can capitalize on favorable market

evolutions.5 The existence of an option value of delaying (dis)investment in regime-switching

4Our notion of fluctuating market evolution refers to the idea that markets grow and decline over time.
However, even if the market is assumed to remain stable at a certain level, a continuously changing state
variable can arise by allowing a firm to improve its payoff if it discovers a certain state of the world. If the
realized state can be discovered only by exerting an a priori unknown amount of investment effort, then
beliefs continuously change over time as an agent invests, and there can be an option value of investing
in (time-consuming) experimentation even if the market remains at the same level. Recent pieces of work
building on this idea are the game-theoretic papers by Décamps and Mariotti (2004) or Keller, Rady and
Cripps (2005), or the paper on entrepreneurship by Miao and Wang (2006). See Lucas (1971) for a pioneering
analysis.

5In the case of a declining market, the firm also incorporates the change in its assessment about the
transitory character of the current decline phase into its information updating, which affects option values,
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models of fluctuating market evolution has relevant conceptual implications for the theory of

real options. This theory lacks a marginal interpretation of optimal (dis)investment policies,

which probably explains to a large extent why both scholars and practitioners find it hardly

intuitive. Another major contribution of this paper is to provide a marginal interpretation

that is linked to the "bad news principle of irreversible investment" spelled out by Bernanke

(1983), which in our view is the conceptual pillar of real options theory.6 According to

this principle, a firm that slightly delays investment when there is fully ongoing uncertainty

should only care about the arrival of bad news and their adverse effect on payoffs.7

In the light of the "bad news principle," the optimal entry policy lends itself to the

following marginal interpretation. On the one hand, slightly delaying entry into a growing

market that will stop expanding after some random time is marginally valuable for two

reasons. First, the firm can save part of its investment cost. Second, there is a marginal

option value of waiting to invest because the firm avoids making a wrong entry decision with

some probability. In particular, a slight delay allows the firm to avoid the adverse effect of

a sudden regime shift –this is the "bad news"–, something which happens with positive

probability. As a result, the marginal option value of waiting to invest is measured by the

expected loss in the project’s NPV that is avoided by waiting. On the other hand, delaying

investment is costly for a firm in that it entails forgoing a profit flow,8 so optimal entry

behavior must balance the marginal cost and the marginal benefit of deferring investment.

The marginal interpretation of the optimal exit policy in a declining market thatmay stop

declining after some random time is similar in spirit.9 On the one hand, a slight delay in exit

is (marginally) costly because the firm forgoes earning interest on the asset’s outside value.

On the other hand, there are two reasons why delaying exit is valuable. First, remaining

a little bit longer in the market allows the firm to extend the period of profit harvesting.

Second, deferring exit is also valuable because there is a marginal option value of waiting

to disinvest, which again arises due to the possible arrival of bad news –and the start of a

growth phase is bad news for an exit decision in a declining market. With some probability,

but does not dissipate them.
6Actually, a marginal interpretation of investment policies can be found in the influential paper by Abel

and Eberly (1996). However, their interpretation is linked to the Jorgensonian user cost of capital rather
than Bernanke’s (1983) "bad news principle of irreversible investment."

7The point is that an irreversible decision is costly in that it can be regretted ex post, which can happen
only if bad news have arrived. As a direct consequence, a firm should consider only the effect of the arrival
of bad news (and not good news) when contemplating a delay in the execution of an irreversible decision.

8In some sense, waiting to invest amounts to exercising an option to learn about future market conditions
without making any irreversible decision. The cost of exercising such an option is the profit flow forgone by
delaying investment.

9It is worth pointing out that the paper shows that the firm finds it optimal to exit only if the market is
declining. Similarly, the firm finds it optimal to enter only if the market is growing.
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the regime may shift and the market may start growing, so waiting allows the firm to avoid

making a poor exit decision in such a case, since remaining active in a growing market while

keeping the option to exit alive can be shown to be more valuable than seizing the outside

option.10 It is important to note that the marginal option value of waiting to disinvest

arises in a market environment subject to fluctuations because the regime shifts at random

dates. In particular, it does not arise because the regime switches just a random number

of times. In fact, based on the insights provided by the "bad news principle," it holds that

the randomness in the number of regime switches affects only the probability of arrival of

bad news,11 and hence creates an incentive to exit at higher demand/profit levels because it

lowers the marginal option value of waiting to disinvest. In turn, the unobservability of the

realized number of regime shifts affects only the probability of regime shift that is perceived

by the firm based on the length of time elapsed since the market last switched. Because the

firm becomes pessimistic about the arrival of bad news as no growth phase starts, another

application of the "bad news principle" yields that the level of demand/profit at which the

firm finds it optimal to disinvest is higher the earlier the decline phase started.

Another contribution of this paper is to draw implications for firm valuation of regime-

switching models of market evolution. By construction, the stochastic process that we ex-

amine has a continuous sample path despite its discrete number of regimes.12 However, we

show that the sample path of the value of a (dis)investment opportunity experiences jumps

whenever the regime switches all of a sudden. In particular, firm value jumps upwards (down-

wards) whenever a growth (decline) phase starts, so imperceptible changes in the profit flow

collected by the firm may be accompanied by significant falls or rises in firm value due to the

discreteness of the regime shifts.13 Such prediction is in stark contrast to that of conventional

real options models, which do not predict jumps in the value of a firm, whether active or

not, when the stochastic process of the underlying variable has a continuous sample path. In

addition, our paper gives a rationale for using jump processes in the valuation of high-tech

firms’ stock prices based on a regime-switching stochastic process for the underlying state

variable.

Our paper contributes to the recent real options literature based on regime-switching

10Of course, it need not be true for other (suboptimal) exit policies that seizing the outside option is less
valuable than remaining active in a growing market while keeping the option to exit alive.
11Recall that the start of a growth phase constitutes bad news for an exit decision in a market that is

declining.
12More precisely, because regime shifts only refer to the instantaneous growth rate of the flow profits,

which preserves the continuity of the process that governs profit evolution.
13It is worth pointing out that the assumption that the market may not go through more cycles in the

future with some probability, and the unobservability of this event, do not cause the jumps. Yet, they do
affect their size (and the rate at which firm value decreases during a decline phase).
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models. The work by Drifill, Raybaudi and Sola (2003) numerically analyzes how the value

of a single investment opportunity is affected by the existence of an infinite number of regime

shifts. In a similar market environment, Guo, Miao and Morellec (2005) examine a firm’s

capital accumulation process and find the remarkable result that regime shifts may explain

why investment in divisible capital can be intermittent and lumpy even if fixed adjustment

costs are negligible.

The current paper differs from these papers in several respects. From a technical stand-

point, these regime-switching models of investment have not paid attention to those situa-

tions in which the regime switches a random number of times, let alone to those in which

the realized number of regime shifts is unobservable. As a result, their models are more

adequate for markets whose evolution is highly correlated with that of the business cycle,14

whereas our framework is intended to model high-tech industries subject to market-specific

fluctuations. In addition, to the best of our knowledge, we are the first in characterizing

some general properties of a regime-switching stochastic process such as the (conditionally)

expected stream of discounted profits harvested while the process transitions from one state

to another. From a conceptual standpoint, our paper differs in that we show that the ex-

istence of regime shifts in a fluctuating market is sufficient to give rise to an option value

of waiting to (dis)invest.15 Furthermore, we strengthen the conceptual foundations of real

options theory by providing a marginal interpretation linked to Bernanke’s (1983) "bad news

principle" for both entry and exit policies, even in the complicated case in which the firm

cannot observe whether the current cycle is going to be the last one. Lastly, from a predictive

point of view, we show that the discreteness in regime changes leads to a discontinuous sam-

ple path for firm value although the sample path of the stochastic process for instantaneous

profit is continuous. Not only do we show that the sample path is discontinuous, but also

show that it jumps up (down) when a decline phase stops (starts), irrespective of whether

the firm has an option to invest or disinvest.

The remainder of the paper is organized as follows. Section 2 describes the stochastic

14Some representative industries that are sensitive to macroeconomic conditions are those producing
durable goods such as motor vehicles or electrical appliances (see Berman and Pfleeger 1997 for many
more examples). It is worth noting that our main results apply to this type of industries as well (since
it corresponds to the specific case in which the market reaches an irreversible market decline with zero
probability).
15To be precise, the papers by Drifill, Raybaudi and Sola (2003) and Guo, Miao and Morellec (2005)

model the temporal evolution of demand by means of a GBM together with a (discrete) switching of the
drift and volatility parameters of such process at random dates. Apart from assuming a random number
of regime shifts whose realization is unobservable to the decision-maker, we differ from these two papers
in that we set the volatility parameters of their process equal to zero. Doing so allows us to show in a
transparent manner that switches in the drift of their diffusion process are sufficient to create an option
value of waiting to (dis)invest, which unveils relevant implications of regime switching models of investment
that were previously hidden by the GBM assumption.
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process that constitutes the starting point of our analysis. Given the novelty of the process,

Section 3 provides several mathematical results such as expected discount factors on the

state space and present value calculations, which makes some of the results in subsequent

sections quite straightforward. Section 4 and 5 respectively characterize the optimal entry

and exit policies, relate them to the "bad news principle," and analyze their implications for

firm valuation. Section 6 concludes. Proofs of the results can be found in two appendices.

2 The model

In this section we construct a stochastic process with continuous sample paths that represents

the random evolution of a certain variable Π. For the sake of concreteness, Π (t) denotes

instantaneous profit at time t, although it could certainly represent any other variable such

as demand or price of a product.

Let the dynamics of flow profits be such that dΠ = α(t)Πdt, where {α(t), t ≥ 0} is a
Markov chain with states {α1, α2} ∈ <+ + × <− −. It is assumed for convenience that the
chain starts at state α1 (i.e., α(0) = α1), while the transition probabilities of this process are

as follows. On the one hand, if the chain is in state α1 at time t ≥ 0, then the probability that
it moves to state α2 between times t and t+dt is Pr(α(t+dt) = α2|α(t) = α1) = λ1dt+o(dt).

On the other hand, if the chain is in state α2 at time t > 0, then the probability that it moves

to state α1 between times t and t+dt is Pr(α(t+dt) = α1 |α(t) = α2 ) = eΛλ2dt+o(dt), whereeΛ is a Bernoulli random variable that is independently drawn every time the chain leaves

state α1. It is assumed that Λ = 1 with probability p0 ∈ [0, 1] and Λ = 0 with probability

1 − p0.16 It is also assumed that every draw is unobservable as long as the chain does not

leave state α2.17

Letting eτ i denote the inter-arrival time of event i ∈ {1, 2, ...} (where an event is a change
in the state of the chain), we have that {eτ i}∞i=1 is a sequence of exponential random variables
such that the inter-arrival times with odd (even) subscripts are exponentially distributed

with rate λ1 > 0 (λ2 > 0).18 We define Ti = Ti−1 + τ i, for all i ∈ {1, 2, ...}, where the initial
date is T0 = 0, and we refer to each Ti as a (realized) switching date. Because of the i.i.d.

assumption on the Bernoulli random variable eΛ, only the first 2en− 1 elements of sequence
16When p0 = 1, this process is the continuous-time limit of the stochastic process put forward by Bagwell

and Staiger (1997) in their analysis of collusive behavior over the business cycle.
17Equivalently, we assume that state α1 is always transient, whereas state α2 can be either transient or

absorbing. In particular, such a state becomes absorbing once the chain has been en times in state α1, whereen is a geometrically distributed random variable with parameter 1−p0 whose draw is unobservable. (Hence,
Pr(en = n) = (1−p0)pn−10 for n ∈ {1, 2, ...}.) If state α2 has not yet become absorbing and rather is transient,
then we assume that the transition probability is Pr(α(t+ dt) = α1 |α(t) = α2 ) = λ2dt+ o(dt).
18The rates λ1 and λ2 are allowed to be different.
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{eτ i}∞i=1 matter, where en is a geometrically distributed random variable with parameter 1−p0.
As mentioned earlier, the draw of such probability distribution is never observed (although

it is perfectly learnt ex post if the chain leaves state α2, which can happen only if Λ = 1 was

drawn when the process left state α1; otherwise, learning of the realization is imperfect).

Figure 1 shows two sample paths of the process we have described. As seen in the

figure, Π (t) grows exponentially at rate α1 > 0 during the random length period (Ti−1, Ti)

(i = 1, 3, ...), and decreases exponentially at rate α2 < 0 during (Ti−1, Ti) (i = 2, 4, ...), but

after some cycles it reaches a downturn that never ends. The sample path is assumed to

be continuous because limt↑Ti Π (t) = limt↓Ti Π (t), although the path will exhibit a kink at

any realized switching date Ti (i = 1, 2, ...), and it will be almost everywhere differentiable.

Lastly, it holds that Π (t) > 0 for any t ≥ 0 and any set of realizations of the random

variables involved because we assume that Π (0) > 0.

Figure 1: Two sample paths

We say that the process (or, more fundamentally, market) is in a growth phase when it

is characterized by a positive instantaneous growth rate; otherwise, we say that the process

is in a decline phase. Because of the i.i.d. exponential random variables, the current state of

the market is clearly summarized by the current level of the flow profit and the current type

of phase through which the market is going. In addition, if the market is in a decline phase,

then there exists a simple signal extraction problem because the transition probability is

unknown. Given that eΛ is an i.i.d. Bernoulli random variable drawn every time the market

switches to decline, the level at which the last decline phase started (together with the

current level of the market) is another state variable, since such information is a sufficient

statistic for forming (posterior) beliefs about the probability that the current declining phase
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is not the last one.

This paper is concerned with (dis)investment decisions given the random temporal evo-

lution of a variable that determines the profitability of a (dis)investment opportunity. Our

points can be conveyed more efficiently by focusing on a single decision-maker (as in Dixit

and Pindyck 1994), even if further applications may be based on more agents. In particular,

the paper studies a single firm’s decisions to enter and exit a market, each in isolation,19

given that the flow of profits made by the firm if active in the market follows the stochastic

process previously described. Specifically, at each date, the firm does not know when the

next upturns or downturns will happen, although it knows the current level of the profit

flow, whether the cycle is growing or declining and at what level the market started declin-

ing (if applicable). The firm also observes realized switching dates immediately once they

arrive. The firm is assumed to be risk-neutral and uses a constant discount rate r > 0. If

the firm enters the market, then it is assumed to incur a positive sunk cost K and in return

starts operating immediately (i.e., there is no time-to-build). Similarly, if the firm exits the

market, then it is assumed to recover a non-negative value S, which can be the salvage or

redeployment value of the asset.

3 Mathematical preliminaries

In this section we derive some relevant mathematical results regarding the stochastic process

defined in Section 2. They are useful properties for working on the state space of the process

and they will be used in Sections 4 and 5. Throughout, we denote the current level of the

profit flow by π0,20 and relegate proofs to Appendix A.

We first deal with the manner in which the firm updates its beliefs about the probability

that the current cycle is the last one. Clearly, when the market is growing, the firm does

not learn anything about whether the next decline phase is going to be the last one or

not. However, once the market has started declining, the firm does not know whether the

decline phase that has just begun is the last one, although it can revise its prior belief

about whether the current downturn is the last one or not by observing that no growth

phase arrives. Intuitively, the firm becomes more pessimistic as more time elapses without a

growth phase arriving. The following result based on Bayes’ rule corroborates this intuition,

but on the state space rather than the time space:

19One can study combined entry and exit as in Dixit (1989), but the results yield little insights additional
to those we derive in this paper.
20We also use "upperbar" and "lowerbar" notation to respectively denote growth and decline phases. The

only exception is π, which is used to denote the state (i.e., level of the flow profit) at which the current
decline phase has started.
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Lemma 1 Suppose that the process is in a decline phase that started at level π and that the
current state is π0 ≤ π. Then the posterior probability that the decline phase is not going to

last forever is p(π0 |π ) =
p0 (π/π0)

λ2
α2

p0 (π/π0)
λ2
α2 + (1− p0)

. Such posterior probability is increasing in

π0.

Figure 2 uses Lemma 1 to illustrate the sample path of the posterior belief that the

current cycle is the last one (denoted by P (t) and plotted in the bottom graph) that is

induced by a sample path of the stochastic process for profits (see top graph). It can be

observed that the firm becomes pessimistic during a decline phase as long as no growth phase

arrives. Also, once the market starts an irreversible decline (which in this case happens in

the third cycle), the posterior belief that the decline phase is transitory converges to zero as

the period of time elapsed since the last switching date grows large.

Figure 2: Sample path of Π(t) and induced sample path of P (t) when α1 = 0.05 = −α2, λ1 =
λ2 = 0.1 and p0 = 0.6.

Our next result deals with the expected values of discounted streams of flow profits, but

before proceeding to computing them, it is useful to introduce some notation. In particular,

let

ρ1 ≡
(r − α2) (r + λ2 − α2) + λ1[r + λ2 (1− p0)− α2]

(r − α2) [(r + λ1 − α1) (r + λ2 − α2)− p0λ1λ2]

9



and

ρ2(π0, π) ≡
(r − α2)(r + λ1 − α1) + λ2[r + λ1(1− p0)− α1] + λ2 (α1 − α2) p (π0|π)

(r − α2)[(r + λ1 − α1)(r + λ2 − α2)− p0λ1λ2]
,

and assume that

(r + λ1 − α1)(r + λ2 − α2) > p0λ1λ2 (1)

in order to have an economically meaningful setting (otherwise, streams of discounted profits

fail to be integrable). A necessary condition for (1) to hold is that r + λ1 > α1.

We now deal with the expected stream of discounted profits if the firm is active in the

market forever given the current state π0. To this end, let E(π0, π∗) denote the expected
stream of discounted profits while the process transitions from π0 until it first hits π∗ ≤ π0

from above, given that the process is in a growth phase and that the current state is π0.

Similarly, let E(π0, π∗ |π ) denote the expected stream of discounted profits while the process
transitions from π0 until it first hits π∗ < π0 from above, given that the process is in a decline

phase that started at level π and that the current state is π0 ≤ π. Letting π∗ = 0 yields

that the expected stream of discounted profits if the firm is active forever as a function of

the corresponding state variables takes the following form:

Theorem 1 Suppose that the firm is operating at π0 and is active forever. Then the expected
stream of discounted profits is E(π0, 0) = ρ1π0 if the process is in a growth phase, and

E(π0, 0 |π ) = ρ2(π0, π)π0 if the process is in a decline phase that started at π and has not

stopped declining since then. Furthermore, E(π0, 0) > E(π0, 0 |π ) > 0.

In order to properly discount (one-shot) payoffs–such as investment costs or scrap

values–attained when the process reaches a certain state, it is also necessary to derive

the (conditionally) expected discounted value of a claim to a dollar at the first date at which

the process hits a certain state from above or below.21 Such value is commonly referred to

as "the expected discount factor," and we stick to this terminology in the remainder of the

paper. Letting

∆ ≡ [α1 (λ2 + r)− α2 (λ1 + r)]2 + 4p0α1α2λ1λ2 > 0,

we can derive the expected discount factor to be used when the dollar is achieved the first

time the process reaches a certain state from below:

Theorem 2 (i) Suppose that the process is in a growth phase and that the current state is
π0. Then the expected discounted value of a claim to a dollar when the process first hits

21Expectations are conditional upon the current state being π0 and upon whether the process is growing
or not. In the latter case, it is also conditional on the state π ≥ π0 at which the market started its decline.
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π∗ > π0 from below is

ϕ1(π0, π
∗) =

³π0
π∗

´β1
,

where β1 ≡
α1(r + λ2) + α2(r + λ1)−

√
∆

2α1α2
> 1.

(ii) Suppose that the process is in a decline phase that started at level π and that the

current state is π0 ≤ π. Then the expected discounted value of a claim to a dollar when the

process first hits π∗ ≥ π0 from below is

ϕ
1
(π0, π

∗ |π ) = p(π0 |π )δ2
p0

³π0
π∗

´β1
,

where δ2 ≡ −
α1(r + λ2)− α2(r + λ1)−

√
∆

2α2λ1
∈ (0, 1).

Figure 3 provides a visual illustration of the problem. The process starts growing from

π0 and after several cycles first hits π∗ from below at the (random) first-passage time T ∗.

Theorem 2 shows that the expected discounted value of a claim to a dollar attained at the

random time T ∗ is given by ϕ1(π0, π
∗).

Figure 3: Expected discounted factor conditional upon the process growing at π0

Theorem 2 deals with expected discount factors that are useful when discounting one-shot

payoffs that are attained when the process first hits a certain state from below. Discounting

of one-shot payoffs achieved when the process first hits a certain level from above requires

some additional notation. In particular, letting

φ ≡ r (α1 − α2)

r (α1 − α2)− λ1α2 (1− p0)
∈ (0, 1),
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we have the parallel result to Theorem 2:

Theorem 3 (i) Suppose that the process is in a decline phase that started at level π and
that the current state is π0 ≤ π. Then the expected discounted value of a claim to a dollar

when the process first hits π∗ < π0 from above is

ϕ
2
(π0, π

∗ |π ) = φp (π0|π)
³π0
π∗

´β2
+ (1− φp (π0|π))

³π0
π∗

´ r
α2 ,

where β2 ≡
α1(r + λ2) + α2(r + λ1) +

√
∆

2α1α2
< 0.

(ii) Suppose that the process is in a growth phase and that the current state is π0. Then

the expected discounted value of a claim to a dollar when the process first hits π∗ ≤ π0 from

above is

ϕ2 (π0, π
∗) = (φ+ δ1 − 1)

³π0
π∗

´β2
+ (1− φ)

³π0
π∗

´ r
α2 ,

where δ1 ≡ 1− φ+
(λ2 + r − α2β2)φ

λ2
∈ (0, 1).

This problem is represented in Figure 4, which depicts a situation in which the process

starts declining at π and the current state is π0. It can be observed that, after several cycles,

the process first hits π∗∗ from above at the (random) first-passage time T ∗∗. Theorem 3

shows that the expected discounted value of a claim to a dollar attained at time T ∗∗ is given

by ϕ
2
(π0, π

∗∗ |π ).

Figure 4: Expected discounted factor conditional upon the process declining at π0 given that its
decline started at π

We can draw a useful corollary from the previous two theorems:

12



Corollary 1 (i) Suppose that the process is in a growth phase and that the current state is
π0. Then the expected discounted value of a claim to a dollar when the process first hits π0
from above is ϕ2 (π0, π0) = δ1 ∈ (0, 1).
(ii) Suppose that the process is in a decline phase that started at level π0 and that the

current state is π0. Then the expected discounted value of a claim to a dollar when the process

first hits π0 from below is ϕ
1
(π0, π0 |π0 ) = δ2 ∈ (0, 1).

To conclude with our results in this section, notice that the expected stream of discounted

profits derived in Theorem 1 is based on the hypothesis that an active firm never becomes

inactive, which is relevant for completely irreversible investment decisions. Sometimes, as

when the firm foresees exiting at some random time in the future, it is also necessary to

compute the (conditionally) expected stream of discounted profits harvested until a certain

state is first hit by the process. The following result deals with the expected discounted

profit stream while transitioning from the current state to another one.

Theorem 4 (i) Suppose that the process is in a decline phase that started at level π and
that the current state is π0 ≤ π. Then the expected stream of discounted profits while the

process transitions from π0 until it first hits π∗ < π0 from above is

E(π0, π∗ |π ) = ρ2(π0, π)π0

∙
1−

³π0
π∗

´β2−1¸− π0(1− φp(π0 |π ))
r − α2

∙³π0
π∗

´ r−α2
α2 −

³π0
π∗

´β2−1¸
.

(ii) Suppose that the process is in a growth phase and that the current state is π0. Then

the expected stream of discounted profits while the process transitions from π0 until it first

hits π∗ ≤ π0 from above is

E(π0, π∗) = ρ1π0−
(1− φ)π0
r − α2

³π0
π∗

´ r−α2
α2 +

(1− δ1 − φ)π0
φ

µ
1 + λ2ρ1

r + λ2 − α2
− 1− φ

r − α2

¶³π0
π∗

´β2−1
.

Figure 4 illustrates the situation faced by the firm when computing the expected stream

of discounted profits while the process transitions from π0 until it first hits π∗∗ ≤ π0 from

above, which happens at the first-passage time T ∗∗. The formula for computing such expected

payoff is given by E(π0, π∗∗ |π ).
It is worth noting that Theorem 1 is a corollary from Theorem 4, since we have that

E(π0, π∗ |π ) = E(π0, 0 |π ) and E(π0, π∗) = E(π0, 0) for π∗ = 0. This theorem is also useful

in drawing a simple but relevant result that will be used when dealing with disinvestment

decisions. Letting

γ1 ≡ ρ1 −
(1− φ)

r − α2
+
(1− δ1 − φ)

φ

µ
1 + λ2ρ1

r + λ2 − α2
− 1− φ

r − α2

¶
,

13



so that

γ1 =
ρ2[λ2(1− δ1) + r − α2]− 1

λ2

in the case that p0 = 1,22 Theorem 4 leads to the following result:

Corollary 2 Suppose that the process is in a growth phase and that the current state is π0.
Then the expected stream of discounted profits while the process transitions from π0 until it

first hits π0 from above is E(π0, π0) = γ1π0.

4 Entry decision under uncertainty

The purpose of this section is to characterize the main properties of optimal investment

behavior and analyze its implications for firm valuation. For this reason, we assume that

the firm is not initially active in a stochastically cyclical market such as the one described

in Section 2. If the firm decides to undertake the investment and incur a sunk cost K > 0,

then it is assumed to operate indefinitely, i.e., the value of the outside option, S, equals

0. To shorten proofs, it is also assumed throughout this section that p0 = 1, although this

assumption has no impact on optimal investment behavior in the unrestricted case, since

the firm is never willing to enter a declining market when p0 = 1 (see Lemma 2 below). The

main implication is that the appeal of entering a declining market is even lower when p0 < 1,

since the firm becomes more and more pessimistic about the chances that the market starts

another growth phase in the future as it keeps on declining.23

The stochastic process of Section 2 is Markovian and homogeneous when p0 = 1, so

the firm’s optimal investment rule for each phase of a cycle is stationary. The firm’s entry

problem is even simpler because, as claimed earlier, investment does not take place while

the market is declining, except for corner solutions which are ruled out to make the analysis

nontrivial. This intuitive result is formally stated as follows:

Lemma 2 The firm’s optimal investment policy calls for no investment while the market is
declining.

Proof. See Appendix B.
To see why the lemma holds intuitively, suppose that the firm’s optimal entry rule called

for investment during a decline phase. Given that any profit level that is reached in a

22Since in this case φ = 1 and ρ1 =
ρ2(r + λ2 − α2)− 1

λ2
.

23In other words, continuously learning bad news about the prospects of the market while it is declining
makes investment even less attractive than when the firm does not learn such bad news.
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declining phase must have been reached in a growth phase, it is clear that the firm could

have done better by investing at the same level in the growth phase. The reason is that, in

the worst-case scenario, the market would suddenly stop growing and start declining at such

level, so the firm should expect to gain more if the market were growing than if it invested

immediately in the downturn. This would entail a contradiction.

Therefore, Lemma 2 yields that it suffices to pay attention to phases in which the market

is in growth when solving for the firm’s optimal investment threshold. Thus, suppose that

the market is currently growing and denote the current state of the market by π0. The firm

simply chooses a threshold πE such that it enters the market the first time the process hits

such threshold from below. Hence, the firm solves the following optimization problem:

max
πE

V E(πE|π0) = [E(πE, 0)−K]ϕ1(π0, πE)

= (ρ1πE −K)

µ
π0
πE

¶β1

,

where the last equality makes use of Theorems 1 and 2. Thus, the firm achieves an expected

net payoff of E(πE, 0) − K the first time the market reaches level πE starting from state

π0. For this reason, ϕ1(π0, πE) is the expected discount factor that must be used when

discounting on the state space.

Because V E(πE|π0) is strictly quasi-concave and

∂V E(πE|π0)
∂πE

= [
ρ1(1− β1)πE + β1K

πE
]

µ
π0
πE

¶β1

,

easy manipulations lead to the optimal investment threshold and the value of the investment

opportunity:

Proposition 1 Suppose that the market is growing and that the firm is currently inactive.

Then the firm’s optimal entry rule is to invest as soon as the market reaches state

π∗E =
1

ρ1

β1
β1 − 1

K, (2)

where β1 =
α1(r + λ2) + α2(r + λ1)−

√
∆

2α1α2
> 1. The value of the firm is

V
∗
E(π0) ≡ V E(π

∗
E|π0) =

⎧⎪⎨⎪⎩
µ

K

β1 − 1

¶1−β1 µρ1π0
β1

¶β1

if π0 ≤ π∗E

ρ1π0 −K if π0 > π∗E

.
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The optimal investment threshold and the value of the option to invest conditional upon

the market being in a growth phase are very similar to those derived in a GBM-based setup

(c.f. Dixit and Pindyck, 1994, pp. 142-143). Similarly, Proposition 1 implies that the firm

chooses to invest when the expected net present value of its investment exceeds
K

β1 − 1
> 0,

the opportunity cost of exercising the option to invest.

A major contribution of this paper is to improve our conceptual understanding regarding

the optimality of a "wait-and-see" approach. In particular, unlike traditional real options

models based on Ito processes, the firm’s problem can be given the following marginal inter-

pretation:

Proposition 2 The optimal investment threshold π∗E satisfies the following equation:

π∗E = rK + λ1[δ2(ρ1π
∗
E −K)− (ρ2π∗E −K)]. (3)

Proof. See Appendix B.
Proposition 2 states that the firm must equate the marginal cost and the marginal value

of waiting to invest.24 The left hand side of equation (3) is the profit flow forgone by

delaying entry a short period of time, π∗Edt, while the right hand side of (3) quantifies the

marginal value of waiting, which consists of two components. The first part, rKdt, is the

part of the investment cost saved by waiting an infinitesimal unit of time. The second

component, λ1dt[δ2(ρ1π
∗
E −K) − (ρ2π∗E −K)], is the marginal option value of waiting and

stems from Bernanke’s "bad news principle of irreversible investment."25 When the process

reaches π∗E, waiting to invest allows the firm to avoid making a poor investment in case the

process switches to decline immediately. This happens with conditional probability λ1dt,

and would only bring an expected stream of discounted profits of ρ2π
∗
E−K = E (π∗E, 0)−K,

at the expense of sacrificing the option to invest, which would yield an expected payoff of

δ2(ρ1π
∗
E−K) = δ2

£
E (π∗E, 0)−K

¤
(accounting for the random-length period of time elapsed

until the profit flow grows back to the investment threshold, π∗E).

To conclude with this section, it only remains to show that the value of an investment

opportunity experiences an upward (downward) jump when a decline phase stops (starts).

This is a relevant result that gives a rationale for using jump processes in the valuation

of stock even if the underlying state variable follows a continuous stochastic process. Note

that if the firm has not invested, whenever the market switches from growth to decline, the

24It is worth pointing out that the proposition is unchanged if p0 < 1.
25Such principle states that irreversibility yields no advantages but implies some costs because the firm

cannot recoup its investment if market conditions turn out to be adverse, which creates the asymmetry that
the firm cares only about adverse events –which would not be regrettable were investment reversible– but
not favorable ones.
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value of an inactive firm switches from V
∗
E(π0) to V

∗
E(π0), where V

∗
E(π0) denotes the firm’s

value when the market is declining at π0. Because the firm never invests while the market

is declining, it follows from Corollary 1 that V ∗E(π0) = δ2V
∗
E(π0) < V

∗
E(π0).

26 Although

the instantaneous profit stays (roughly) at the same level, the firm’s value jumps down

(up) significantly whenever the market suddenly stops growing (declining).27 This result is

formally stated as follows:

Proposition 3 Let π0 be the current profit flow level. If the firm is inactive, then V
∗
E(π0) >

V ∗E(π0).

5 Exit decision under uncertainty

In this section, the firm is assumed to be already active in the market. Although in principle

it can operate in the market forever, its (indivisible) asset has a one-time opportunity cost

of S > 0. Moreover, the firm cannot reenter in the future if it exits, i.e., K =∞.
Our main purpose is to analyze and characterize disinvestment behavior in markets that

follow a random number of random-length cycles whenever the firm is always unsure about

whether the current cycle is the last one. However, the case in which there always exists

a positive prior probability that any decline phase will not be the last one is analytically

intractable (unless the probability p0 is equal to 1).28 Notwithstanding, one can get around

26If p0 < 1, then it can be shown that V
∗
E(π0 |π ) = p(π0 |π )δ2V

∗
E(π0)/p0 (see Theorem 2), where V

∗
E(π0 |π )

denotes the value of the investment opportunity if the market is currently at state π0 given that it has started
declining at state π ≥ π0. Hence, jumps in firm value also take place in this case, since p(π0 |π )δ2/p0 < 1.
27It is worth remarking that this result holds even if the firm becomes active, since ρ1 > ρ2(π0, π0) ≥

ρ2(π0, π).
28Essentially because it requires solving an unwieldy system of two non-linear partial differential equations.

To see this, let V
∗
(·) and V ∗(·) respectively denote the value of the disinvestment opportunity when the

market is growing and declining. Using dynamic programming, we have that the value function if the market
started declining at π and is currently at state π0 is

V ∗(π0, π) = max{S, π0dt+ (1− rdt)[p(π0 |π )λ2dtV
∗
(π0 + dπ) + (1− p(π0 |π )λ2dt)V ∗(π0 + dπ, π)]},

whereas the value function when the market is growing at state π0 is

V
∗
(π0) = max{S, π0dt+ (1− rdt)[(1− λ1dt)V

∗
(π0 + dπ) + λ1dtV

∗(π0 + dπ, π0 + dπ)]}.

Standard manipulations of this pair of Bellman equations in their waiting regions lead to the following system
of non-linear differential equations:

(r + λ1)V
∗
(π0) = π0 + α1π0

dV
∗
(π0)

dπ
+ λ1V

∗(π0, π0)

and

(r + λ2p(π0 |π ))V ∗(π0, π) = π0 + λ2p(π0 |π )V
∗
(π0) + α2π0

∂V ∗(π0, π)

∂π0
.
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this drawback and draw several conclusions about the impact on disinvestment of a random

number of random-length cycles whenever the probability that a pre-specified cycle will be

the last one is equal to 1. That is, if the decline phase of cycle N (where N is a known

integer greater than 1) is the last one with probability 1–if it is ever reached–, but any

previous decline phase is the last one only with prior probability 1 − p0 ∈ (0, 1), then it is
possible to work backwards from the last cycle and show existence of a unique optimal exit

policy function for each cycle. In addition, it is also possible to characterize the properties

of such set of functions. The main concern with this approach, of course, has to do with

the distortionary effect of the existence of a known last cycle, but such effect vanishes for

large enough N , and hence has a negligible effect on the exit policy functions for each of the

cycles.

The properties of optimal disinvestment behavior whenever a market can go through a

maximum of N ≥ 2 cycles as described above turn out to be quite simple and intuitive.29

First, exit never takes place during a period of market growth (except of course at the first

growing phase if the profit level is low enough, which is ruled out to make the analysis

non-trivial).

Second, decline phases of any cycle that is not theNth one are characterized by an update

of the firm’s beliefs about the probability that the current downturn will be permanent (in

the spirit of Lemma 1). In particular, as no growth phase arrives, the firm becomes more

pessimistic about the probability that the market ends up declining forever. Given state π0,

how pessimistic the firm is depends on the level π at which the market starts its decline,

so the firm’s optimal disinvestment threshold is a function of π, as well as of the number of

the cycle through which the market may go.30 For a fixed cycle that is not the Nth one,

cycle n ∈ {1, ..., N − 1} say, the optimal exit policy during the decline phase is driven by
Bernanke’s (1983) "bad news principle." In particular, if immediate exit when the market

starts its decline at state π is not optimal, then the firm must equate the marginal cost

of waiting to disinvest and the marginal value of delaying exit. Let us denote the optimal

level at which the firm prefers exiting by π∗n(π) if the market started its decline phase at

π. Then the firm forgoes rSdt over a short time interval, but gains a flow of profits equal

to π∗ndt. Yet, deferring exit is valuable as well because there is a marginal option value of

waiting to disinvest, which arises due to the possible arrival of bad news. Thus, if the firm

29The formal arguments that give rise to the explanations that follow can be found in the proof of Propo-
sition 4 below.
30Of course, the optimal investment threshold in cycle N does not depend on the starting level and rather

is a constant. However, if N is large enough the probability of reaching such a cycle becomes negligible, and
we do not have to care about such "pathological" disinvestment behavior.
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delays disinvestment for a short time interval, then the firm believes that a growth phase

might start with some probability,31 and the firm would avoid making a poor exit decision,

since not exiting when an upturn arrives can be shown to yield an asset value greater than

S. Based on the firm’s updated information, the probability attributed to the arrival of a

growth phase over a short time interval given that it has not yet arrived is p (π∗n|π)λ2dt.
Assuming that exit is not optimal at the initial date, and letting V

∗
n(π0) denote the value

of the disinvestment opportunity if the market is at state π0 in the growing phase of cycle

n ∈ {1, ..., N}, we can formalize the previous arguments as follows:

Proposition 4 There exists a unique optimal disinvestment policy, and it is such that the
firm exits only if the market is declining. In addition, if the market is in the declining phase

of cycle n ∈ {1, .., N − 1} at state π0 and the decline has started at state π ≥ π0, then there

exists a unique bπn < rS such that the threshold π∗n(π) below which exit is optimal satisfies

π∗n(π) = π for π ≤ bπn and
rS = π∗n(π) + p (π∗n(π)|π̄)λ2[V

∗
n+1 (π

∗
n(π))− S] (4)

for π > bπn. It holds that V ∗n+1 (π∗n(π)) > S for all π > bπn and that π∗n(π) is an increasing
function that approaches rS as π → ∞. As for the optimal exit threshold in the declining
phase of cycle N , it is equal to π∗N = max(rS, π).

Proof. See Appendix B.
A few comments about this set of results are in order. First, bπn is the highest state below

which the firm prefers exiting immediately if the market suddenly switches from growth to

decline in cycle n ∈ {1, ..., N−1} (if such cycle is ever reached, of course). Second, for states
π > bπn at which the market starts declining, the firm does not find it optimal to disinvest

right away after the switching date, and it waits to exit so as to gather information and

shield against making a poor disinvestment decision if the market switches back to growth.

As can be seen from expression (4), optimal decision-making balances the interest lost on

the asset’s outside value against the flow of profits that can be harvested by remaining a

little bit longer in the market and the marginal change in the option value of waiting to

disinvest. This marginal option value stems from the bad news principle of irreversible

investment, as we already explained. Furthermore, when computing the marginal option

value of delaying exit, the firm takes into account what it learns about the probability of the

market experiencing another growth phase based on the information gathered as time goes

by. Proposition 4 shows that the higher the state at which the market starts its decline, the

31Note that the beginning of a growth phase constitutes bad news for an exit decision in a declining market.
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higher the threshold that optimally triggers exit, which is quite natural given that the firm

starts becoming pessimistic earlier. Third and last, the proof of Proposition 4 uses induction

and provides the algorithm for computing the optimal exit policy and the value function for

arbitrary N ≥ 2 (no matter how large N is).

As an illustration of Proposition 4, suppose thatN = 3, S = 1, r = 0.1, α1 = 0.05 = −α2,
λ1 = λ2 = 0.1 and p0 = 0.8. Then it holds that π∗3(π) = min(0.1, π) (where π is the state at

which the market starts declining in the last cycle). In addition, we have that π∗2(π) = π if

π ≤ 0.0894, whereas for π > 0.0894, π∗2(π) is given by the following implicit function:

0.1 = π∗2 +
0.08(V

∗
3(π

∗
2)− 1)

0.8 + 0.2 (π/π∗2)
2 ,

where V
∗
3(π

∗
2) =

π∗2
0.15

+ 0.5 + 555.556 (π∗2)
4. In turn, π∗1(π) = π if π ≤ 0.0881; else, π∗1(π) is

the (unique) solution to the following equation: 0.1 = π∗1+
0.08(V

∗
2(π

∗
1)− 1)

0.8 + 0.2 (π/π∗1)
2 , where V

∗
2(·) is

defined in the proof of Proposition 4.32 Figure 5 plots the three exit thresholds as a function

of the state at which the market starts declining (the solid curve represents π∗1 (·), whereas
the dashed and dotted curves represent π∗2 (·) and π∗3 (·), respectively). As shown in the
proposition, π∗1 (π) and π∗2 (π) are increasing and converge to 0.1 as π grows large. Also,

π∗1 (π) < π∗2 (π) for π > 0.0881, since the firm finds the outside option more tempting when

fewer cycles are left (i.e., the firm becomes less patient).

Figure 5: Optimal exit thresholds as a function of π when N = 3, S = 1, r = 0.1, α1 = 0.05 = −α2,
λ1 = λ2 = 0.1 and p0 = 0.8

32We omit the expression for V
∗
2(·) because it requires including that for V ∗2 (·) because of the recursive

structure of the problem.
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We now plot a sample path of the process and analyze how the value of the disinvestment

opportunity (denoted by V (t)) evolves based on that sample path. As can be seen in Figure

6, the switching dates in the sample path (see top of the figure) are T1 = 11.20, T2 = 16.48,

T3 = 22.15, T4 = 47.06 and T5 = 56.90 because the realized number of cycles is 3. Note that

when the market is going through its first cycle, we have that the declining phase starts at

0.1e0.05(11.20) = 0.1750, so the firm should have exited at state π∗1(0.1750) = 0.091 if it had

been reached. However, the process starts growing again at state 0.1750e−0.05(16.48−11.20) =

0.1344, so the firm prefers waiting at least until the next declining phase. When the process

starts declining again at state 0.1344e0.05(22.15−16.48) = 0.1784, the firm finds it optimal to

wait to exit until state π∗2(0.1784) = 0.092. Because the sample path reaches such state in the

declining phase of the second cycle, the firm exits at π∗2(0.1784), that is, at time TX = 35.40.

The bottom of the figure shows the sample path of the value of the disinvestment opportunity,

which is characterized by upward (downward) jumps whenever a growth phase begins (stops),

unless the firm chooses to remain inactive.

Figure 6: Sample path of Π(t) and induced sample path of V (t) when N = 3, S = 1, r = 0.1,

α1 = 0.05 = −α2, λ1 = λ2 = 0.1 and p0 = 0.8

Despite it can be seen from this numerical example that the value of the disinvestment

opportunity experiences jumps upwards (downwards) whenever an upturn (downturn) starts,

it has proven intractable when trying to show it analytically. However, this conclusion (and

several others) can be easily drawn with the aid of the mathematical results in Section 3 in
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the relevant case in which p0 = 1 (and N =∞). In this case, it can be shown that exit takes
place only if the market is declining,33 so the homogeneity of the (Markov) stochastic process

implies that the firm simply chooses a threshold πX such that the firm exits the market the

first time the process hits such threshold from above. Formally, the firm solves the following

problem:

max
πX

V X(πX |π0) = E(π0, πX |π0 ) + Sϕ
2
(π0, πX |π0 )

= ρ2(π0, π0)π0

"
1−

µ
π0
πX

¶β2−1
#
+ S

µ
π0
πX

¶β2

.

Thus, starting from a level π0 at which the market is declining, the firm collects a dis-

counted stream of profits until state πX < π0 is first reached (from above). The value

of such discounted profit stream while transitioning from π0 to πX is E(π0, πX |π0 ) =
ρ2(π0, π0)π0

h
1− (π0/πX)β2−1

i
, as shown by Theorem 4 for the case in which p0 = 1 (since

in such a case φ = 1). However, there is an additional source of value, since the firm seizes

the outside option, whose value is S, when state πX is first reached. The proper expected

discount factor, given that the market is in a decline phase, is ϕ
2
(π0, πX |π0 ) = (π0/πX)β2 ,

as shown by Theorem 3 (for p0 = 1).

Since p0 = 1 implies that ρ2(π0, π0) does not actually depend on π0, we can drop its

arguments. Noticing that V X(πX |π0) is strictly quasi-concave and

∂V X(πX |π0)
∂πX

= [
ρ2(β2 − 1)πX − β2S

πX
]

µ
π0
πX

¶β2

,

it is easy to prove the following results:

Proposition 5 Suppose that the market is declining and that the firm is currently active.

Then the firm’s optimal exit rule is to disinvest as soon as the market reaches state

π∗X =
1

ρ2

β2
β2 − 1

S, (5)

33The argument is identical in spirit to the one used for entry, and it makes use of the fact that r >
β2

(β2 − 1)ρ2
, which is shown in the proof of Proposition 7.
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where β2 =
α1(r + λ2) + α2(r + λ1) +

√
∆

2α1α2
< 0. The value of the firm is

V ∗X(π0) ≡ V X(π
∗
X |π0) =

⎧⎪⎨⎪⎩ ρ2π0 + (S − ρ2π
∗
X)

µ
π0
π∗X

¶β2

if π0 ≥ π∗X

S if π0 < π∗X

.

Similarly to the canonical real options literature, Proposition 5 implies that the firm exits

when the expected net present value of its disinvestment falls below S/(β2 − 1) < 0, since

there exists an opportunity cost for exercising the option to disinvest. As with the entry

problem, the value of the option to disinvest conditional upon the market being in a decline

phase is quite similar to that derived in a Geometric Brownian Motion setting. The same

applies to the optimal disinvestment threshold.

As usual, the firm’s optimal exit rule lends itself to a marginal interpretation linked to

the "bad news principle":

Proposition 6 The optimal disinvestment threshold π∗X satisfies the following equation:

rS = π∗X + λ2 (γ1π
∗
X + δ1S − S) . (6)

Proof. See Appendix B.
When deciding whether or not to exit the market, the firm must compare the marginal

value and the marginal cost of waiting. By delaying exit a short time period of length dt,

the firm forgoes earning (approximately) rSdt. As usual, the marginal value of waiting to

disinvest consists of two components. Delaying exit a little bit allows the firm to reap a

flow of profits equal to π∗Xdt. There is also a marginal option value of waiting to disinvest,

which of course stems from avoiding making a poor disinvestment decision. With conditional

probability λ2dt, the market switches to growth, so waiting would allow the firm to remain

in operation and keep the option to exit in the future alive, which is worth γ1π
∗
X + δ1S, at

the expense of sacrificing S.34

To conclude this section, we show that the value of a disinvestment opportunity experi-

ences an upward (downward) jump if a declining phase ends (begins). Our next proposition

establishes this result, which is conceptually very different from Proposition 1. Thus, while

the jump in the firm’s value for a potential entrant is simply due to the discount factor re-

34Note from Corollary 2 that γ1π
∗
X quantifies the expected stream of discounted profits while the market

transitions from a state π∗X in which the market is growing until such state is first hit from above. In turn,
note from Corollary 1 that δ1S quantifies the expected discounted value of getting an asset worth S when
the market first reaches state π∗X from above, given that the market is currently at a growing phase whose
state is π∗X .
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lated to the delay in entry caused by a regime shift, the abrupt change of value for an active

firm is the result of a trade-off between the expected stream of discounted profits reaped

and the delayed recovery of the outside value. More specifically, if the market is declining at

π0 > π∗X , the firm has a value equal to V ∗X (π0). However, if the market switches to growth

at π0, then the firm’s value function becomes V
∗
X (π0) = γ1π0+ δ1V

∗
X (π0), because the firm

never exits a growing market and hence must wait at least until the profit flow comes back

to the same state. The first term, γ1π0, denotes the expected stream of discounted profits

collected while the market moves from state π0 until it first comes back to π0 from above (see

Corollary 2). The second term, δ1V ∗X (π0), denotes the expected continuation value after the

market declines back to state π0 (see Corollary 1). By comparing V ∗X (π0) and V
∗
X (π0), we

have the following result:

Proposition 7 Let π0 be the current state of the market. If the firm is active, then V
∗
X (π0) >

V ∗X (π0).

Proof. See Appendix B.

6 Conclusion

This paper has modeled the stochastic evolution of demand for high-tech goods by means of

a regime-switching stochastic process in which the regime shifts a random number of times.

We have studied a firm’s optimal (dis)investment behavior in this type of markets under the

assumption that the realized number of regime switches is never observed. This creates a

signal extraction problem because the firm can update its beliefs about the probability that

the regime does not experience any additional shifts based on the length of the period during

which the regime does not switch. Given this setting in which flow profit alternates between

growth and decline phases at random times, we have shown that the existence of regime shifts

gives rise to an option value of waiting to (dis)invest and to discontinuities in the sample

path of firm value. Thus, even though the sample path of profits is continuous, firm value

experiences jumps upwards (downwards) whenever a growth (decline) phase starts. This

holds regardless of whether the firm has an option to invest or an option to disinvest. Lastly,

we have provided a marginal interpretation to optimal entry/exit rules in the light of the

bad news principle of irreversible investment, thus providing a strong conceptual foundation

to the theory of real options.

There are at least a couple of aspects that are worthwhile emphasizing about our frame-

work and that may prove to be useful for future work on the properties of irreversible
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(dis)investment in stochastically cyclical markets. On the one hand, we would like to re-

mark that our setting does not require making use of the heavy mathematical apparatus

traditionally employed by the real options literature. For instance, direct applications of

our theorems when there is no signal extraction problem allow us to avoid using stochastic

calculus and even dynamic programming techniques when solving (dis)investment models

that involve lumpiness. As we have shown, (dis)investment timing problems can be directly

formulated and solved using ordinary calculus and are amenable to an economic interpreta-

tion. Indeed, if reentry is not allowed, it is straightforward to solve analytically the problem

faced by a single firm that must choose when to enter and when to exit. The case in which

there is a signal extraction problem is typically more complex from an analytical standpoint,

and may require using numerical methods when solving it (e.g., in the case of exit). Still,

we believe this is an important feature of the dynamics of product markets such as those

for high-tech goods. Because such markets are usually oligopolistic, it would be interesting

to analyze the dynamics of competition among several firms with private information about

the prior probability that the current cycle is the last one. For the case of disinvestment,

we conjecture that firms would play a war of attrition in which the winner would face a

"survivor’s curse" (see Moscarini and Squintani 2004).

Another aspect worthwhile pointing out is that the model can be enriched in order to

improve its explanatory power, possibly at the expense of analytical tractability. Thus, when

a switching date is realized, the sample path of the process that governs profit evolution is

assumed to change to a different but known growth rate. Assuming that the growth rate is

random may lead to possibly different (dis)investment dynamics given a market evolution

that need not be stochastically cyclical despite the regime shifts. This may prove fruitful

for the construction of random processes that better represent the stochastic dynamics of a

variety of economic and financial variables. Both theoretical and empirical work may benefit

from pursuing this promising research avenue.
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Appendix A

Proof of Lemma 1. By Bayes’ rule, the posterior probability that the current decline

phase is not the last one given that the period of time elapsed between π and π0 is t(π0, π) =
1

α2
ln (π0/π) equals p(π0 |π ) =

e−λ2t(π0,π)p0
e−λ2t(π0,π)p0 + 1− p0

, so it is straightforward to see that

p(π0 |π ) =
p0 (π/π0)

λ2
α2

p0 (π/π0)
λ2
α2 + (1− p0)

. That the posterior belief increases with π0 can be seen

by inspection.

Proof of Theorem 1. Let E(π0, 0) denote the expected stream of discounted profits when
the process is growing at π0. Also, let E(π0, 0 |π ) denote the expected stream of discounted

profits when the process started declining at π and the current level of the process is π0
(the expectation is conditional upon the information gathered during the transition between

states π and π0). We can relate E(π0, 0) and E(π0, 0 |π ) as follows:

E(π0, 0) =
Z ∞

0

λ1e
−λ1τ1 [

Z τ1

0

π0e
α1se−rsds+ E(π0eα1τ1 , 0 |π0eα1τ1 )e−rτ1]dτ 1 (7)

and

E(π0, 0 |π ) = (1− p(π0 |π ))
Z ∞

0

π0e
α2se−rsds+ (8)

p(π0 |π )
Z ∞

0

λ2e
−λ2τ2 [

Z τ2

0

π0e
α2se−rsds+ E (π0eα2τ2 , 0) e−rτ2 ]dτ2.

To see how E(π0, 0) arises, note that the process will start declining at some random
future date τ 1, so the firm gets a stream of discounted profits until the switching date,

together with an asset worth E(π0eα1τ1 , 0 |π0eα1τ1 )e−rτ1 . Regarding E(π0, 0 |π ), note that
with updated probability 1− p(π0 |π ) the process will never grow again, and hence the firm
collects a discounted profit stream given that the process declines forever. With probability

p(π0 |π ), though, the process will expand at some random future date τ 2, so the firm collects
a discounted profit stream until the process stops declining, and the discounted value of an

asset worth E(π0eα2τ2, 0) at such switching date.
Because p(π0 |π0 ) = p0 and E (π0eα2τ2 , 0) = eα2τ2E (π0, 0) (since random variables are

independent), some simple manipulations in (8) imply that

E(π0, 0 |π0 ) =
[r − α2 + (1− p0)λ2]π0
(r − α2) (r + λ2 − α2)

+
p0λ2E (π0, 0)
r + λ2 − α2

.
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As a result, it follows that

E(π0eα1τ1 , 0 |π0eα1τ1 ) =
[r − α2 + (1− p0)λ2]π0e

α1τ1

(r − α2) (r + λ2 − α2)
+

p0λ2E(π0eα1τ1 , 0)
r + λ2 − α2

,

whence (7) yields

E (π0, 0) =
∙
(r − α2)(r + λ1 + λ2 − α2) + λ1λ2(1− p0)

(r − α2)[(r + λ2 − α2)(r + λ1 − α1)− p0λ2λ1]

¸
π0.

Hence, E (π0, 0) = ρ1π0, as we claimed.

As for the functional form of E(π0, 0 |π ), performing some manipulations in (8) using
that E (π0eα2τ2, 0) = ρ1π0e

α2τ2 and that

[(r − α2)ρ1 − 1]λ2
(r + λ2 − α2)

=
λ2(α1 − α2)

[(r + λ2 − α2)(r + λ1 − α1)− p0λ2λ1]

lead to

E(π0, 0 |π ) =

∙
1

r − α2
(1 +

[(r − α2)ρ1 − 1]λ2p(π0 |π )
(r + λ2 − α2)

)

¸
π0

= ρ2(π0, π)π0.

To complete the proof, notice that the inequality in (1) holds by assumption and just make

use of the fact that 0 < ρ2(π0, π) ≤ ρ2(π0, π0) < ρ1.

Proof of Theorem 2. Let ϕ1(π0, π
∗) denote the expected discounted value of a claim

to a dollar when the process first hits π∗ from below, conditional on the process being in a

growth phase and on its state being π0 < π∗. Also, let ϕ
1
(π0, π

∗ |π ) denote the expected
discounted value of a claim to a dollar when the process first hits π∗ from below, conditional

on the process being in a decline phase that started at level π and on the current state

being π0 ≤ π. By definition, the following holds given our (memoryless) assumptions on the

independent random variables involved:

ϕ1(π0, π
∗) =

Z 1
α1
ln(π∗/π0)

0

λ1e
−λ1τ1ϕ

1
(π0e

α1τ1, π∗ |π0eα1τ1 )e−rτ1dτ 1 + (9)Z ∞

1
α1
ln(π∗/π0)

λ1e
−λ1τ1e

−r 1
α1
ln(π∗/π0)dτ 1

and

ϕ
1
(π0, π

∗ |π ) = p(π0 |π )
Z ∞

0

λ2e
−λ2τ2ϕ1(π0e

α2τ2 , π∗)e−rτ2dτ 2. (10)
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To understand the relation between ϕ1(π0, π
∗) and ϕ

1
(π0, π

∗ |π ), note that if the realized

length of the growth phase τ 1 is smaller than
1

α1
ln(

π∗

π0
) (the time it would take to hit state

π∗ from below during the current growth phase), then the firm would acquire an asset whose

discounted value would be ϕ
1
(π0e

α1τ1 , π∗ |π0eα1τ1 )e−rτ1 ; if τ 1 were greater than
1

α1
ln(

π∗

π0
),

then the firm would acquire the discounted value of a dollar. As for ϕ
1
(π0, π

∗ |π ), note that
with updated probability 1− p(π0 |π ) the process will permanently decline and hence it will
never hit state π∗ from below, whereas with complementary probability the process will start

growing at some random future date τ 2, and hence the firm will acquire at such date an asset

whose discounted value is ϕ1(π0e
α2τ2, π∗)e−rτ2 .

To solve the system of functional equations that consists of (9) and (10), guess that

ϕ1(π0, π
∗) = Y

³π0
π∗

´θ1
(where Y and θ1 are constants to be found out), and use such

functional form for ϕ1(π0, π
∗) in (10) so as to get:

ϕ
1
(π0, π

∗ |π ) = Y p(π0 |π )λ2
r + λ2 − α2θ1

³π0
π∗

´θ1
. (11)

Because p(π0 |π0 ) = p0, we have

ϕ
1
(π0e

α1τ1, π∗ |π0eα1τ1 ) =
Y p0λ2e

α1θ1τ1

r + λ2 − α2θ1

³π0
π∗

´θ1
,

so (9) becomes:

ϕ1(π0, π
∗) =

Y p0λ1λ2
r + λ2 − α2θ1

³π0
π∗

´θ1 Z 1
α1
ln(π∗/π0)

0

e−(r+λ1−α1θ1)τ1dτ 1 +
³π0
π∗

´ r+λ1
α1

=
Y p0λ1λ2

(r + λ2 − α2θ1)(r + λ1 − α1θ1)

³π0
π∗

´θ1
[1−

³π0
π∗

´ r+λ1−α1θ1
α1 ] +

³π0
π∗

´ r+λ1
α1

We assumed that ϕ1(π0, π
∗) = Y

³π0
π∗

´θ1
, so the following must hold:

Y
³π0
π∗

´θ1
−
³π0
π∗

´λ1+r
α1 =

Y p0λ1λ2
(r + λ2 − α2θ1)(r + λ1 − α1θ1)

[
³π0
π∗

´θ1
−
³π0
π∗

´ r+λ1
α1 ].

Therefore, Y = 1, whereas θ1 must satisfy the following equation:

(r + λ2 − α2θ1)(r + λ1 − α1θ1) = p0λ1λ2. (12)

There exist two values of θ1 that solve this quadratic equation. One of the roots, β1 say, can

be easily shown to be greater than 1 (since λ1(r+λ2(1−p0)−α2)+(r+λ2−α2)(r−α1) > 0),
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whereas the other one, β2 say, is negative (since (r+λ2−α2)(r+λ1−α1) > p0λ1λ2). Clearly,

only β1 can be an admissible solution, so recalling that

∆ = [α1 (λ2 + r)− α2 (λ1 + r)]2 + 4p0α1α2λ1λ2

yields that

θ1 = β1 ≡
α1(r + λ2) + α2(r + λ1)−

√
∆

2α1α2
.

Also, note that expression (11) with Y = 1 and θ1 = β1 implies that

ϕ
1
(π0, π

∗ |π ) =
p(π0 |π )λ2

r + λ2 − α2β1

³π0
π∗

´β1
=

Ã
−α1(r + λ2)− α2(r + λ1)−

√
∆

2α2λ1

!
p(π0 |π )

p0

³π0
π∗

´β1
,

since

r + λ2 − α2β1 =
α1(r + λ2)− α2(r + λ1) +

√
∆

2α1
=

[α1(r + λ2)− α2(r + λ1)]
2 −∆

2α1[α1(r + λ2)− α2(r + λ1)−
√
∆]

and [α1 (λ2 + r)− α2 (λ1 + r)]2 −∆ = −4p0α1α2λ1λ2. This completes the proof.
Proof of Theorem 3. Let ϕ2(π0, π

∗) denote the expected discounted value of a claim

to a dollar when the process first hits π∗ from above, conditional on the process being in a

growth phase and on the current state being π0 ≥ π∗. In addition, let ϕ
2
(π0, π

∗ |π ) denote
the expected discounted value of a claim to a dollar when the process first hits π∗ from

above, conditional on the process being in a decline phase that started at level π and on the

current state being π0 ∈ (π∗, π]. Then we have the following:

ϕ2(π0, π
∗) =

Z ∞

0

λ1e
−λ1τ1ϕ

2
(π0e

α1τ1 , π∗ |π0eα1τ1 )e−rτ1dτ 1

and

ϕ
2
(π0, π

∗ |π ) = (1− p(π0 |π ))e−r
1
α2
ln(π∗/π0) +

p(π0 |π )

⎛⎝ R 1
α2
ln(π∗/π0)

0 λ2e
−λ2τ2ϕ2(π0e

α2τ2, π∗)e−rτ2dτ 2+R∞
1
α2
ln(π∗/π0)

λ2e
−λ2τ2e

−r 1
α2
ln(π∗/π0)dτ 2

⎞⎠ .
To understand the relation between ϕ2(π0, π

∗) and ϕ
2
(π0, π

∗ |π ), note that if the process is
going through a growth phase at π0, then state π∗ ≤ π0 will never be hit in such a phase.
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Hence, when a switching date is realized at τ 1, the firm will get ϕ2(π0e
α1τ1 , π∗ |π0eα1τ1 )e−rτ1 .

However, if the process is going through a declining phase at π0, and such phase has started

at π ≥ π0, then with updated probability 1 − p(π0 |π ) the process hits level π∗ < π0 for

sure and hence the firm gets the properly discounted value of a dollar. With complementary

probability p(π0 |π ), the process will grow at some random future date τ 2, so two situations
must be distinguished. On the one hand, if the process starts declining before reaching π∗

at the random date τ 2, then the firm will attain ϕ2(π0e
α2τ2, π∗)e−rτ2. On the other hand, if

the declining process goes all the way down to π∗, then the firm will attain the discounted

value of the dollar when state π∗ is hit for the first time.

Suppose that ϕ2 (π0, π
∗) = A

³π0
π∗

´θ2
+ C

³π0
π∗

´ r
α2 (where A, C, and θ2 are constants to

be found out). In this case, letting p ≡ p (π0|π), we have

ϕ
2
(π0, π

∗|π) = (1− p)
³π0
π∗

´ r
α2 + p

³π0
π∗

´ r+λ2
α2 +

p

(Z 1
α2
ln(π∗/π0)

0

λ2e
−λ2τ2

"
A

µ
π0e

α2τ2

π∗

¶θ2

+ C

µ
π0e

α2τ2

π∗

¶ r
α2

#
e−rτ2dτ 2

)
= (1− p)

³π0
π∗

´ r
α2 +

pλ2A

λ2 + r − α2θ2

³π0
π∗

´θ2
−

pλ2A

λ2 + r − α2θ2

³π0
π∗

´ r+λ2
α2 + pC

³π0
π∗

´ r
α2 − pC

³π0
π∗

´ r+λ2
α2 + p

³π0
π∗

´ r+λ2
α2

= (1− p+ Cp)
³π0
π∗

´ r
α2 +

λ2Ap

λ2 + r − α2θ2

³π0
π∗

´θ2
+ p(

λ2 (1−A) + r − α2θ2
λ2 + r − α2θ2

− C)
³π0
π∗

´λ2+r
α2(13)

Note that p = p0 for π0 = π (since p = p (π0|π)), so

ϕ2(π0, π
∗) =

Z ∞

0

λ1e
−(r+λ1)τ1

⎡⎣ (1− p0 + Cp0)
¡
π0eα1τ1

π∗

¢ r
α2 + λ2Ap0

λ2+r−α2θ2

¡
π0eα1τ1

π∗

¢θ2
+p0

³
λ2(1−A)+r−α2θ2

λ2+r−α2θ2 − C
´ ¡

π0eα1τ1
π∗

¢λ2+r
α2

⎤⎦ dτ 1
=

λ1 (1− p0 + Cp0)

λ1 + r(1− α1
α2
)

³π0
π∗

´ r
α2 +

λ1λ2Ap0
(r + λ2 − α2θ2)(r + λ1 − α1θ2)

³π0
π∗

´θ2
+

p0

∙
λ2 (1−A) + r − α2θ2

r + λ2 − α2θ2
− C

¸³π0
π∗

´λ2+r
α2

Ã
λ1

r + λ1 − α1
α2
(λ2 + r)

!

Because we supposed that ϕ2 (π0, π
∗) = A

³π0
π∗

´θ2
+ C

³π0
π∗

´ r
α2 , we must have that the

following three equations hold:

λ1 (1− p0 + Cp0)

λ1 + r(1− α1
α2
)
= C, (14)
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λ1λ2Ap0
(r + λ2 − α2θ2)(r + λ1 − α1θ2)

= A, (15)

and
λ2 (1−A) + r − α2θ2

λ2 + r − α2θ2
− C = 0. (16)

Using expression (14) yields that

C =
λ1 (1− p0)

λ1 (1− p0) + r(1− α1
α2
)
. (17)

In turn, equation (15) implies that θ2 solves

(λ2 + r − α2θ2) (λ1 + r − α1θ2) = p0λ1λ2.

We have shown before (see (12)) that the roots of this quadratic equation are β1 > 1 and

β2 < 0. Only the negative root can be admissible now, so

θ2 = β2 ≡
α1 (r + λ1) + α2 (r + λ1) +

√
∆

2α1α2
< 0.

In addition, equations (16) and (17) with θ2 = β2 imply that

A =
r(1− α1

α2
) (r + λ2 − α2β2)

λ2[λ1 (1− p0) + r(1− α1
α2
)]
. (18)

Therefore, recalling that φ =
r (α1 − α2)

r (α1 − α2)− λ1α2 (1− p0)
yields that

ϕ2 (π0, π
∗) =

r (α1 − α2)

r(α1 − α2)− λ1α2 (1− p0)

µ
r + λ2 − α2β2

λ2

¶³π0
π∗

´β2
+

(1− r (α1 − α2)

r(α1 − α2)− λ1α2 (1− p0)
)
³π0
π∗

´ r
α2

=
φ(r + λ2 − α2β2)

λ2

³π0
π∗

´β2
+ (1− φ)

³π0
π∗

´ r
α2

= (φ+ δ1 − 1)
³π0
π∗

´β2
+ (1− φ)

³π0
π∗

´ r
α2 .
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Note that using the definitions of φ and β2 implies that

δ1 = 1− φ+
φ(r + λ2 − α2β2)

λ2

=
r (α1 − α2) [

α1(r+λ2)−α2(r+λ1)−
√
∆

2α1λ2
]− λ1α2 (1− p0)

r (α1 − α2)− λ1α2 (1− p0)
∈ (0, 1).

Finally, making use of (13) and (16) with θ2 = β2, together with expressions (17) and

(18), yields that

ϕ
2
(π0, π

∗ |π ) = φp (π0|π̄)
³π0
π∗

´β2
+ (1− φp (π0|π̄))

³π0
π∗

´ r
α2 .

Proof of Theorem 4. Let E(π0, π∗) denote the expected value of the stream of discounted
profits collected while the process transitions from π0 until it first hits π∗ from above, condi-

tional on the process being in a growth phase and on the current state being π0 ≥ π∗. Also,

let E(π0, π∗ |π ) be the expected stream of discounted profits collected while the process tran-
sitions from π0 until it first hits π∗ from above, conditional on the process being in a decline

phase that started at level π and on the current state being π0 ∈ (π∗, π]. By definition, we
have:

E(π0, π∗) =
Z ∞

0

λ1e
−λ1τ1[

Z τ1

0

π0e
α1se−rsds+ E(π0eα1τ1, π∗ |π0eα1τ1 )e−rτ1]dτ 1 (19)

and

E(π0, π∗ |π ) = (1− p(π0 |π ))(
Z 1

α2
ln(π∗/π0)

0

π0e
α2se−rsds) + (20)

p(π0 |π )

⎡⎣ R 1
α2
ln(π∗/π0)

0 λ2e
−λ2τ2 [

R τ2
0

π0e
α2se−rsds+ E(π0eα2τ2, π∗)e−rτ2]dτ 2+R∞

1
α2
ln(π∗/π0)

λ2e
−λ2τ2(

R 1
α2
ln(π∗/π0)

0 π0e
α2se−rsds)dτ 2

⎤⎦ .
To see how E(π0, π∗) arises, note that the process will start declining at some random future
date τ 1, so the firm gets a stream of discounted profits since the current date until then, and

also the discounted value of an asset worth E(π0eα1τ1, π∗ |π0eα1τ1 ). As for E(π0, π∗ |π ), we
have that with updated probability 1− p(π0 |π ) the process never grows again, and hence it
hits π∗ from above for sure; in the meantime, the firm collects a stream of profits that has

to be properly discounted. With complementary probability p(π0 |π ), the process grows at
some random future date τ 2, although it may start growing before hitting π∗ (from above).
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If it does not, then the firm reaps a stream of discounted profits until π∗ is hit at time
ln(π∗/π0)

α2
. If the process starts growing before hitting π∗, then the firm reaps a discounted

profit stream until the process stops declining, and the discounted value of an asset worth

E(π0eα2τ2, π∗) at such switching date.
Let us suppose that E(π0, π∗) = E (π0)

θ6 + F (π0)
θ7 + G (π0)

θ8 (where θ6, θ7 and θ8 are

constants, whereas E, F and G do not depend on π0 although they may depend on π∗), so

that letting p = p(π0 |π ), plugging the assumed functional form of E(π0, π∗) into (20) and
performing several manipulations yields:

E(π0, π∗ |π ) =
(1− p)π0(1−

³π0
π∗

´ (r−α2)
α2 )

r − α2
+

pπ0(1−
³π0
π∗

´ (r−α2)
α2 )

³π0
π∗

´λ2
α2

r − α2
+

pπ0
r + λ2 − α2

−
pπ0

³π0
π∗

´ λ2
α2

r − α2
+

pλ2π0
³π0
π∗

´ (r+λ2−α2)
α2

(r − α2)(r + λ2 − α2)
+

pλ2Eπ
θ6
0 (1−

³π0
π∗

´ (r+λ2−α2θ6)
α2 )

(r + λ2 − α2θ6)
+

pλ2Fπ
θ7
0 (1−

³π0
π∗

´ (r+λ2−α2θ7)
α2 )

(r + λ2 − α2θ7)
+

pλ2Gπ
θ8
0 (1−

³π0
π∗

´ (r+λ2−α2θ8)
α2 )

(r + λ2 − α2θ8)

=

µ
1− p

r − α2
+

p

r + λ2 − α2

¶
π0 −

(1− p) (π∗)
− (r−α2)

α2 (π0)
r
α2

r − α2
+

pλ2Eπ
θ6
0

r + λ2 − α2θ6
+

pλ2Fπ
θ7
0

r + λ2 − α2θ7
+

pλ2Gπ
θ8
0

r + λ2 − α2θ8
−⎛⎜⎝ p(π∗)

− (r+λ2−α2)α2

r+λ2−α2 + pλ2E(π∗)
− (r+λ2−α2θ6)α2

r+λ2−α2θ6 +

pλ2F (π∗)
− (r+λ2−α2θ7)α2

r+λ2−α2θ7 + pλ2G(π∗)
− (r+λ2−α2θ8)α2

r+λ2−α2θ8

⎞⎟⎠ (π0) (r+λ2)α2 .

Substitute this into (19) taking into account that p(π0eα1τ1 |π0eα1τ1 ) = p0 so as to get the
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following after some manipulations:

E(π0, π∗) =

µ
1 +

(1− p0)λ1
(r − α2)

+
p0λ1

r + λ2 − α2

¶
π0

(r + λ1 − α1)
−

p0λ1α2(π0)
(r+λ2)
α2

(α2(r + λ1)− α1(r + λ2))

⎛⎜⎝ (π∗)
− (r+λ2−α2)α2

(r+λ2−α2) + λ2E(π∗)
− (r+λ2−α2θ6)α2

(r+λ2−α2θ6) +

λ2F (π∗)
− (r+λ2−α2θ7)α2

(r+λ2−α2θ7) + λ2G(π∗)
− (r+λ2−α2θ8)α2

(r+λ2−α2θ8)

⎞⎟⎠−
(1− p0) (π

∗)
− (r−α2)

α2 λ1α2(π0)
r
α2

(r − α2)(α2(r + λ1)− rα1)
+

p0λ2E(π0)
θ6λ1

(r + λ2 − α2θ6)(r + λ1 − α1θ6)
+

p0λ2F (π0)
θ7λ1

(r + λ2 − α2θ7)(r + λ1 − α1θ7)
+

p0λ2G(π0)
θ8λ1

(r + λ2 − α2θ8)(r + λ1 − α1θ8)
.

Assume that θ6 = 1 and θ7 =
r

α2
so that the assumption that E(π0, π∗) = E (π0)

θ6 +

F (π0)
θ7 +G (π0)

θ8 implies that the following must hold:

E =
(r + λ2 − α2)(r + λ1 − α2)− p0λ1λ2

(r − α2)((r + λ2 − α2)(r + λ1 − α1)− p0λ1λ2)
= ρ1, (21)

F =
(1− p0)α2λ1 (π

∗)
− (r−α2)

α2

(r − α2)[r(α1 − α2)− λ1α2(1− p0)]
, (22)

G = −(r + λ2 − α2θ8)

λ2 (π∗)
(θ8−1)

Ã
1+λ2ρ1
r+λ2−α2+
(1−p0)α2λ1

(r−α2)[r(α1−α2)−λ1α2(1−p0)]

!
, (23)

and

(r + λ2 − α2θ8)(r + λ1 − α1θ8) = p0λ1λ2.

We must clearly have that θ8 = β2 < 0, so using this result as well as expressions (21), (22)
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and (23) yields after very laborious manipulations:

E(π0, π∗ |π ) =

µ
1− p

r − α2
+

p(1 + λ2ρ1)

r + λ2 − α2

¶
π0 −

(1− p) (π∗)
− (r−α2)

α2 (π0)
r
α2

r − α2
−⎛⎜⎝ (π∗)

− (r+λ2−α2)α2

r+λ2−α2 + λ2E(π∗)
− (r+λ2−α2)α2

r+λ2−α2 +

F (π∗)
− (r+λ2−α2θ7)

α2 + λ2G(π∗)
− (r+λ2−α2β2)α2

r+λ2−α2β2

⎞⎟⎠ p (π0)
(r+λ2)
α2 +

pF (π0)
r
α2 +

pλ2Gπ
β2
0

r + λ2 − α2β2

= ρ2(π0, π̄)π0 − [
r(α1 − α2)(1− p)− λ1α2(1− p0)

r(α1 − α2)− λ1α2(1− p0)
]

µ
π0

r − α2

¶³π0
π∗

´ r−α2
α2 −

pπ0
³π0
π∗

´β2−1Ã 1+λ2ρ1
r+λ2−α2+
(1−p0)α2λ1

(r−α2)[r(α1−α2)−λ1α2(1−p0)]

!

= ρ2(π0, π̄)π0 −
µ
r(α1 − α2)(1− p)− λ1α2(1− p0)

r(α1 − α2)− λ1α2(1− p0)

¶µ
π0

r − α2

¶³π0
π∗

´ r−α2
α2 −

π0
¡
π0
π∗

¢β2−1
r − α2

Ã
λ2(α1−α2)p

(r+λ2−α2)(r+λ1−α1)−p0λ1λ2+
r(α1−α2)p

r(α1−α2)−λ1α2(1−p0)

!

= ρ2(π0, π̄)π0

∙
1−

³π0
π∗

´β2−1¸−µ
π0

r − α2

¶µ
r(α1 − α2)(1− p)− λ1α2(1− p0)

r(α1 − α2)− λ1α2(1− p0)

¶"³π0
π∗

´ (r−α2)
α2 −

³π0
π∗

´β2−1#
,

where the second equality makes use of the fact that

(π∗)
− (r+λ2−α2)

α2

r + λ2 − α2
+

λ2E (π
∗)
− (r+λ2−α2)

α2

r + λ2 − α2
+ F (π∗)

− (r+λ2−α2θ7)
α2 +

λ2G (π
∗)
− (r+λ2−α2β2)

α2

r + λ2 − α2β2
= 0,

the third equality uses

1 + λ2ρ1
r + λ2 − α2

=
1

r − α2
+

λ2(α1 − α2)

(r − α2)[(r + λ2 − α2)(r + λ1 − α1)− p0λ1λ2]

and the last equality follows because

λ2 (α1 − α2) p

(r − α2)[(r + λ1 − α1)(r + λ2 − α2)− p0λ1λ2]
= ρ2(π0, π̄)−

1

r − α2
. (24)
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As a result, the desired expression for E(π0, π∗ |π ) follows by simply using

φ =
r (α1 − α2)

r (α1 − α2)− λ1α2 (1− p0)
.

In turn, note that

E(π0, π∗) = Eπ0 + F (π0)
r
α2 +G (π0)

β2

= ρ1π0 +
λ1α2(1− p0)π0

(r − α2)[r(α1 − α2)− λ1α2(1− p0)]

³π0
π∗

´ r−α2
α2 −

(r + λ2 − α2β2)π0
λ2

Ã
1+λ2ρ1
r+λ2−α2+
λ1α2(1−p0)

(r−α2)[r(α1−α2)−λ1α2(1−p0)]

!³π0
π∗

´β2−1
= ρ1π0 −

(1− φ)π0
r − α2

³π0
π∗

´ r−α2
α2 +

(1− δ1 − φ)π0
φ

µ
1 + λ2ρ1

r + λ2 − α2
− 1− φ

r − α2

¶³π0
π∗

´β2−1
,

where the last equality makes use of the definition of δ1.

Appendix B

Proof of Lemma 2.
Let π∗E denote the threshold that triggers investment when the process is above or at

such state for the first time given that the market is growing. In addition, let π∗E denote

the threshold that triggers investment when the process is above or at such state for the

first time given that the market is declining. We claim that π∗E ≥ π∗E,
35 so suppose to the

contrary that π∗E < π∗E, and consider states such that the firm does not invest immediately

if the market is in growth, but such that the arrival of the next switching date would trigger

immediate investment: formally, π0 ∈ [π∗E, π∗E). In this case, the dynamics of the value of
the investment opportunity while the market is growing, denoted by V

∗
E(π0), are given by

the following Bellman equation:

V
∗
E(π0) = max{ρ1π0−K, (1−rdt)[λ1dt(ρ2(π0+α1π0dt)−K)+(1−λ1dt)V

∗
E(π0+α1π0dt)]}.

On the waiting region, a Taylor expansion and straightforward manipulations ignoring terms

35Note that this implies that the firm invests only if the market is growing owing to the continuous sample
path of the stochastic process.
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of order higher than dt yield

(r + λ1)V
∗
E(π0) = α1π0

dV
∗
E(π0)

dπ0
+ λ1(ρ2π0 −K).

The solution to this differential equation is

V
∗
E(π0) =

λ1ρ2π0
r + λ1 − α1

− λ1K

r + λ1
+B(π0)

r+λ1
α1 , (25)

where B is a constant. In particular, we know that V
∗
E(π

∗
E) = ρ1π

∗
E −K, whence one can

get the value of B and plug it into expression (25) so as to get

V
∗
E(π0 |π∗E ) =

λ1ρ2π0
r + λ1 − α1

− λ1K

r + λ1
+ [ρ1π

∗
E −K +

λ1K

r + λ1
− λ1ρ2π

∗
E

r + λ1 − α1
]

µ
π0
π∗E

¶ r+λ1
α1

.

Using the fact that

(r + λ1 − α1)ρ1 = 1 + λ1ρ2 (26)

and maximizing V
∗
E(π0 |π∗E ) with respect to π∗E yields that π∗E = rK (since V

∗
E(π0 |π∗E )

is strictly quasi-concave). As a result, we have that the value of an optimally managed

investment opportunity if the market is growing at π0 ∈ [π∗E, π∗E) equals

V
∗
E(π0 |rK ) =

λ1ρ2π0
r + λ1 − α1

− λ1K

r + λ1
+

α1rK

(r + λ1 − α1)(r + λ1)

³ π0
rK

´ r+λ1
α1 . (27)

Once the value of π∗E has been found out, it simply remains to find out that of π
∗
E. To this

end, let us examine the value of the investment opportunity in a growing market for π0 < π∗E.

Let V ∗E(π0) denote the value of the investment opportunity if the market is declining, and

note that the dynamics of V ∗E(π0) are given by the following differential equation:

(r + λ2)V
∗
E(π0) = α2π0

dV ∗E(π0)

dπ0
+ λ2V

∗
E(π0), (28)

since the firm is in the waiting region during the decline phase. Similarly, V
∗
E(π0) satisfies

the following differential equation for π0 < π∗E:

(r + λ1)V
∗
E(π0) = α1π0

dV
∗
E(π0)

dπ0
+ λ1V

−
E (π0), (29)

since the firm does not invest right away if the market switches from growth to decline. Solv-

ing the system of differential equations comprised by (28) and (29), and using the boundary
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condition that V
∗
E(0) = 0 leads to the following solution:

V
∗
E(π0) = R(π0)

β1 , (30)

whereR is a constant to found out, and β1 =
α1(r + λ2) + α2(r + λ1)−

√
∆

2α1α2
> 1. Evaluating

(27) at π0 = π∗E, we have that the boundary condition from which R can be derived is

R(π∗E)
β1 =

λ1ρ2π
∗
E

r + λ1 − α1
− λ1K

r + λ1
+

α1rK

(r + λ1 − α1)(r + λ1)

µ
π∗E
rK

¶ r+λ1
α1

,

so expression (30) becomes

V
∗
E(π0 |π∗E ) =

"
λ1ρ2π

∗
E

r + λ1 − α1
− λ1K

r + λ1
+

α1rK

(r + λ1 − α1)(r + λ1)

µ
π∗E
rK

¶ r+λ1
α1

#µ
π0
π∗E

¶β1

. (31)

Performing some manipulations, we have that the derivative of V
∗
E(π0 |π∗E ) with respect to

π∗E is

∂V
∗
E(π0 |π∗E )
∂π∗E

=

"
λ1ρ2(1− β1)π

∗
E

r + λ1 − α1
+

rK(r + λ1 − α1β1)

(r + λ1 − α1)(r + λ1)

µ
π∗E
rK

¶ r+λ1
α1

+
β1λ1K

r + λ1

#
(π0)

β1

(π∗E)
β1+1

.

We claim that
∂2V

∗
E(π0 |π∗E )
∂(π∗E)

2
< 0 whenever

∂V
∗
E(π0 |π∗E )
∂π∗E

= 0 holds (i.e., we claim that

V
∗
E(π0 |π∗E ) is strictly quasi-concave). For the value of π∗E such that

∂V
∗
E(π0 |π∗E )
∂π∗E

= 0 holds,

we have that

∂2V
∗
E(π0 |π∗E )
∂(π∗E)

2
=

"
λ1ρ2(1− β1)

r + λ1 − α1
+

rK(r + λ1 − α1β1)

α1(r + λ1 − α1)π∗E

µ
π∗E
rK

¶ r+λ1
α1

#
(π0)

β1

(π∗E)
β1+1

=
λ1[(β1 − 1)ρ2π∗E − β1K](π0)

β1

α1(π∗E)
β1+2

<
λ1β1(π0)

β1

α1(π∗E)
β1+2

(
π∗E − rK

r
) < 0,

where the last equality follows because
∂V

∗
E(π0 |π∗E )
∂π∗E

= 0, the first inequality holds because
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ρ2 < ρ1 <
β1

r(β1 − 1)
,36 and the last inequality follows since π∗E < rK. Evaluate

∂V
∗
E(π0 |π∗E )
∂π∗E

at π∗E = rK so as to get

∂V
∗
E(π0 |rK )
∂π∗E

=

∙
λ1ρ2(1− β1)(r + λ1)rK

(r + λ1)(r + λ1 − α1)
+

rK(r + λ1 − α1β1)

(r + λ1 − α1)(r + λ1)
+

β1λ1(r + λ1 − α1)K

(r + λ1)(r + λ1 − α1)

¸
×

(π0)
β1

(π∗E)
β1+1

=
[(1− β1)rρ1 + β1]K(π0)

β1

(π∗E)
β1+1

> 0,

since λ1ρ2 = (λ1 + r − α1) ρ1 − 1 by expression (26) and ρ1 <
β1

r(β1 − 1)
was just shown to

always hold. This proves that V
∗
E(π0 |π∗E ) is an increasing function for π∗E < rK, and (31)

implies that the payoff expected by the firm would be bounded above by

V
∗
E(π0 |rK ) =

∙
λ1ρ2rK

r + λ1 − α1
− λ1K

r + λ1
+

α1rK

(r + λ1 − α1)(r + λ1)

¸³ π0
rK

´β1
= (ρ1rK −K)

³ π0
rK

´β1
,

which is the (expected) payoff if the firm does not invest during the market decline and it

invests the first time the market reaches state rK, conditional upon the current state being

36To show that ρ1 <
β1

r (β1 − 1)
, note that

(r + λ1 − α1) (r + λ2 − α2)− p0λ1λ2 = α1α2 (1− β1) (1− β2) ,

so some algebraic manipulations yield that ρ1 can be rewritten as follows:

ρ1 =
(r − α2) (r + λ1 + λ2 − α2) + (1− p0)λ1λ2

α1α2 (r − α2) (1− β1) (1− β2)

=
1

r
[
r(r + λ1 + λ2) + (1− p0)λ1λ2 − rα2

α1α2 (1− β1) (1− β2)
+

(1− p0)λ1λ2
α1 (r − α2) (1− β1) (1− β2)

]

=
1

r
[

β1β2 − r
α1

(1− β1) (1− β2)
+

(1− p0)λ1λ2
α1 (r − α2) (1− β1) (1− β2)

],

where the last equality makes use of the fact that α1α2β1β2 = r (r + λ1 + λ2) + (1− p0)λ1λ2. As a result,
it follows that

(β1 − 1) ρ1r − β1
ρ1 (β1 − 1)

=
β1β2 − r

α1
− β1 (β2 − 1)

ρ1 (β1 − 1) (β2 − 1)
+

(1− p0)λ1λ2
α1ρ1(r − α2) (β1 − 1) (β2 − 1)

<
α1β1 − r

α1ρ1 (β1 − 1) (β2 − 1)
< 0,

since β1 > 1, β2 < 0 and α1β1 − r = λ1 (1− δ2) > 0. Hence, we must have that ρ1 <
β1

r (β1 − 1)
.
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π0 < rK. As we show below (see Proposition 1), the firm’s maximal payoff conditional upon

investing only if the market is growing is max
πE
(ρ1πE −K) (π0/πE)

β1 . The fact that

V
∗
E(π0 |rK ) = (ρ1rK −K)

³ π0
rK

´β1
< max

πE
(ρ1πE −K)

µ
π0
πE

¶β1

contradicts the optimality of investing during the market decline, which concludes the proof.

Proof of Proposition 2. Note that expression (2) holds if and only if

ρ1(α1β1 − α1)π
∗
E = α1β1K (32)

is satisfied. Because we have that α1β1 = λ1 (1− δ2) + r, condition (32) is equivalent to

(r − α1)ρ1π
∗
E = rK + λ1 (1− δ2) (K − ρ1π

∗
E).

It is simple to show that it holds that (r − α1) ρ1 = 1+ λ1 (ρ2 − ρ1), so plugging this equal-

ity into the previous expression yields the desired result after canceling some terms and

rearranging:

π∗E = rK + λ1[δ2(ρ1π
∗
E −K)− (ρ2π∗E −K)].

Proof of Proposition 4. We solve the firm’s dynamic optimization problem by working

backwards. If the declining phase of cycle N is ever reached, then the firm knows that there

will be no growth phase in the future. Letting π0 be the profit level that an active firm

makes at the current date, and denoting the level at which it chooses to exit by πN , we have

that the optimal exit threshold is given by the maximization of the following function with

respect to πN :

V N(πN |π0) =
Z 1

α2
ln(πN/π0)

0

π0e
α2se−rsds+ S

µ
π0
πN

¶ r
α2

.

Hence, the firm earns a discounted profit stream in a contracting market until level πN is first

hit; at such date, the firm exits irreversibly and seizes the discounted value of the outside

option.

Accounting for corner solutions, it is simple to show that the optimal disinvestment rule

calls for exiting the first time the process is below level π∗N ≡ min(rS, π0). Hence, letting
V ∗N(π0) ≡ V N(π

∗
N |π0) denote the value of an optimally managed disinvestment opportunity

given state π0, we have that the firm’s value in the declining phase of cycle N when the state
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is π0 is:

V ∗N (π0) =

⎧⎨⎩
π0

r − α2
− α2S

r − α2

³π0
rS

´ r
α2 if π0 > rS

S if π0 ≤ rS
. (33)

Suppose now that the growing phase of cycle N is reached with the firm active in the

market. Let π0 denote the current market state, and denote the exit threshold in the last

growing phase by πN . Then the firm must choose a level πN that maximizes the following

function:

V N(πN |π0) =

Z 1
α1
ln(πN/π0)

0

λ1e
−λ1τ1[

Z τ1

0

π0e
α1se−rsds+ V ∗N (π0e

α1τ1) e−rτ1]dτ 1 +Z ∞

1
α1
ln(πN/π0)

λ1e
−λ1τ1 [

Z 1
α1
ln(πN/π0)

0

π0e
α1se−rsds+ S

µ
π0
πN

¶ r
α1

]dτ 1.

Therefore, if the market stops growing at the random time τ 1 ∈ (0,
1

α1
ln(πN/π0)), then the

firm collects a discounted profit stream until time τ 1, and attains the discounted value of a

disinvestment opportunity in a declining market at level π0eα1τ1 . If the market stops growing

at some τ 1 ≥
1

α1
ln(πN/π0), then the firm exits at state πN and hence reaps a stream of

discounted profits until such state is first reached, and the properly discounted value of the

outside option.

Differentiating V N(πN |π0) with respect to πN and performing some tedious algebra yields
that

∂V N(πN |π0)
∂πN

=
πN − rS + λ1(V

∗
N (πN)− S)

α1πN

µ
π0
πN

¶ r+λ1
α1

.

Therefore, using (33) implies that sign(
∂V N(πN |π0)

∂πN
) = sign(πN − rS), and hence the

unique value of πN such that ∂V N(πN |π0)/∂πN = 0 is πN = rS. Using the differentiability

of V ∗N (π0), it is easy to show that ∂
2V N(rS|π0)/∂π2N = 1 > 0 (since dV ∗N (rS) /dπ0 = 0),

which implies that V N(πN |π0) is strictly quasi-convex. As a result, the firm must choose at

state π0 whether to exit immediately and seize S or to wait until the market starts decaying

and gain an expected payoff equal to:

V N(∞|π0) =
Z 1

α1
ln(max(rS,π0)/π0)

0

λ1e
−λ1τ1(

Z τ1

0

π0e
α1se−rsds+ Se−rτ1)dτ 1 +

Z ∞

1
α1
ln(max(rS,π0)/π0)

λ1e
−λ1τ1

⎧⎪⎨⎪⎩
R τ1
0

π0e
α1se−rsds+Ã

π0e
α1τ1

r − α2
− α2S

r − α2

µ
π0e

α1τ1

rS

¶ r
α2

!
e−rτ1

⎫⎪⎬⎪⎭ dτ 1.
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It is easy to see that there exists a unique π∗N < rS such that

V
∗
N(π0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1 + r − α2)π0
(r − α2) (λ1 + r − α1)

− λ1α
2
2S

(r − α2) [λ1α2 + r (α2 − α1)]

³π0
rS

´ r
α2 if π0 > rS

π0
r + λ1 − α1

+
λ1S

r + λ1
+

λ1α
2
1rS

(r + λ1) (r + λ1 − α1) (r (α1 − α2)− α2λ1)

³π0
rS

´ r+λ1
α1

if π∗N < π0 ≤ rS

S if π0 ≤ π∗N

,

where V
∗
N(π0) ≡ V N(π

∗
N |π0) (and π∗N satisfies V N(∞|π∗N) = S).

This completes the characterization of the optimal disinvestment policy whenever cycle

N is reached. In the set of cycles N − k (where k is an integer weakly greater than 1), the

optimal disinvestment policy must account for the fact that the firm is unsure about whether

the decline phase of the cycle is going to be the permanent or not. In the remainder of the

proof, we prove inductively a claim similar to that made in the statement of the proposition,

namely:

Claim 1 For each cycle N − k (with k ≥ 1), there exists a unique optimal disinvestment
policy, and it is such that the firm exits only if the market is declining. In addition, if the

market is in the declining phase of cycle N − k at state π0 and the decline has started at

state π ≥ π0, then there exists a unique bπN−k < rS such that the threshold π∗N−k(π) below

which exit is optimal satisfies π∗N−k(π) = π for π ≤ bπN−k and
rS = π∗N−k(π) + p

¡
π∗N−k(π)|π̄

¢
λ2[V

∗
N−k+1

¡
π∗N−k(π)

¢
− S]

for π > bπN−k. It holds that π∗N−k(π) is an increasing function that approaches rS as π →∞.
Also, it holds that

V
∗
N−k(π0) =

(
V N−k(∞|π0) if π0 > π∗N−k

S if π0 ≤ π∗N−k
(34)

for some π∗N−k, and that V
∗
N−k+1

¡
π∗N−k(π)

¢
> S for all π > bπN−k, where bπN−k is uniquely

given by bπN−k + p0λ2[V
∗
N−k+1 (bπN−k)− S] = rS.

We start by showing that Claim 1 holds for k = 1. So suppose that the market is in a

declining stage that started at level π, with the current state being π0 ≤ π. Letting πN−1
be the level at which the firm would find it optimal to exit should the market be declining

by then, we can compute the firm’s expected payoff to exiting at πN−1 using the posterior

42



belief in Lemma 1:

V N−1(πN−1|π0, π) = (1− p (π0|π)) [
Z 1

α2
ln(πN−1/π0)

0

π0e
α2se−rsds+ S

µ
π0

πN−1

¶ r
α2

] +

p (π0|π)

⎧⎨⎩
R 1

α2
ln(πN−1/π0)

0 λ2e
−λ2τ2[

R τ
0
π0e

α2se−rsds+ V
∗
N (π0e

α2τ) e−rτ ]dτ 2+R∞
1
α2
ln(πN−1/π0)

λ2e
−λ2τ2[

R 1
α2
ln(πN−1/π0)

0 π0e
α2se−rsds+ S

³
π0

πN−1

´ r
α2 ]dτ 2

⎫⎬⎭ .

Because
p (π0|π)

³
π0

πN−1

´λ2
α2

1− p (π0|π) + p (π0|π)
³

π0
πN−1

´λ2
α2

= p
¡
πN−1|π

¢
, algebraic manipulations yield that

∂V N−1(πN−1|π0, π)
∂πN−1

=
(1− p (π0|π) + p (π0|π)

³
π0

πN−1

´ λ2
α2 )

α2πN−1
×

[πN−1 − rS + p
¡
πN−1|π

¢
λ2(V

∗
N

¡
πN−1

¢
− S)]

µ
π0

πN−1

¶ r
α2

.

Hence, the (candidate) maximizer π∗N−1 is given by the following first-order condition:

rS = π∗N−1 + p
¡
π∗N−1|π̄

¢
λ2(V

∗
N

¡
π∗N−1

¢
− S), (35)

where π∗N−1 > π∗N (since otherwise V
∗
N

¡
π∗N−1

¢
= S, and hence π∗N−1 = rS > π∗N ≥ π∗N−1,

which is a contradiction). This implies that π∗N < π∗N−1 < rS, and therefore the firm would

never exit if another growth phase started.37

Using equation (35) yields that

∂2V N−1(π
∗
N−1|π0, π)

∂π2N−1
=

(1− p (π0|π) + p (π0|π)
³

π0
π∗N−1

´λ2
α2 )
³

π0
π∗N−1

´ r
α2

α2π∗N−1
×

[1 + λ2p
¡
π∗N−1|π

¢ dV ∗N ¡π∗N−1¢
dπ0

+ λ2(V
∗
N(π

∗
N−1)− S)

∂p
¡
π∗N−1|π

¢
∂π0

],

so the facts that
∂p
¡
π∗N−1|π

¢
∂π0

= −
λ2p

¡
π∗N−1|π

¢ ¡
1− p

¡
π∗N−1|π

¢¢
α2π∗N−1

> 0, V
∗
N

¡
π∗N−1

¢
> S, and

dV
∗
N (π0)

dπ0
> 0 for any π0 > π∗N imply that the global maximizer of V N−1(πN−1|π0, π) is

37Suppose to the contrary that the firm found itself in a situation in which it would exit in the next
growth phase. Then the continuity of the process implies that the firm should have already exited the
market during the previous decline phase, which contradicts the hypothesis that the firm was active at the
end of the downturn.
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indeed given by (35), at least if the solution to the maximization problem is interior.

Of course, the solution may not be interior and the firm may find it optimal to exit

immediately once the market switches to decline. That is, for π0 = π,

∂V N−1(πN−1|π, π)
∂πN−1

¯̄̄̄
πN−1=π

≥ 0 (36)

might hold. This inequality is satisfied if and only if

π + p0λ2(V
∗
N (π)− S) ≤ rS.

Because the left hand side is increasing in π, and exceeds rS when π = rS, there exists a

unique state bπN−1 < rS such that the inequality holds with equality. Hence, condition (36)

holds if and only if π ≤ bπN−1, which means that the firm finds it optimal to disinvest right

away whenever the market switches to decline at some level π ≤ bπN−1. Otherwise, the firm
prefers waiting to disinvest and uses the threshold given by (35). Notice that the optimal

investment threshold is an implicit function of the starting level π, that is, we have that

π∗N−1(π). Hence, π
∗
N−1(π) denotes the level below which the firm prefers exiting right away

if the market is in the declining phase of the N − 1th cycle. For π ≤ bπN−1, π∗N−1(π) = π,

whereas π∗N−1(π) is given by (35) for π > bπN−1. In the latter case, the implicit function
theorem and the fact that ∂p

¡
π∗N−1|π̄

¢
/∂π < 0 imply that

dπ∗N−1
dπ

= −
λ2(V

∗
N(π

∗
N−1)− S)

∂p
¡
π∗N−1|π

¢
∂π

1 + λ2p
¡
π∗N−1|π

¢ dV ∗N ¡π∗N−1¢
dπ0

+ λ2(V
∗
N

¡
π∗N−1

¢
− S)

∂p
¡
π∗N−1|π

¢
∂π0

> 0.

Hence, the optimal disinvestment threshold increases with π for π ≥ bπN−1, with π∗N−1(π)→
rS as π →∞.
Let V ∗N−1(π0|π) ≡ V N−1(π

∗
N−1(π)|π0, π), and consider the growing stage of cycle N − 1.

As usual, let π0 denote the current state of the market, and denote the threshold at which

the firm exits if the market is growing by πN−1. Then the firm’s expected payoff is

V N−1(πN−1|π0) =
Z 1

α1
ln(πN−1/π0)

0

λ1e
−λ1τ1

Ã R τ1
0

π0e
α1se−rsds+

V ∗N−1(π0e
α1τ1|π0eα1τ1)e−rτ1

!
dτ 1 +Z ∞

1
α1
ln(πN−1/π0)

λ1e
−λ1τ1

ÃZ 1
α1
ln(πN−1/π0)

0

π0e
α1se−rsds+ S

µ
π0

πN−1

¶ r
α1

!
dτ 1.
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Noticing the similarity of this function and V N(πN |π0) yields that its derivative is equal to:

∂V N−1(πN−1|π0)
∂πN−1

=
πN−1 − rS + λ1(V

∗
N−1 (πN−1|πN−1)− S)

α1πN−1

µ
π0

πN−1

¶ r+λ1
α1

.

Consider a state πN−1 such that
∂V N−1(πN−1|π0)

∂πN−1
= 0 holds, and evaluate the second deriv-

ative at such state so as to get

∂2V N−1(πN−1|π0)
∂π2N−1

=
1

α1πN−1

µ
π0

πN−1

¶ r+λ1
α1

[1 + λ1
dV ∗N−1 (πN−1|πN−1)

dπ0
].

Because
dV ∗N−1 (πN−1|πN−1)

dπ0
≥ 0, it follows that the firm’s objective function is strictly

quasi-convex, and as a result, the firm must choose at state π0 whether to exit immediately

and seize S or to wait until the market starts decaying and gain an expected payoff equal to

V N−1(∞|π0) =
Z ∞

0

λ1e
−λ1τ1

µZ τ1

0

π0e
α1se−rsds+ V ∗N−1(π0e

α1τ1|π0eα1τ1)e−rτ1
¶
dτ 1.

Let π∗N−1 < rS be the unique level such that V N−1(∞|π0) = S holds, and let V
∗
N−1(π0) ≡

max(S, V N−1(∞|π0)), that is,

V
∗
N−1(π0) =

(
V N−1(∞|π0) if π0 > π∗N−1

S if π0 ≤ π∗N−1
.

To complete the proof, it only remains to show that the claim is true for k ≥ 2 whenever
it is true for k− 1. So suppose that Claim 1 holds for cycle N − k+1, and let us derive the

optimal disinvestment policy for cycle N − k. Although the proof follows verbatim the one

for k = 1 because of the recursive structure of the problem, we briefly go over each step for

the sake of completeness. As for the declining phase, the firm’s expected payoff is

V N−k(πN−k|π0, π) = (1− p (π0|π))
"Z 1

α2
ln(πN−k/π0)

0

π0e
α2se−rsds+ S

µ
π0

πN−k

¶ r
α2

#
+

p (π0|π)

⎡⎣ R 1
α2
ln(πN−k/π0)

0 λ2e
−λ2τ2[

R τ2
0

π0e
α2se−rsds+ V

∗
N−k+1 (π0e

α2τ2) e−rτ2]dτ 2+R∞
1
α2
ln(πN−k/π0)

λ2e
−λ2τ2 [

R 1
α2
ln(πN−k/π0)

0 π0e
α2se−rsds+ S

³
π0

πN−k

´ r
α2 ]dτ 2

⎤⎦ ,
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so

∂V N−k(πN−k|π0, π)
∂πN−k

=
(1− p (π0|π) + p (π0|π)

³
π0

πN−k

´ λ2
α2 )

α2πN−k

[πN−k − rS + p
¡
πN−k|π

¢
λ2(V

∗
N−k+1

¡
πN−k

¢
− S)]

µ
π0

πN−k

¶ r
α2

.

Hence, in an interior solution we have that

rS = π∗N−k + p
¡
π∗N−k|π

¢
λ2(V

∗
N−k+1

¡
π∗N−k

¢
− S), (37)

and it is standard to show that (34) (for the appropriate subscript) implies that π∗N−k >

π∗N−k+1. This yields that π
∗
N−k+1 < π∗N−k < rS, and therefore the firm will never exit the

market in the growing phase of cycle number N − k + 1.

If the solution is not interior, that is, if for π0 = π

∂V N−k(πN−k|π0, π)
∂πN−k

¯̄̄̄
πN−k=π

≥ 0

holds, then we must have that

π + p0λ2(V
∗
N−k+1 (π)− S) ≤ rS.

The left hand side is increasing in π, and exceeds rS when π = rS, so there exists a unique

state bπN−k such that the inequality holds with equality. Hence, π∗N−k(π) = π for π ≤ bπN−k,
while π∗N−k(π) is given by (37) for π > bπN−k. Again, it is easy to prove that dπ∗N−k

dπ
> 0 for

π > bπN−k.
As for the growth stage, letting V ∗N−k(π0|π) ≡ V N−k(π

∗
N−k(π)|π0, π) yields that the

expected payoff of the firm at state π0 if it chooses to exit at level πN−k is

V N−k(πN−k|π0) =

Z 1
α1
ln(πN−k/π0)

0

λ1e
−λ1τ1

Ã R τ1
0

π0e
α1se−rsds+

V ∗N−k(π0e
α1τ1|π0eα1τ1)e−rτ1

!
dτ 1 +Z ∞

1
α1
ln(πN−k/π0)

λ1e
−λ1τ1 [

Z 1
α1
ln(πN−k/π0)

0

π0e
α1se−rsds+ S

µ
π0

πN−k

¶ r
α1

]dτ 1.

This function can be easily shown to be strictly quasi-convex,38 so the firm must choose at

38Because π∗N−k(·) has a kink at bπN−k, it is reasonable to think that V ∗N−k(π0|π0) might not be dif-
ferentiable at π0 = bπN−k, which would imply that V N−k(πN−k|π0) is not everywhere differentiable with
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state π0 whether to exit immediately and seize S or to wait until the market starts declining

and gain an expected payoff equal to V N−k(∞|π0). If π∗N−k < rS denotes the unique level

for which V N−k(∞|π0) = S holds and we let V
∗
N−k(π0) ≡ max(S, V N−k(∞|π0)), then the

following holds:

V
∗
N−k(π0) =

(
V N−k(∞|π0) if π0 > π∗N−k

S if π0 ≤ π∗N−k
.

This shows that Claim 1 holds for cycle N − k, and hence completes the proof.

Proof of Proposition 6. Note that equation (5) holds if and only if

π∗Xα2ρ2(β2 − 1)− α2β2S = 0

is satisfied. Adding up rS on both sides of this expression, and using the facts that r−α2β2 =
λ2 (δ1 − 1) (see definition of δ1 in Theorem 3 for φ = 1) and 1+λ2γ1 = ρ2[λ2 (1− δ1)+r−α2]
(so 1 + λ2γ1 = α2ρ2(β2 − 1)) leads to the desired result.
Proof of Proposition 7. First, we prove that V

∗
X (π

∗
X)−V ∗X (π∗X) = γ1π

∗
X−(1− δ1)S > 0.

By Proposition 6,

γ1π
∗
X + δ1S − S =

rS − π∗X
λ2

,

so we simply have to show that r >
β2

ρ2(β2 − 1)
holds. To prove this, notice that

(r + λ1 − α1) (r + λ2 − α2)− λ1λ2 = α1α2 (1− β1) (1− β2) ,

respect to πN−k. To clear this doubt, we proceed to show that V
∗
N−k(π0|π0) ≡ V N−k(π

∗
N−k|π0, π0) has a

right-derivative at π0 = bπN−k equal to 0 (since the left-derivative is 0). Because
V ∗N−k(π0|π0) = (1− p0) [

Z 1
α2

ln(π∗N−k/π0)

0

π0e
α2se−rsds+ S

µ
π0

π∗N−k

¶ r
α2

] +

p0

⎡⎣ R 1
α2

ln(π∗N−k/π0)

0 λ2e
−λ2τ [

R τ
0
π0e

α2se−rsds+ V
∗
N−k+1 (π0e

α2τ ) e−rτ ]dτ+R∞
1
α2

ln(π∗N−k/π0)
λ2e
−λ2τ [

R 1
α2

ln(π∗N−k/π0)

0 π0e
α2se−rsds+ S

³
π0

π∗N−k

´ r
α2
]dτ

⎤⎦ ,
the envelope theorem and the fact that π∗N−k(π0) ↓ bπN−k as π0 ↓ bπN−k yield after canceling several terms
that

dV ∗N−k(π0|π0)
dπ0

¯̄̄̄
π0↓πN−k

= (1− p0) (
rS − bπN−k
α2bπN−k ) + p0(

rS − bπN−k + λ2S − λ2V
∗
N−k+1(bπN−k)

α2bπN−k ).

Since bπN−k + p0λ2(V
∗
N−k+1 (bπN−k) − S) = rS holds by definition of bπN−k, it follows that

dV ∗N−k(π0|π0)
dπ0

¯̄̄̄
π0↓πN−k

= 0, as desired.
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so we have that

ρ2 =
1

r
[
r(r + λ1 + λ2)− rα1
α1α2 (1− β1) (1− β2)

] =
1

r
[

β1β2 − r
α2

(1− β1) (1− β2)
],

where the last equality follows because it holds that α1α2β1β2 = r (r + λ1 + λ2). As a result,

using the fact that α2β2 − r = λ2 (1− δ1) (see definition of δ1 in Theorem 3 if φ = 1) yields

that
(β2 − 1) ρ2r − β2
(β2 − 1) ρ2

=
β1β2 − r

α2
− β2 (β1 − 1)

ρ2(β1 − 1) (β2 − 1)
=

λ2 (1− δ1)

α2ρ2 (β1 − 1) (β2 − 1)
,

whence it is clear that
ρ2r (β2 − 1)− β2

ρ2 (β2 − 1)
= r− β2

(β2 − 1) ρ2
> 0, since δ1 ∈ (0, 1), β1 > 1 and

β2 < 0.

Therefore, we must have that V
∗
X (π

∗
X) − V ∗X (π

∗
X) > 0, and to complete the proof it

suffices to show that V
∗
X (π0)− V ∗X (π0) > V

∗
X (π

∗
X)− V ∗X (π

∗
X) for π0 > π∗X . To prove that

V
∗
X (π0) − V ∗X (π0) is increasing for π0 > π∗X , let π0 > π∗X and use the definition of γ1 for

p0 = 1 so that

V
∗
X (π0)− V ∗X (π0) = γ1π0 − (1− δ1)V

∗
X (π0)

=
{ρ2[λ2 (1− δ1) + r − α2]− 1}π0

λ2
− (1− δ1)V

∗
X (π0)

= (1− δ1) (ρ2π0 − V ∗X (π0)) +
[ρ2 (r − α2)− 1]π0

λ2

= (1− δ1) (ρ2π
∗
X − S)

µ
π0
π∗X

¶β2

+
[ρ2 (r − α2)− 1]π0

λ2

=
(1− δ1)S

β2 − 1

µ
π0
π∗X

¶β2

+
[ρ2 (r − α2)− 1]π0

λ2
,

where the last two equalities follow from Proposition 5. Note from expression (24) for p0 = 1

(since p ≡ p (π0|π) equals 1 for p0 = 1) that

ρ2 (r − α2)− 1 =
λ2 (α1 − α2) ρ2

(λ1 + λ2 + r − α1)
,

so

V
∗
X (π0)− V ∗X (π0) =

(1− δ1)S

β2 − 1

µ
π∗X
π0

¶−β2
+

(α1 − α2) ρ2π0
(λ1 + λ2 + r − α1)

.

Hence, V
∗
X (π0) − V ∗X (π0) is clearly increasing in π0 (since δ1 ∈ (0, 1) and β2 < 0), which

shows that V
∗
X (π0)− V ∗X (π0) > V

∗
X (π

∗
X)− V ∗X (π

∗
X) for π0 > π∗X .
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