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Abstract :

We analyze the impact of a minimum price variation (tick) and time priority on the dy-

namics of quotes and the trading costs when competition for the order 
ow is dynamic.

We �nd that convergence to competitive outcomes can take time and that the speed of

convergence is in
uenced by the tick size, the priority rule and the characteristics of the

order arrival process. We show also that a zero minimum price variation is never opti-

mal when competition for the order 
ow is dynamic. We compare the trading outcomes

with and without time priority. Time priority is shown to guarantee that uncompetitive

spreads cannot be sustained over time. However it can sometimes result in higher trading

costs. Empirical implications are proposed. In particular, we relate the size of the trading

costs to the frequency of new o�ers and the dynamics of the inside spread to the state of

the book.
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1. Introduction.

The design of trading rules is a central issue in security markets. The changes in the or-

ganization of security markets1 and the accrued competition between those markets have

called for a better understanding of the costs and bene�ts of the di�erent possible trading

arrangements. In this paper, we study two speci�c trading rules, namely a mandatory

minimum price variation (the \tick") and time priority. Our contribution is to analyze,

theoretically, the impact of those rules on the trading costs and the evolution of the quotes

when the competition for the order 
ow is dynamic.

In many Exchanges, liquidity suppliers must quote prices on a pre-speci�ed grid. The tick

size is equal to the increment between two prices on this grid2. The desirability of this

trading rule is not clear. Actually a minimumvariation requirement can have a signi�cant

impact on the trading costs for at least two reasons. First it imposes a minimum size

for the bid-ask spread which can result in substantial transaction costs. Harris (1994)

�nds that the minimum price variation was binding for 48% of the quotation spreads for

the NYSE and AMEX stocks in his sample3. Second it makes price improvements costly.

In di�erent frameworks, Anshuman and Kalay (1994), Bernhardt and Hughson (1993),

Chordia and Subrahmanyam (1995), Kandel and Marx (1996) show that this friction can

lead to uncompetitive spreads in equilibrium despite the fact that dealers compete in

prices. According to their results, there is no bene�t (for the liquidity demanders) of

enforcing a minimum price variation.

On the contrary, we show that a mandatory minimum price variation can contribute to

minimize the trading costs when liquidity suppliers compete sequentially in prices and

when the orders arrival dates are random. This is the case in electronic limit order

markets such as, for instance, the Paris Bourse4. Biais, Hillion and Spatt (1995) show

1For instance the recent development of electronic trading mechanisms.
2The tick size varies across the Exchanges and can depend on the level of prices. For example, in the

Paris Bourse, the minimum price variation is FF0:01 for prices below FF5, FF0:05 for prices between
FF5 and FF100, FF0:1 for prices between FF100 and FF500 and FF1 for prices greater than FF500.
On the New-York Stock Exchange, the tick size is $1

8
for prices greater than $1, $ 1

16
for prices between

$0.25 and $1 and $ 1

32
for lower prices.

3In a related study, Ahn et al. estimate to $12:8 million the annualized savings in transaction costs
due to the decrease in the tick size for 53 of the stocks quoted on the AMEX. Harris 's result suggests
also that minimum price variations can account for a large part of trading costs relative to the other
determinants (adverse selection, inventory e�ects, order processing costs). This is con�rmed by Glosten
and Harris (1988) estimate to $0:0133 on average the adverse selection component of the spread for NYSE
stocks. This is smaller than $0:125 which is the minimum price variation for those stocks.

4Other examples are the Madrid Stock Exchange, the Helsinki Stock Exchange, The Toronto Stock
Exchange, the Stockholm Stock Exchange. Domowitz (1993) reports that 35 �nancial markets have
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empirically that dynamic price competition between liquidity suppliers plays a major role

in the evolution of the quotes in the Paris Bourse. In particular, they �nd that after an

initial increase in the spread due to liquidity shocks, the spread decreases over time as

liquidity providers compete for the order 
ow (See Figure 1 in the Appendix)5. They

write (page 1657) :

\[...] the 
ow of order placement is concentrated at and inside the bid-ask

quote. A large fraction of the order placement improves upon the best bid or

ask quote. Such improvements on one side of the quotes tend to occur in suc-

cession (undercutting) which re
ects competition in the supply of liquidity".

Consequently it is important to analyze dynamic price competition between liquidity

providers since it is a feature of price formation in continuous limit order markets.

Many models in the market microstructure literature assume that dealers post their prices

simultaneously. Under this assumption, it is obtained that dealers choose quotes equal to

their reservation prices (if they are risk-neutral then prices are just equal to conditional

expectations)6. We show that bidding strategies with dynamic price competition have

di�erent properties. In particular we �nd that it might take time for the quotes to adjust

to the competitive level (the expected value of the asset rounded to the nearest tick in our

setting) and that the dealers will earn extra-pro�ts (even if the grid size is zero). Some

transactions will occur at uncompetitive prices and the trading costs will depend in part

on the determinants of the speed with which quotes adjust to the competitive levels.

The size of the minimum price variation is one of those determinants. The intuition is

simple. Suppose the ask price is at least two ticks above the competitive ask price and

consider a liquidity supplier who wants to obtain priority of execution. He can choose

either to undercut of one tick, at the risk of not being executed, or to quote immediately

the competitive ask price in order to secure execution. If the tick is too small the second

option is less attractive than the �rst one, as long as a quote above the competitive ask

price has a positive probability of execution. Even if his quote is improved afterwards,

this e�ect suggests that a too low minimum price variation can hurt liquidity traders.

Based on this intuition, we prove that the tick size which minimizes the expected trading

features of electronic limit order markets.

5See Hedvall and Niemyer (1994) for similar �ndings for the Helsinki Stock Exchange.

6See for instance Glosten and Milgrom (1985) in the case of risk-neutrality and Ho and Stoll (1981)

in the case of risk-aversion.
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costs is always di�erent from zero, in our stylised framework.

In dynamic trading environments, time priority is often used to allocate a trade between

liquidity suppliers posting the best price. By this rule, at a given price, orders entered

�rst are executed �rst7. We evaluate the performance of time priority against another

allocation rule : the liquidity supplier who executes a trade is chosen randomly among

the traders quoting the best price. We point one nice property of time priority : spreads

above the competitive spreads cannot be sustained over time. This is not the case with

the other allocation rule. With time priority, dealers cannot share an order. This prop-

erty prevents forms of implicit collusion which can occur in a dynamic setting with other

allocation rules. Then we compare the expected trading costs obtained when time priority

is enforced with those obtained when it is not enforced. We identify a case in which the

expected trading costs can be greater when time priority is enforced. This occurs because

it might take more time for the spread to decrease with time priority.

For empirical investigations, we relate the dynamics of the quote to the characteristics of

the order arrival process and the state of the book characterized by the size of the inside

spread. We �nd that larger trading costs should be obtained when the ratio between the

transaction frequency and the frequency of new limit orders increases8. We show also that

di�erent patterns for the evolution of the best quotes should be observed in equilibrium.

In particular, we obtain equilibria in which initial bidders quote immediately low spreads,

which are not improved afterwards and equilibria in which successive price improvements

are observed. These patterns are found in the data by Biais, Hillion and Spatt (1995).

Like in their paper, it turns out that cases in which quotes evolve by successive improve-

ments, starting from relatively uncompetitive quotes, should be more frequent when the

size of the inside spread is large than when it is small.

Our framework is related to the model of dynamic price competition introduced by Maskin

and Tirole (1988). In contrast with Maskin and Tirole (1988), we assume that dealers

just observe the best quotes in the market (i.e. the book is \closed" as it is the case in

some �nancial markets). This assumption simpli�es the characterization of the equilib-

ria and makes tractable the analysis of the relationships between the quotes dynamics,

the trading rules and the order arrival process. By comparing the possible patterns for

prices in equilibrium with those obtained in Maskin and Tirole (1988), we argue that one

7Domowitz (1993) shows that this rule is prevailing in many electronic markets. There are some
exceptions however as the NASDAQ or open-outcry markets like the CBOT.

8The empirical literature has just begun to consider time between trades and order placements as a
possible determinant of spreads. See for instance Hausman et al. (1992).
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advantage of a closed limit order book might be that it prevents the dealers from using

strategies sustaining very uncompetitive prices9.

The role of the tick has been analyzed taking into account trading features of the NYSE

(Bernhardt and Hughson (1995)) or the NASDAQ (Kandel and Marx (1996)). We think

our framework (in particular the assumptions of dynamic price competition combined with

random order arrival dates) is more adequate to describe the competition for the order


ow in electronic limit order markets such as the Paris Bourse. Parlour (1996) has shown

that time priority and price competition can induce systematic patterns in the order 
ow

in electronic limit order markets. However she does not analyze how trading costs are re-

lated to the size of the tick and time priority. Recently, Dutta and Madhavan (1996) have

shown that collusive outcomes could be sustained when dealers competition takes place

over time. In their model, dealers quote their prices simultaneously but repeatedly. On

the contrary, we assume that liquidity suppliers choose their quotes in sequence, reacting

optimally to the quotes posted previously by their competitors. In this setting, there is

a role for time priority and we show that, in our frameowrk, this priority rule prevents

(implicit) collusive pricing.

The next section spells out the model and the equilibrium concept used to solve the

trading game. Section 3 characterizes the dynamics of quotes in equilibrium when time

priority is enforced and when it is not. Section 4 analyzes the policy implications of the

model. Section 5 studies the robustness of the results. Section 6 points some empirical

implications of the model. Section 7 concludes.

2. The Model.

In this section, we describe the simplest version of the model used in this paper and we

present the equilibrium concept used to solve the trading game.

2.1 The Trading Process.

We consider the market for a risky asset. Time is continuous and is indexed by t 2 [0; T ].

Let ~V be the payo� of the asset at time T . The expected payo� will be denoted by

� = E( ~V ).

Two risk-neutral liquidity suppliers (dealers)10 compete for the order 
ow by quoting

9There are other di�erences with Maskin and Tirole (1988). For instance, we assume that the arrival
time of an order is random and we consider the role of time priority.

10We will refer to the liquidity suppliers as dealers. More generally they can be thought as limit order
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prices sequentially at dates f0; 1; :::; �; � +1; :::g. The duration of each period is �xed and

is denoted �. For brevity, we focus only on the equilibrium ask prices of the dealers. Our

results extend to the case in which dealers choose both ask and bid prices as long as the

arrival date of a buy order is independent of the arrival date of a sell order. At date � ,

a dealer, say dealer 1, has the possibility to quote an ask price a1
�
. Then, at date � + 1,

dealer 2 reacts with an ask price a2
�+1 and so on. At date 0, the �rst dealer to quote

a price is chosen randomly. Let a
j

t
be the quote of dealer j at time t. The best quote

available at time t is denoted am
t
. We will follow the convention that a quote indexed by �

represents a quote just after the reaction of the dealer at date � . Because dealers alternate

in quoting prices, we have aj
t
= aj

�
8t 2 [�; � + 2), if � is the last date at which dealer j

had the opportunity to make an o�er. This model of alternating price competition aims

at capturing the fact that, in a continuous limit order market, liquidity suppliers do not

post their quotes simultaneously but rather sequentially. For instance, Biais, Hillion and

Spatt (1995) report that the mean time between two quotes improving the inside spread

(the di�erence between the best o�ers to sell or buy) is 86 seconds for the stocks of the

Paris Bourse in their sample.

The set of possible prices is discrete and is characterized by the size of the minimum

price variation : g. We denote by hpi� and hpi+ the prices on the grid respectively

immediately strictly lower than p and greater than or equal to p. We assume that

� � h�i� = h�i+ � � = g

2
, i.e. the position of the expected value is half way be-

tween a tick. The set of possible prices is : P = f:::; p(�i); ::; p(0); :::; p(i); :::g with

p(i) = h�i� + ig; i 2 IN. For technical reasons, we will assume that P is �nite. In Section

4, we consider the impact of shrinking the price grid on the trading costs.

Trades can occur when a buyer arrives to the market. Following a well-established tradi-

tion in the market microstructure literature, we assume an exogenous arrival process for

those traders. The number of buyers' arrivals in a given time intervall follows a Poisson

process with rate �11. The waiting time between arrivals is therefore exponentially dis-

tributed with parameter �. Consequently, in each period [�; � +1], the probability that a

buyer will arrive to the market is (1� e���).

For simplicity, we assume that the buyers have rectangular demands12. Namely, a buyer

traders who monitor the market and who post limit orders opportunistically when pro�ts opportunities
exist. Biais, Hillion and Spatt (1995) provide evidences of the existence of such limit order traders.

11This assumption is used for instance in Garman (1976), Ho and Stoll (1981) or Easley, Kiefer and
O'Hara (1995). Biais et al.(1995), Easley et al.(1995) or Hedvall and Niemeyer (1996) provide estimations
of the arrival rates.

12In a previous version of the paper, we analyzed the case in which the order 
ow was price dependent.
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purchases L units of the asset if the best ask price is lower than or equal to RB. It is

convenient to assume that RB is on the grid : RB = p(k) with k � 2, for the problem

to be of interest. Those traders do not possess private information on ~V and trade for

liquidity reasons. Biais, Hillion and Spatt (1995) show that liquidity shocks enlarge the

inside spread but not permanently. After the initial shock, the spread decreases, reverting

to its initial size, as liquidity providers compete for the order 
ow. Consistent with this

observation, an alternative assumption is that RB+g is the ask price standing in the book

(just after the last trade) when the dealers start to compete. Under this interpretation

RB+g�� is a measure of the initial markup. This gives exactly the same results as those

we obtain assuming liquidity traders have a reservation price RB. We will sometimes refer

to this second interpretation.

The order of a buyer is executed against the best quote at the time of his arrival (price

priority rule). In case of ties, we will consider two alternative allocation rules. The �rst

is the time priority rule (TPR) which is used in many electronic trading systems (e.g.

the system CAC, in the Paris Bourse). In this case, the �rst dealer to quote the eligible

price executes the trade. The second allocation rule (RAR) allocates randomly, but with

equal probabilities, the order to one of the dealers quoting the best price. It is implicitly13

used in open outcry markets (e.g. futures markets as the CBOT). The results in this case

serve as a benchmark agaisnt which we evaluate the performance of time priority. We

note that, under our assumption of risk-neutrality, the random allocation rule and the

allocation rule which splits equally a trade among the liquidity providers give the same

outcomes14.

For tractability, we assume that the book is \closed", i.e. only the best quotes are dis-

played. This implies that a dealer who has strict priority on the ask side, does not observe

the quote posted by the other dealer on this side of the market. Some continuous markets

(for instance, the Tokyo Stock Exchange or the NYSE) have features of a closed limit

order book market15.

The results are the same as those obtained in this simpler framework, except that we cannot derive closed
forms for the equilibrium dynamics.

13See Massimb and Phelps (1994) on this point.
14Biais et al. (1996) study the impact of priority rules based on quantities in a static model of price-

quantity competition. They show that in case of risk-aversion the random allocation rule and the equal
splitting rule yield di�erent trading outcomes.

15This rule is used also in some laboratory studies of asset markets (see Friedman (1993)). In some
markets, however, a larger set of bids and asks are displayed. In the Paris Bourse, participants observe
the 5 best o�ers on each side of the market. In our model, this element of the market structure will be
used to rule out equilibria in which a dealer �nd optimal to raise his quote above the best quote.
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It is convenient to assume that the payo� date T is random and exponentially distributed

with parameter 
. This guarantees that the model is stationary and simpli�es the deriva-

tions. The price competition game between the dealers stops either when a trade occurs

or when the payo� date is realized. We denote ~t the date at which the trading process

stops and ~o the date of an order arrival.

The previous assumptions imply that the dealers just compete for the next order to arrive

in the market. Consequently the model is best viewed as describing price competition and

quotes adjustments between trades. It is easy to see, however, that our framework could

be embedded in a sequential trade model (see, for instance, Easley and O'Hara (1992)).

In this case, after a trade, (i) the dealers cancell their o�ers (ii) new public information

arrives and (iii) the dealers enter into a new round of price competition. The game which

is analyzed here can be viewed as one round of this trading process.

Risk-neutrality and the absence of asymmetric information between the dealers and the

potential buyers imply that dealers' reservation prices are just equal to the expected

value of the asset. The model could be modi�ed in order to incorporate risk-aversion

or asymmetric information. In our framework, risk-aversion or asymmetric information

would create a wedge between the dealers' reservation prices and the expected value of

the asset16 but would not change qualitatively the dynamics of the adjustment of quotes

to these reservation prices. This is this dynamic which is the focus of this paper. As the

e�ects of risk-aversion and asymmetric information on the quotes are well-known and will

not interact, in our framework, with the e�ects coming from dynamic price competition,

we just ignore them for simplicity.

2.2 Two benchmarks.

It has often been assumed in the empirical literature on price discreteness that, in presence

of a minimum price variation, the best quotes are determined by a rounding mechanism

(for instance Gottlieb and Kalai (1985)). Namely the best quotes are equal to the reserva-

tion price of the dealers rounded to the nearest tick, i.e. p(1) in our framework. Therefore

p(1) is a �rst benchmark to which we will compare our results. We will refer to p(1) as

the competitive price and to p(1) � � as the competitive spread.

Another natural benchmark is the equilibrium which would be obtained if dealers were

posting price simultaneously as it is generally assumed in models of market microstruc-

ture. In the case of the random allocation rule, it is straightforward that p(1) or p(2)

16See, for instance, Glosten and Milgrom (1985) or Ho and Stoll (1981).
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are two possible Nash equilibria. Obviously the multiplicity is due to the existence of the

minimum price variation. It is due also to the fact that we consider, for the moment, only

two dealers. When the number of dealers is greater than or equal to 4, it is straightforward

that p(1) is the unique equilibrium. In Section 5, we show that this last result does not

hold any more when price competition is dynamic.

2.3. Pricing Strategies and Equilibrium De�nition.

We turn now to the de�nition of the equilibrium concept used to solve the trading game.

As the game is dynamic and dealers might have imperfect information on other dealers'

quotes (the book is closed), this de�nition is not completely straightforward. For this

reason, we detail the di�erent steps.

2.3.1 Expected Pro�ts.

The expected pro�t of a dealer upon execution depends on the position of his quote

relative to his competitor 's quote and in case of ties, on his priority status. In order to

keep track of priority, we de�ne the indicator variable qj
t
which takes the value 0 when j

does not have strict priority of execution at the best quote and 1 if j has strict priority.

If q
j

t
= 0, it is the case that j has either equal priority (with RAR) or no priority. We

denote by �j(a
h

t
; q

j

t
; a

j

t
) dealer j 's expected pro�t, conditional on the arrival of a buy

order at time t given the quote ah
t
of his competitor. We have for h; j 2 f1; 2g; h 6= j :

�j(a
h

t
; q

j

t
; a

j

t
) =

8>>>><
>>>>:

0 if a
j

t
> ah

t

0 if a
j

t
= ah

t
and q

j

t
= 0 under TPR:

L(aj
t
� �) if a

j

t
= ah

t
and q

j

t
= 1:

L

2
(a

j

t
� �) if a

j

t
= ah

t
and q

j

t
= 0 under RAR:

L(a
j

t
� �) if a

j

t
< ah

t

(1)

Of course, if the game ends before an order arrival, the dealers obtain a payo� equal to

zero. We denote s
j

t
= fam

t
; q

j

t
g the information on the state of the book available to dealer

j at time t. This information will be updated at dates � 2 f0; 1; :::g according to the

actions of the di�erent dealers. The following equations describe the possible values for

s
j

t
according to the dealers' o�ers :

8>>>><
>>>>:

s
j

t
= sj

�
8t 2 [�; � + 1[

sj
�
= (aj

�
; 1) if aj

�
< ah

�

sj
�
= (aj

�
; 1) if aj

�
= ah

�
and j has strict priority at aj

�

sj
�
= (ah

�
; 0) if aj

�
= ah

�
and j does not have strict priority at aj

�

sj
�
= (ah

�
; 0) if ah

�
< aj

�

(2)
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The �rst equation comes from the fact that traders' quotes are constant in the intervall

[�; � +1). Just before the quote revision at date � , the information available for j is s
j

��1.

Consequently let H
j

��1 =
S

k=��1
k=0 s

j

k
be the trading history observed by j until date � . It

is straightforward that a dealer can infer the trading history observed by his competitor

using his own trading history.

A dealer 's bidding strategy speci�es his quote, each time he has to react, as a function

of the trading history until that time. We will only consider pure strategies. For given

strategies of dealer 1 and 2, the next lemma provides a simple expression for the expected

pro�t of the dealers17.

Lemma 1 : For given bidding strategies of the two dealers, the expected pro�t of a dealer

at date �0, conditional on continuation of the trading process until this date and the trading

history is :

E(�j(a
h

~t
; q

j

~t
; a

j

~t
) j ~t � �0�;H

j

�0�1) =

+1X
�=�0

(
�

�+ 

)�(1 ��)(���0)�j(a

h

�
; qj

�
; aj

�
) (3)

with j; h 2 f1; 2g; j 6= h, � = 1� e(
+�)� and �j(a
h

�
; qj

�
; aj

�
) de�ned in Equation (1).

All the proofs are given in the Appendix. The intuition for this lemma is as follows.

First remark that dealers' pro�ts are constant over intervalls [�; � + 1). Second ( �

�+

)�

is the probability that an order arrives in an intervall [�; � + 1) before the payo� date is

realized. Finally (1��)(���0)� is the probability that the game will not stop before date � .

2.3.2 Beliefs Formation.

Consider a dealer who is given the opportunity to make a new o�er at date � . Certainly

his o�er will depend on the available information on the current state of the book : sj
��1.

When the dealer does not observe his competitor 's o�er (a consequence of the fact that

the book is closed), his o�er will be determined also by his belief concerning the position

of this o�er. Let â(H
j

��1) be this belief which can be a function of the observed trading

history. We call fsj
��1; â(H

j

��1)g the state of the market at date � for dealer j. We will

restrict our attention to markov strategies18, i.e. strategies which are functions of the

state of the market but not directly of the trading history. Moreover, we will consider

only symetric strategies : the two dealers behave in the same way in the same state of the

17We assume that dealers' discount factor is one since the dynamic interactions which are described
here take place over very short periods of time in practice.

18See Maskin and Tirole (1993) for a more formal discussion of markov strategies.
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market. Under these restrictions, we can represent the bidding strategies by a reaction

function R(:) which gives the price chosen by dealer j, when he has the opportunity to

make an o�er, for each possible state of the market19.

Consider a potential candidate R(:) for an equilibrium. When a dealer observes his com-

petitor 's quote (he has not strict priority), it is straightforward that : â(Hj

��1) = am
��1.

When he does not observe his competitor 's o�er (no strict priority), we distinguish two

cases. First if s
j

��1 = fam
��1; 1g is on the equilibrium path then a dealer 's belief must be

consistent with the equilibrium reaction of his competitor at the previous period, i.e. in

this case20 : â(Hj

��1) = R(sh
��2; â(H

h

��2)). If sj
��1 = fam

��1; 1g is out-of-the equilibrium

path then the beliefs are arbitrary. We assume that â(H
j

��1) = am
��1 + g in this case. As

discussed in Section 3 (Remark 1), this choice is without consequence for our results.

The dealers' bidding strategies will form a Markov sequential equilibrium if i) the strate-

gies are Markov, ii) the dealers form their beliefs on their competitors' quotes as explained

above and iii) for each possible state of the market, the quote posted by a dealer maximizes

his expected pro�t given the subsequent actions of his rival and himself.

Lemma 2 : Consider a trading history H
j

��1 which leads at date � to the following

observation for dealer j : s
j

��1 = fp; 1g. If this observation belongs to the equilibrium

path then â(H
j

��1) = R(p; 0; p).

This lemma means that dealers' beliefs on the equilibrium path have always a simple

structure : a dealer, quoting the best pricep, who does not observe his competitor 's

quote must believe that the latter has quoted the best response to the current best quote

p. This implies that in all the cases, the only part of the trading history which is useful

to form the beliefs is the current information on the state of the book. This allows us to

simplify our notations. From now on, let R(p; 0) be the optimal reaction of a dealer when

he observes the state of the book fp; 0g and let R(p; 1) be his optimal reaction when he

observes the state of the book fp; 1g. It will be implicit that if fp; 1g is on the equilib-

rium path, the dealer believes R(p; 0) to be the quote of his competitor (Lemma 2) while

if fp; 1g is not on the equilibrium path, he believes p+g to be the quote of his competitor.

2.3.3 Equilibrium De�nition.

19Because the trading game is stationary, we take the reaction function to be stationary, i.e. it does
not depend directly on time.

20Here we use the fact that dealer j can infer the trading history observed by dealer h. Consequently
he knows â(Hh

��2) and sh��2..
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Given a reaction function R(:), let V (sj
��1) be the expected pro�t of dealer j given i) the

state of the book at date � , ii) that j is about to react and iii) that from date �+1 on, both

dealers will behave according to the reaction function R(:). We also de�ne W (s
j

��1; a
j

��1)

the expected pro�t of dealer j at date � in state sj
��1 given that the other dealer is about

to react and that j chose a
j

��1 at the previous date. Using Lemma 1, V (:) can be expressed

by the dynamic programming relationship21 :

V (sj
��1) = max

aj2P
(

�

�+ 

)��j(â

j

�
; qj

�
; aj) + (1 ��)W (sj

�
; aj) (4)

and W (:; :) must be such that :

W (sj
�
; aj) = (

�

�+ 

)��j(R(s

h

�
); qj

�+1; aj) + (1� �)V (sj
�+1) (5)

where the evolution of the available information on the state of the book for j and his

competitor, between dates � and � + 1, is determined by the quote of j at date � and

henceforth by the actions prescribed by the reaction functions, according to Equation (2).

A reaction function is a Markov equilibrium if R(s
j

��1) is solution of (4) for each value of

s
j

��1 and when dealers' beliefs on their competitor 's quote are speci�ed as explained in

2.3.2.

3. Quote Dynamics in Equilibrium.

In this section, we analyze the possible patterns for the quotes in equilibrium, �rst when

time priority is enforced and second when the random allocation rule is enforced. We

relate these patterns to the size of minimum price variations, the waiting time between

new quotes and the frequency of liquidity traders' arrivals.

3.1 Equilibrium with Time Priority.

When a dealer is about to react, he has basically two choices. He can improve the current

best price by one or several ticks. In this case he captures price and time priority. Or he

can choose to match or to quote a higher price than the current best price, at the cost of

losing price and time priority for the next period. The next proposition establishes that

the second option is never optimal when a trader does not have time priority as long as

the price is greater than the competitive price p(1).

21See Maskin and Tirole (1988). As in their paper, we can apply dynamic programming because the
set of prices is �nite so that the conditional expected pro�ts functions are bounded. We follow closely
their notations here.
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Proposition 1 : Consider p a best quote on the equilibrium path and R(:) an equilibrium

reaction function.

1. A dealer always improves p if he does not have time priority at this price and if this

price is greater than or equal to p(2), i.e. : R(p; 0) < p if p � p(2).

2. If p = p(1) then R(p; 0) is equal to p(1) or p(2).

3. If p = p(1) then R(p; 1) is equal to p(1).

Proposition 1 restricts the possible patterns for the quotes in equilibrium. The �rst part

implies that the quotes will necessarily decrease as long as they are greater than the com-

petitive price. The second and the third parts imply that they will not change any more

when the competitive price is posted. One could argue that this is the prediction of the

static model of Bertrand competition. This interpretation is misleading for two reasons.

First, either one considers that the static model predicts an instantaneous adjustment of

quotes to the reservation prices or admits that it says nothing concerning the dynamics

of the adjustment. The next results show that the speed and the dynamics of the adjust-

ment can vary according to market conditions when price competition is dynamic. Second,

in view of the results obtained by Maskin and Tirole (1988), convergence to the static

outcome should not be expected. Indeed one should expect the prices to converge to a

greater price than p(1) or to never settle down, cycling for instance, between RB and p(1).

There are two reasons, related to market structure, for which we do not obtain the same

type of results as Maskin and Tirole (1988). First, dealers do not observe the price of

their rivals but only the best quote. This prevents a dealer from raising his quote above

the best quote in order to induce his rival to raise also his quote (a form of collusive

behavior which is shown to be possible in equilibrium by Maskin and Tirole). Actually a

dealer, say 1, cannot make public in a credible way that he has raised his quote to a given

level. If dealer 2 was to follow, raising his quote to the level immediately below the quote

dealer 1 claims to have posted, then dealer 1 would have an incentive to undercut dealer 2

\secretely", in the �rst place. This is reminiscent of the mechanism at work in the static

model of price competition. In fact, here, the dealers' information set is intermediate

between the case in which the dealers have no information on their competitors' o�ers

(as in static Bertrand competition) and the case in which they observe perfectly those

o�ers (as in Maskin and Tirole). The result stresses the importance of the market rules

concerning the information available on the quotes posted in the market for the outcome

of price competition between liquidity suppliers. A second reason is that time priority

prevents the dealers from sharing the market. Therefore, the dealers will improve upon

their competitor 's o�er until no further pro�table price improvements are possible.

12



With Proposition 1 at hand, we can now derive the dealers' bidding strategies in equilib-

rium. This is the next proposition We will denote the greatest integer strictly lower than

x by bbxcc.

Proposition 2 : The following reaction function is a sequential Markov equilibrium of

the dynamic price competition between dealers when time priority is enforced :

1. R(p; 0) = p� g if p(i� + 2) � p � RB.

2. R(p; 0) = p(1) if p(1) � p � p(i� + 1).

3. R(p; 1) = p if p(i� + 1) � p � RB:

4. R(p; 1) = p(1) if p(1) � p � p(i�):

with p(i� + 1) = h�+ g

2�
i
+ = p(1) + bb

(�+1)

2�
ccg.

The intuition for Proposition 2 is as follows. Consider a dealer who is about to react to

a quote p strictly greater than the competitive price. He faces the following trade-o�.

He can secure execution but at a low price, p(1), relatively to the current quote. He can

obtain a better execution price by slightly improving the current quote but in this case he

runs the risk of being undercut and �nally non-executed. For a given tick size and for a

given frequency of arrivals, the solution to this trade-o� is determined by the position of

the best quote. When the di�erence between the best quote and the asset expected value

is su�ciently large (i.e. when p � � > p(i� + 1) � �), the optimal decision is to improve

the current quote by only one tick. For lower markups, the dealer will improve once

for all the best price, quoting p(1). For a given quote p, the dealer 's bidding decision

is determined by the probability that an order will arrive before his competitor reacts

(�) and the tick size. When � is large, the execution risk when the dealer just slightly

improves his competitor 's quote is small. When the tick size is small, the dealer must

quote a very low price to secure execution while he can seize, temporarily, priority at

the cost of a small price improvement. In those two cases, small price improvements,

despite the execution risk they entail, are more attractive than a jump once for all to the

competitive price p(1). This explains that p(i� + 1) is decreasing in � and increasing in

the tick size. Proposition 2 has an immediate corollary :

Corollary 1 : In equilibrium, the dynamics of the best ask price in the market is as

follows :

am
�
= RB � �g for � � � �

TPR
(6)

am
�
= p(1) for � > � �

TPR
(7)

with � �
TPR

=
RB�p(i�+1)

g
. (See Figure 2).
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Corollary 1 describes the dynamics of the best price in equilibrium, given the buyer 's

reservation prices or the initial state of the book. Let denote by T �
TPR

, the time it takes

for the quotes to converge to the competitive level :

T �
TPR

= Maxf� �
TPR

+ 1; 0g� (8)

which gives :

T �
TPR

= Maxf
RB � �

g
+
1

2
� bb

� + 1

2�
cc; 0g� (9)

As shown in Section 4, T �
TPR

in
uences the size of the trading costs. When the markup

between the asset expected value and the buyers' reservation price or the initial quote in

the book is su�ciently large then prices will not adjust immediately. Moreover a decrease

in the tick size will tend to increase the length of time during which the quotes are greater

than p(1). Actually a decrease in the tick lowers i) the price (p(i�+1)) at which the deal-

ers �nd it pro�table to quote the competitive price and ii) the size of price improvements

in each period. T � is weakly increasing in the arrival frequency (�) and increasing in the

waiting time between successive quotes (�). The execution probability of a dealer in a

given period increases with those parameters and consequently such an increase reduces

the competitive pressures.

The results of this section show that uncompetitive spreads can be quoted even when

the dealers do not cooperate to set prices. This occurs because i) the dealers set prices

sequentially and not simultaneously and ii) there is some uncertainty concerning the ar-

rival date of an order. Interestingly, factors such as price discreteness and the waiting

time between o�ers or order arrivals are shown to a�ect the possibility of uncompetitive

spreads. However time priority and a closed book are su�cient conditions for the inside

spread to converge to the competitive level22.

Remark 1. The proof of Proposition 1 does not rely on the speci�cation of the dealers'

beliefs out-of-the equilibrium path. This entails that the dynamics of the quotes which

will be observed in equilibrium is independent of our speci�cation. In particular the price

p(i�+1) at which a dealer chooses to \jump" to the competitive price would be the same

for other choices for the beliefs out-of-the equilibrium path. However, the reaction of

the dealers for states out-of the equilibrium path in Proposition 2 depends on our spec-

i�cation. Consequently, strictly speaking, the equilibrium we have derived here is not

the unique equilibrium. Nevertheless this is inconsequential for the measure of trading

22Friedman (1993) �nds experimentally that spreads are larger in open book environments compared
to closed book environments. This is consistent with our results.
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costs which are determined only by the evolution of the best quote on the equilibriumpath.

3.2. Equilibrium without Time Priority.

In the last section, we proved that there was no price above the competitive price at which

it was optimal for a dealer to quote a price above the best quote (to induce his competitor

to do the same). As shown in the next proposition, this is still true with the random

allocation rule. This is a property of price formation in markets with closed order book

rather than a consequence of the allocation rule.

Proposition 3 : Let R(:) be an equilibrium reaction function.

1. Consider p a price on the equilibrium path. It is necessarily the case that : R(p; 0) �

p.

2. If �p is on the equilibrium path and such that R(�p; 0) = �p then 8p � �p;R(p; 0) 2 [�p; p).

Moreover it is necessarily the case that �p � p(2).

Proposition 3 (part 1 and 2) shows that in equilibrium, the dynamics of prices without

time priority will be similar to the dynamics with time priority : the best quote will

converge to a price at which no further price improvements take place. We call a price

with this property a focal price. The main di�erence is that this price is strictly above

the competitive price and at least equal to p(2) (part 2). This is to be compared with the

case in which dealers compete simultaneously for which the competitive price is another

possible outcome. Moreover, when time priority is enforced, we have shown previously

that the competitive price was the only possible focal price. The next result show that

there is always an equilibrium in which p(2) is a focal price. Proposition 5 states that

even more collusive prices can be sustained for some parameter values.

Proposition 4 : For all the parameters values, p(2) is a focal price which is sustained

in equilibrium by the following reaction function :

1. R(p; 0) = p� g if p(4) < p � RB

2. R(p; 0) = p(2) if p � p(4)

3. R(p; 1) = p if p(4) � p � RB

4. R(p; 1) = p(2) if p � p(4)
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As in the previous section, the next corollary gives the dynamics of quotes in this equi-

librium.

Corollary 2 : In the previous equilibrium, the dynamics of the best price is as follows :

am
�
= RB � �g for � � � �

RAR
(10)

am
�
= p(2) for � > � �

RAR
(11)

with � �
RAR

=
RB�p(4)

g
.

As with time priority, the bidding strategies depend on the the size of the initial spread

(RB ��) and the minimum price variation. De�ning T �
RAR

as in Equation (8), it is direct

that the time it takes for the quotes to reach the focal price is weakly increasing with the

initial size of the spread (RB � �) and weakly decreasing with the size of the tick for the

same reasons as with time priority. The main di�erence is that T �
RAR

is not in
uenced

any more by � which is a measure of the execution risk. This re
ects that execution risk

is much less a concern in absence of time priority. The intuition is straightforward. With

time priority, a dealer who does not quote the competitive price runs the risk of not being

able to execute the next trade. This risk increases as � decreases. With the random

allocation rule, this dealer has always the possibility to avoid non-execution by matching

the quote of his competitor if the latter quotes p(2).

Can we have greater focal prices than p(2)?

Proposition 5 : For � 2 [2
5
; 2
3
], it is possible to sustain higher focal prices (namely p(4)

or p(6)) in equilibrium.

For intermediate values of �, we �nd that very uncompetitive prices can be sustained.

These prices are greater than those which can be obtained when dealers quote their prices

simultaneously. The intuition is as follows. First � should not be too high, otherwise

the temptation to undercut is strong at any candidate to be a focal price above p(2).

Moreover a price greater than p(2) can be a focal price only if a dealer, say dealer 1,

expects to be undercut if he undercuts the focal price. If dealer 2 just matches dealer 1

's o�er when the latter undercuts the focal price then it becomes optimal for dealer 1, i)

to undercut the focal price and ii) to raise his quote in two periods to the focal price23.

But in order to induce a dealer to undercut his competitor when the latter has undercut

the focal price, � should not be too small.

23This will bring back the best price permanently to the focal price according to our speci�cation of

the beliefs out-of-the equilibrium path.
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The results of this section show that the random allocation rule creates opportunities for

collusive behavior which are not present when dealers quote their prices simultaneously

(Proposition 5) or when time priority is enforced (Proposition 4 and 5). This empha-

sizes one bene�t of time priority : uncompetitive spreads cannot last with time priority

while they can if it is not enforced. Time priority prevents the dealers from using bidding

strategies by which uncompetitive prices can be sustained in equilibrium.

Remark 2. With respect to the speci�cation of the beliefs out-of-the equilibrium path,

the same comments as in Remark 1 apply here.

4. Policy Implications.

We examine now the implications of the model concerning the choice of the tick size and

the priority rule in �nancial markets. For simplicity, we just consider the limit case in

which 
 = 0. This is because the expected trading costs are not de�ned if the game stops

before the order arrival time. Our conclusions are still valid (qualitatively) if we assume


 > 0 and if we specify, arbitrarily, the expected trading cost to be zero if the game stops

before the arrival of a market order. When 
 = 0, � is just the execution probability, in

the next intervall of time, of the limit order with execution priority.

4.1. Tick Size.

It has often been argued that, without a minimum price variation, price competition

between liquidity suppliers will drive down the prices to liquidity suppliers' reservation

prices and consequently a zero minimum price variation will minimize the inside spread.

This intuition is correct when liquidity suppliers quote their prices simultaneously24. The

previous results suggest that this intuition does not hold any more when the competition

for the order 
ow is dynamic. Actually, a too small tick will lengthen the time it takes for

the spreads to adjust to the competitive size and this can raise ultimately the expected

trading cost.

In order to examine this point more formally, suppose that initially the tick size is g(0) = g

and that one considers using a �ner grid size : g(n) = g

2n+1
n 2 IN. Shrinking the grid

in this way makes sure that � is always half way between a tick and that RB stays on the

grid. Consequently, the equilibria obtained for a grid size g(n) are the same as in Section

3, replacing g by g(n). In the case of the random allocation rule, we consider only the

equilibrium described in Proposition 4, which is the less collusive. Consequently we give

its best chance to this allocation rule against time priority.

24See Section 2.3. See also Anshuman and Kalay (1993) or Kandel and Marx (1996).
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Let ~TC(n) be the trading cost obtained with a grid of size g(n). It is measured by the

di�erence between the transaction price and the expected value of the asset. When time

priority is enforced, Corollary 1 implies :

~TC(n) =

�
am
�
� � if ~o 2 [�; � + 1) and ~o � � �

TPR

p(1)� � if ~o > � �
TPR

(12)

The de�nition of the trading cost is the same when the random allocation rule is used

except that � �
TPR

is replaced by � �
RAR

and p(1) is replaced by p(2). The trading cost is

random because the transaction price depends on the order arrival time which is random.

Moreover it depends on the tick size because the minimum price variation in
uences both

the di�erence between the transaction price (at a given point in time) and the asset

expected value (in particular (p(1)��)) and � �
TPR

(or � �
RAR

). We search n� such that the

grid size g(n�) minimizes the expected trading costs E( ~TC(n)). We suppose that g(0) is

su�ciently large so that there is some room for a decrease in the expected trading cost

with a �ner grid25. We obtain the following result.

Proposition 6 : The optimal tick size is always strictly greater than zero and depends

on the priority rule :

(i) With time priority, the optimal tick size is g(n�
TPR

) with n�
TPR

= bb
(1+2h(�))g0
4(RB��)

� 1cc

and h(�) = bb
�+1
2�

cc.

(ii) With the random allocation rule, the optimal tick size is g(n�
RAR

) if � � �� and

g(n�
RAR

+ 1) if � < �� with n�
RAR

= bb( 7g0
2(RB��)

� 1)1
2
cc. (�� is de�ned in the appendix.)

When time priority is enforced, the intuition is as follows. On one hand, a low tick reduces

the expected trading costs because it forces the dealers to quote a price very close to their

reservation value if they want to capture time priority once for all (i.e. if they want to be

executed with probability one). On the other hand, it reduces the dealers' incentives to

quote the competitive price immediately. This second e�ect increases the length of time

during which the inside spread will be greater than the competitive spread. This increases

the probability of an order execution at a relatively high price and the expected trading

costs. A tick bounded away from zero balances optimally those e�ects. We note that the

optimal tick size is increasing in �. This re
ects the fact that the option of quoting a

25This condition is satis�ed as soon as g(0) is su�ciently large for the associated �� to be lower than
0 for both allocation rules. We impose this condition just to avoid the case in which the grid should be
enlarged in order to minimize the expected trading costs so that n� = 0 would be the only solution in
our framework.
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large spread, at the risk of losing priority of execution, becomes more attractive in this

case. The tick must increase to counterbalance this e�ect. The same intuition is valid

when time priority is not enforced. The main di�erence is that the optimal tick is much

less sensitive on �. This is due to the fact that the dealers have no incentive to quote

initially the lowest possible spread, even when � is small, as long as RB � p(4).

The model establishes a rationale for the use of minimum price variations. However we

recognize that it is too stylised to point what should be the determinants of the optimal

tick size. Perhaps this question must be solved ultimately by empirical methods (see for

instance Harris (1994) or Ahn et al. (1996)). We o�er two remarks which could be useful

to guide further empirical investigations on this issue.

First whatever the allocation rule, the optimal tick size is weakly increasing with �. This

parameter is negatively related to the average waiting time between liquidity trader ar-

rivals (��1) and positively related to the waiting time between dealers arrivals (�). In the

model, the tick size should be small when the o�ers arrive su�ciently rapidly relative to

the frequency of liquidity trader arrivals. We conclude that the optimal tick size might be

related to the transaction frequency (a proxy for �) relative to the frequency of new o�ers.

Second the optimal tick size is not the same with time priority and with the random

allocation rule. Since the allocation rule is another dimension of the market structure,

this suggests that the optimal tick size might be dependent on other aspects of the market

structure26.

4.2 Priority Rule.

First we remark that the comparison of the equilibria with and without time priority

shows that time priority prevents bidding strategies by which dealers can sustain uncom-

petitive spreads. In cases in which implicit collusion might be a concern and time priority

is not enforced27, the model suggests that time priority could be used to destroy the pos-

sibilities of implicit collusion.

26In the same line, we have already emphasized that the di�erence of result with the previous literature
concerning the optimal tick size comes from the fact that we model di�erent market structures.

27Dutta and Madhavan (1995) and Kandel and Marx (1996) argue that the empirical results of Christie

and Schultz (1995) concerning dealers' pricing strategies in the NASDAQ can be explained by implicit

collusion among dealers. They do not consider time priority since NASDAQ does not enforce time

precedence among dealer quotes (except in the SOES system which represents a small fraction of the

order 
ow).
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The next proposition compares the size of the expected trading costs for the two allocation

rules and quali�es a bit the last statement.

Proposition 7 : For a given minimum price variation and RB > p(2), the expected

trading costs are minimized when time priority is enforced if � � �� while they are

minimized when the random allocation rule is enforced for � > �� with �� = 3�
p
5

2
.

Surprisingly, for su�ciently large values of �, trading costs can be higher when time pri-

ority is enforced. The intuition is as follows. Consider a dealer who is about to move

in state p(4). With time priority, this dealer compares the expected gain if he undercuts

with his expected gain if he quotes p(1). It turns out that for � > ��, the �rst alternative

is better than the second (in fact it is better for all prices greater than p(2)). With the

random allocation rule, the dealer is always better o� quoting directly p(2). Consequently,

trading might take place at quote p(3) with time priority while this will not occur with

the random allocation rule. Combined with the fact that the probability of execution at

a relatively high price is large when � > ��, this gives the result. This is illustrative of

one potential cost of time priority. The focal price with time priority (the competitive

price) is lower than the focal price without time priority but it might take more time to

reach the focal price when time priority is enforced.

5. Extensions.

5.1 Random Waiting Time between Dealers' O�ers.

In the previous sections, we assumed that dealers were moving in turn and revised their

quotes at �xed points in time. For empirical purpose, a more palatable assumption is

that the time intervall between quotes revisions is random.

Speci�cally, assume that the time between quotes revisions by a given dealer is exponen-

tially distributed with parameter r. A di�culty arises when the dealer who considers

revising her quote has strict priority at the best quote since the last time she moved.

Actually, in this case it can be that either her competitor has not revised his quote yet

or that her competitor has not improved upon her quote. Although this will not change

the results obtained previously, this uncertainty would make the presentation and the

derivations of the results substantially more involved28. In order to avoid this problem,

let simply assume that a dealer in this situation receives some information which allows

to distinguish between the two cases mentionned above. Under this assumption, it is

28The intuition that the results are unchanged is as follows. In this case, dealers must assign a proba-
bility to each of the two possible events. Then we can proceed as in Section 3 to show that the probability
of a dealer not improving the best quote in equilibrium must be zero. As a consequence, the equilibria
will be of the same type as the equilibria described in Section 3.

20



straightforward that a dealer does not change her quote as long as she does not observe

or learn that her competitor has revised his quote since her last move.

We denote by ~�(k) the date of the kth quote revision such that the dealers acting at

dates ~� (k) and ~� (k + 1) are di�erent. The last remark of the previous paragraph implies

that the dealers' expected pro�ts conditional on the arrival of an order in the intervall

[~�(k); ~� (k+1)[ are constant. Moreover they just depend on k and not on the date � (k) at

which the order revision takes place. In this case, some algebra shows that the expected

pro�t of a dealer revising his quote at date � (k) can be written as :

E(�j(a
h

~t
; q

j

~t
; a

j

~t
) j ~t � � (k)�;Hj

�(k�1)) =

+1X
l=k

(
�

� + 
 + r
)(

r

�+ 
 + r)
)l�k�j(a

h

�(l); q
j

�(l)
; a

j

�(l)
)

(13)

with j 6= h and fj; hg 2 f1; 2g. De�ning �0 = �+


�+
+r
, we get :

E(�j(a
h

~t
; q

j

~t
; a

j

~t
) j ~t � � (k)�;Hj

�(k�1)) =

+1X
l=k

(
�

� + 

)�0(1� �0)l�k�j(a

h

�(l); q
j

�(l)
; a

j

�(l)
) (14)

Equation (14) shows that formally the random waiting time model is the analogue of the

model in which dealers were alternating in quoting prices at discrete points in time (�0

playing the role of �). Consequently, the results obtained are still valid in this case. For


 = 0, the execution probability (�0) of the best quote is increasing in the ratio �

r
. This

remark will be used when we discuss the empirical implications of the model.

5.2 A Large Number of Dealers.

Two properties of the equilibria obtained with two dealers which are crucial for our policy

implications. First, the adjustment of quotes to the competitive price is not immediate.

Second, when time priority is not enforced, uncompetitive spreads can be sustained in

equilibrium. We argue now that these properties still hold when more than two liquidity

suppliers compete for the order 
ow.

With time priority.

One might wonder if the the adjustment of quotes to competitive levels is not faster when

one enlarges the number of traders. In order to deal with this concern, let consider a

polar case in which the number of dealers is large so that each dealer has the opportunity

to move only once.
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In this case, the analysis is simpli�ed since it cannot be optimal for a dealer to quote a

price above the best price. In fact, since the dealers are o�ered only one opportunity to

quote a price, we can dispense with our assumption that the book is closed. The choice

of a dealer arriving at date � is either to quote p(1) or to quote am
��1 � g. A dealer will

undercut the best quote by only one tick if :

�(am
��1 � g � �) � (p(1) � �) (15)

This inequality is satis�ed as long as am
��1 � p(i� + 2). This implies that quotes will be

improved by small increments as long as the best quote is greater than p(i� + 1) and the

quotes dynamics will be exactly the same as the dynamics obtained when two dealers

move in turn repeatedly.

Without time priority.

We want to show that even when the number of traders is large, p(2) can still be a focal

price when time priority is not used. Here again in order to focus directly on the issue

in the simplest manner, we consider the particular case in which RB = p(2). In this case

there are only two possible positions for the price of a dealer : p(1) or p(2). We suppose

that the number of dealers is N > 2 and that the dealers choose their prices in turn. In

this setting, there are always parameters values (for N and �) such that p(2) is a focal

price in equilibrium. We just convey the intuition, skipping the formal proof for brevity.

Consider a dealer, say n, who is about to revise his o�er. If dealer n matches the current

o�er, he obtains (taking into account that p(2) is a focal price) :

(
�

� + 

)
(p(2)� �)

N
(16)

If he undercuts, his expected pro�t depends on the reaction of his rivals. It is clear that if,

in equilibrium, none of his rivals match his o�er at p(1) then they do not behave optimally.

Therefore, his o�er will be matched by at least one competitor. But in this case, one can

show that the best response of all the dealers is to quote p(1). when they will revise their

quote. The expected pro�t of a dealer who undercuts p(2) is then :

(
�

� + 

)(p(1)� �)[

k=N�2X
k=0

�
(1� �)k

k + 1
+
(1� �)N�1

N
)] (17)

Comparison of (16) and (17) show that, for a given number of dealers, dealer n is better

o� quoting p(2) than undercutting if � is su�ciently small. Now if it is optimal for a

dealer to quote p(2) when the N dealers quote this price, it is certainly still the case

when less than N � 1 other dealers have already made an o�er at p(2). Consequently all
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the values for N and � such that (16) is greater than (17) are such that p(2) is a focal price.

The result is in sharp contrast with the prediction of the static model of Bertrand compe-

tition. For N > 3, p(1) is the unique outcome in this case. The reason of this di�erence

is straightforward. In a dynamic setting, a dealer who undercuts p(2) takes into account

that his competitors will react optimally by matching his o�er. This threat can deter a

dealer from undercutting the uncompetitive spread when � is low. Actually, in this case,

the decrease in pro�t which occurs as his competitors decrease their spreads dominates

the immediate expected pro�t to capturing a large share of the order 
ow29.

To sum up, even when the number of dealers is large, non-competitive ask prices can still

be obtained when time priority is not enforced. However uncompetitive quotes are more

di�cult to sustain as N or � are large.

6. Testable Implications.

6.1 Trading Costs Determinants.

Many empirical studies analyze the links between the size of the inside spread and the

transaction frequency. The model suggests that the frequency of new o�ers might also

be an important determinant of trading costs. Actually the expected trading costs are

weakly increasing in � under both allocation rules. With the random allocation rule, it

takes some time for the quotes to adjust whatever the value of �. As a consequence when

� increases the probability of a trade at a price greater than the lowest possible price

increases and this gives the result. With time priority this e�ect is combined with the

fact that � needs to be su�ciently large in order to induce the dealers to choose quotes

above the competitive level. The random waiting time version (Section 5.1) shows that �

is positively related to the frequency of liquidity trader arrivals in the market (�) and in-

versely related to the frequency of quotes changes by liquidity suppliers (r). For empirical

purposes, the transaction frequency could be taken as a proxy for � while the frequency

of new limit order within the inside spread could be taken as a proxy30for r. The model

predicts that larger spreads should be observed on average when the ratio between the

transaction frequency and the frequency of new limit orders within the spread increases.

6.2 Quotes Dynamics.

Our results (Proposition 2 and 4) show that price improvements should occur in sequence

29Although our framework is very di�erent, this is reminiscent of Dutta and Madhavan (1995).
30because in the model, in equilibrium, quotes revision necessarily lead to price improvements if the

ask price is not competitive.
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when the spread is large. On the contrary, a unique or no price improvement should be

observed when the spread is small. This relationship between the dynamics of the quotes

and the state of the book (characterized by the size of the spread) is consistent with the

empirical �ndings in Biais, Hillion and Spatt (1995). Moreover di�erent quotes dynamics

should be observed according to market conditions when time priority is enforced. Actu-

ally succession of small price improvements should be more frequent when � is large than

� is small. Other things equal, this sensitivity of the quotes dynamic to � should not be

observed in markets in which time priority is not enforced. Finally the model predicts

that spreads will depend on the time between transactions, with spreads being decreasing

as this time increases. Easley and O'Hara (1992) obtain the same result but for a very

di�erent reason. In their model, the absence of trade is a signal which induces the dealers

to revise downward their probability of trading with an informed agent. Here, the spread

does not immediately adjust to its lowest possible level but is reduced over time because

of price competition between liquidity suppliers.

7. Conclusions.

This paper analyzes the impact of two trading rules, namely the use of a minimum price

variation and time priority, on the price competition between liquidity suppliers and the

trading costs. We model explicitly the dynamic bidding process which characterizes the

competition between liquidity suppliers in continuous limit order markets. In this setting,

we obtain that a zero minimum price variation never minimizes the trading costs and

that time priority, contrary to another simple tie-breaking rule, prevents uncompetitive

spreads to be sustained over time. We investigate also how the dynamics of the quotes is

related to the characteristics of the order arrival process.

Two important extensions could be considered. In our stylised framework, liquidity sup-

pliers choose quotes but not quantities. We assume, in line with the Bertrand analysis,

that at their posted quotes the dealers stand ready to accomodate the incoming mar-

ket orders up to the maximum possible quantity for those orders31. As quantity is also

a decision variable, future research should consider dynamic competition when liquidity

suppliers can announce both a price and a maximum quantity. In our analysis, the time

between liquidity suppliers' o�ers is exogenous. It would be interesting to endogenize

this time in order to analyze what are the possible determinants of the waiting time be-

tween quotes. This would help to better understand the order arrival process in �nancial

31Note that this assumption is also present in most of the models of price formation in dealership
markets. In those models, dealers are allowed to quote prices contingent on the total order 
ow but this
is quite di�erent from quoting prices and quantities contingent on the order 
ow. See Dennert (1993)
and Biais et al.(1996) for the e�ects of allowing dealers to choose both prices and quantities.
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markets.

25



7. References.

Anh, H. J., Cao, C. and Choe, H. (1996). Tick Size, Spread and Volume, Journal of

Financial Intermediation 5, 2{22.

Anshuman, V. R. and Kalai, A. (1994). Market-Making Rents under Discrete Prices :

Theory and Evidences, mimeo, Boston College, U.S.A.

Bernhardt, D. and Hughson, E. (1995). Discrete Pricing and the Design of Dealerships

Markets, forthcoming Journal of Economic Theory.

Biais, B., Foucault, T. and Salani�e, F., (1996). Collusion on Wide Spreads, Working

Paper, Pompeu Fabra University.

Biais, B., Hillion, P., and Spatt, C. (1995). An Empirical Analysis of the Limit Order

Book and the Order Flow in the Paris Bourse, Journal of Finance 50, 1655{1689.

Chordia, T. and Subrahamanyam, A. (1995). Market-Making, The Tick Size, and Payment-

for-Order Flow : Theory and Evidence, Journal of Business, 68 543{575.

Christie, W. and Schultz, P. (1994). Why do NASDAQ market-makers avoid odd-eight

quotes?, Journal of Finance 49, 1841{1860.

Dennert, J. (1993). Price Competition between Market-Makers, Review of Economic

Studies 60, 735{751.

Domowitz, I. (1993). A Taxonomy of Automated Trade Execution Systems, Journal of

International Money and Finance 12, 607{631.

Dutta, P. and Madhavan, A. (1995). Competition and Collusion in Dealer Markets,

mimeo, University of Southern California.

Easley, D., Kiefer, N., and O'Hara, M. (1995). Liquidity, Information and Infrequently

Traded Stocks, Working Paper, Aarhus Universitet, Danmark.

Easley, D. and O'Hara, M. (1992). Time and the Process of Security Price Adjustment,

Journal of Finance 47, 577{605.

Friedman, D. (1993). How Trading Institutions a�ect Market Performance : some Labo-

ratory Evidence, Economic Inquiry 31, 410{435.

26



Garman, M. (1976). \Market Microstructure", Journal of Financial Economics 3, 257{

275.

Glosten, L. and Milgrom, P. (1985). Bid Ask and Transaction Prices in a Specialist Mar-

ket with Heterogeneously Informed Traders, Journal of Financial Economics 14, 71{100.

Glosten, L. and Harris, L. (1988). Estimating the Components of the Bid-Ask Spread,

Journal of Financial Economics 21, 123{142.

Gottlieb, G. and Kalay, A. (1985). Implications of the Discreteness of Observed Stock

Prices, Journal of Finance 35, 135{153.

Harris, L. (1994). Minimum Price Variations, Discrete Bid-Ask Spreads and Quotations

Sizes, Review of Financial Studies 4, 389{415.

Hausman, J., Lo, A. and MacKinlay, C. (1992). An Ordered Probit Analysis of Transac-

tion Stock Prices, Journal of Financial Economics 31, 319{379.

Hedvall, K. and Niemeyer, J. (1996). Order Flow Dynamics : Evidence from the Helsinki

Stock Exchange, mimeo, Stockholm School of Economics.

Ho, T. and Stoll, H. (1981). Optimal Dealer Pricing under Transaction and Return Un-

certainty", Journal of Financial Economics 9, 47{73.

Kandel, E. and Marx, L. (1996). NASDAQ Market Structure and Spread Patterns, forth-

coming Journal of Financial Economics.

Massimb, M.N. and Phelps, B.D. (1994). Electronic Trading, Market Structure, and Liq-

uidity, Financial Analysts Journal 50, 39-50.

Maskin, E. and Tirole, J. (1988), A Theory of dynamic Oligopoly II: Price Competition,

Kinked Demand Curves and Edgeworth Cycles, Econometrica 56, 571-599.

Maskin, E. and Tirole, J. (1993). Markov Perfect Equilibrium, mimeo, Toulouse Univer-

sity.

Parlour, C. (1996). Price Dynamics in Limit Order Markets, mimeo, Carnegie Mellon

University.

27



Appendix.

Figure 1.

This graphic is the same as Figure 3 page 1681 in Biais,Hillion and Spatt (1995). It

represents the evolution of the best quotes (the full line is the ask quote and the dashed

line the bid quote) for Elf-Aquitaine, November 9, 1991. The dots represent transaction

prices. This �gure is chosen by the authors because it illustrates both mean-reversion

in the spread and competition in the supply of liquidity. The initial sequence of orders

widens the spread and triggers a decrease in the bid until FF438:1. Then new bid quotes

are posted outbidding each other, bringing back the bid to FF440:5. The tick size for

this stock is FF0:1.
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Figure 2.

Quotes dynamics with Time Priority.
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Proof of Lemma 1. In order to simplify a bit the notations, let �
j

~t
� �j(a

h

~t
; q

j

~t
; a

j

~t
).

By de�nition, if ~o � ~T then the game stops because of an order arrival. Remark that i) the

expected pro�t of a dealer is zero if the game stops before execution. and ii) that the date at

which the game stops is independent of the trading history. These remarks imply that :

E(�
j

~t
j ~t � �0�; H

j

�0�1) =

Z +1

�0�

E(�
j

~t
j ~o = o; ~T � o;H

j

�0�1)Prob(
~T � o j ~T � �0�)�e��(o��0�)do

(18)

Now for a given history until time �0, E(�
j

~t
j ~o = o; ~T � o;H

j

�0�1) = �
j

o. Using this remark and

the fact that ~T is exponentially distributed, we get :

E(�
j

~t
j ~t � �0�; H

j

�0�1) = �

Z +1

�0�

�j

o
e
�(�+
)(o��0�)do (19)

Now �
j

o = �
j

� ; 8o 2 [��; (� + 1)�). This implies that we can rewrite (19) :

E(�
j

~t
j ~t � �0�; H

j

�0�1) = (
�

�+ 

)

+1X
�=�0

�j

�

Z (�+1)�

��

(�+ 
)e�(�+
)(o��0�)do (20)

Then direct computations give the result announced in the lemma. Q.E.D.

Proof of Lemma 2.

a) If time priority is enforced. Initial remark. In state fp; 1g, it is necessarily the case

that â � p. If â > p then R(p; 1; â) = R(â; 0; â). Actually a dealer in state : (p; 1; â) has

exactly the same opportunities as a dealer in state (â; 0; â). If â = p, either R(p; 1; â) = p or

R(p; 1; â) = R(p; 0; p) because a dealer with time priority at p, knowing that his competitor

has quoted p, is not more constrained than a dealer without time priority at p and he has the

additional possibility to keep priority at p.

Consider now a dealer, say 1, who is about to move at date � and who has priority at the current

price am
��1 = p. It is necessarily the case that he quoted this price at time � � 2. Two cases can

occur.

Case 1. Dealer 1 has captured strict priority at time ��2 and he has not been undercut at time

� �1 by his competitor. In equilibrium, his competitor has reacted o�ering R(p; 0; p). Therefore

the belief of dealer 1 must be R(p; 0; p).

Case 2. Dealer 1 has not seized strict priority at time � � 2. Let p
0

be dealer 2 's price just

before he reacts at � � 1. If fp0; 1g is on the equilibrium path, then dealer 2 must have infered

correctly that dealer 1 o�ered p at time � � 2. Therefore according to our initial remark, he

must react with R(p0; 1; p) = R(p; 0; p) if p0 6= p. If p0 = p and if R(p0; 1; p) = p then dealer 1

cannot have priority at fp; 1g at time � . Therefore R(p0; 1; p) = R(p; 0; p) in this case also. If

fp0; 1g is not on the equilibrium path, then in equilibrium Case 1 must occur (otherwise fp; 1g
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would be reached only with out-of-equilibrium actions).

b) If time priority is not enforced. In this case, it is necessarily the case that â > p when

a dealer does not observe his competitor 's quote. Then the proof is exactly the same as before,

except that we do not need to consider the case in which p
0 = p.Q.E.D.

The following two lemmae are useful to establish Proposition 1.

Lemma 3 : In equilibrium, if R(p; 0) = p and if fp; 1g belongs to the equilibrium path then

R(p; 1) = p.

Proof : If fp; 1g belongs to the equilibrium path, then the dealer who observes state fp; 1g

believes that his competitor has quoted R(p; 0) � p (Lemma 2). We have either R(p; 1) =

R(R(p; 0); 0) or R(p; 1) = p (see remark of the proof of Lemma 2). If R(p; 0) = p then it is

straightforward that, in all the cases, R(p; 1) = p.Q.E.D.

Lemma 4 : In equilibrium, the set of prices such that R(p; 0)> p and R(p; 1) > p with p �

p(1) is empty.

Proof :

Assume that this is not the case and denote by p
� the largest price such that R(p�; 0) > p

�

and R(p�; 1) > p
�. Consider �rst the case of a dealer, say dealer 1, reacting to state fp�; 0g.

Assume (to be contradicted) that dealer 1 reacts with : R(p�; 0) > R(p�; 1). He will lose

price priority for the next two rounds and dealer 2 will quote R(p�; 1) at the next period.

Consequently dealer 1 obtains (1 � �)2V (R(p�; 1); 0). Now consider the following deviation

for dealer 1. He quotes (secretely) R(p�; 0) = R(p�; 1), he obtains time priority over the

next dealer in one period (because this dealer will quote R(p�; 1) > p
�) and then (in two

periods) he follows the pricing policy he would follow in state fR(p�; 1); 0g. This deviation

gives him (1 � �) �

�+

��1(R(p

�
; 1); 1; R(p�; 1)) + (1 � �)2V (R(p�; 1); 0) which is greater than

(1� �)2V (R(p�; 1); 0). This implies that in equilibrium, it is necessarily the case that :

R(p�; 0) � R(p�; 1) (21)

Now consider dealer 1 reacting in state fp�; 1g. According to Lemma 2, dealer 1 conjectures

that dealer 2 has posted R(p�; 0). Moreover R(p�; 1) = R(R(p�; 0); 0) since the problem faced

by dealer 1 is similar to the problem he would face in state fR(p�; 0); 0g because R(p�; 0) > p
�.

We prove now that R(R(p�; 0); 0)< R(p�; 0).

By de�nition of p�, it must be the case, since R(p�; 0) > p
� that a) either R(R(p�; 0); 0)� R(p�; 0)

or b) R(R(p�; 0); 1)� R(p�; 0).

If b) is satis�ed then we can show that R(R(p�; 0); 0)< R(p�; 0) as follows. De�ne p0 � R(p�; 0)

in order to simplify the notation. There are 4 cases :

Case 1. R(p0; 1) = p
0. In this case it is clear that R(p0; 0) � p is not optimal since this would

give a zero expected pro�t to the dealer moving in state fp0; 0g while he could obtain a strictly

positive expected pro�t by undercutting (because p0 � p(2))).
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Case 2. R(p0; 1) � p
0�2g. Suppose that in equilibrium dealer 1 reacts to fp0; 0g with R(p0; 0) �

p
0. Then he loses priority for the next two periods and he obtains : (1��)2V (R(p0; 1); 0). Now

consider the deviation which consists in quoting p
0 � g for dealer 1. Dealer 2 will still quote

R(p0; 1) < p
0
� g at the next period since he has lost priority over a set of prices that he would

not have chosen anyway. Therefore dealer 1 obtains �

�+

��1(p

0
; 1; p0�g)+(1��)2V (R(p0; 1); 0)

which is strictly better (because p0 � p(2)) than what he is supposed to obtain in equilibrium.

A contradiction. Therefore R(p0; 0) < p
0 in this case also.

Case 3. R(p0; 1) = p
0 � g = p

�. Suppose that in equilibrium dealer 1 reacts to fp0; 0g with

R(p0; 0) � p
0. If p� = p

0
� g then the expected pro�t of the dealer moving in state fp0; 1g is

bounded by �(p0; 1; p0). But then R(p0; 1) = p
0 is optimal since it gives exactly this pro�t if

R(p0; 0) � p
0.

Case 4. If R(p0; 1) = p
0 � g > p

�. Suppose that in equilibrium dealer 1 reacts to fp0; 0g with

R(p0; 0) � p
0 and that he optimally undercuts in state fp0�g; 0g with R(p0�g; 0). Then there is a

contradiction since dealer 1 would be better o� quoting initially directly R(p0�g; 0), rather than

losing the chance to trade during two periods (postponing pro�ts two periods is suboptimal). If

dealer 1 does not undercut in state fp0� g; 0g, then we have necessarily R(p0� g; 1) � p
0� g by

de�nition of p�. Then it is clear that we can reiterate the arguments o�ered for Case 1, 2 and 3

until the contradiction is found.

If a) is satis�ed as an equality then Lemma 3 implies that R(R(p�; 0); 1) = R(p�; 0). But in

this case, the dealer who reacts to fR(p�; 0); 0g will obtain a zero pro�t while he can obtain a

strictly positive pro�t by undercutting of at least one tick. Therefore, in all the cases, we must

have R(R(p�; 0); 0)< R(p�; 0) which means :

R(p�; 1) < R(p�; 0) (22)

but then we arrive to a contradiction between (21) and (22). Therefore p� does not exist. Q.E.D

Proof of Proposition 1.

Step 1. We know from Lemma 4 that R(p(1); 1) > p(1) and R(p(1); 0) > p(1) cannot be

obtained in equilibrium. Moreover Lemma 3 implies that R(p(1); 1)> p(1) and R(p(1); 0) =

p(1) is impossible in equilibrium. Therefore the only possibilities are i) R(p(1); 1) = p(1) and

R(p(1); 0) = p(1) or R(p(1); 1) = p(1) and R(p(1); 0) = p(2). This proves the second and the

third claim of Proposition 1.

Step 2. Now consider any price such that p � p(2). Lemma 4 implies that at least one of those

two inequalities must be true a) either R(p; 0) � p or b) R(p; 1) � p. Now using Lemma 3 and

the previous step, it is straightforward that R(p; 0) � p cannot be optimal since with such a

reaction, a dealer would lose the chance to trade during two periods and would not trigger an

increase in the quote of the other dealer. This implies that necessarily R(p; 0) < p for p � p(2)

which is the �rst claim of Proposition 1. Q.E.D.

Proof of Proposition 2. Denote by i
� the �rst integer below 1

2
( 1
�
+ 1). We
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have : p(i� + 1) = p(1) + bb
1
2
( 1
�
+ 1)ccg. Remark that i� � 1 since � < 1.

Case 1. Consider a dealer in state fp(i); 0g; p(i)2 [p(2); p(i�+1)]. If he quotes p(1), he obtains

strict priority until the end of the game and an expected gain of ( �

�+
 )
g

2L. If he undercuts of one

tick and if he is not executed before the arrival of his competitor, he will lose priority until the

end of the game according to the conjectured equilibrium. Consequently this alternative gives

him an expected pro�t of ( �

�+

)�g

2
(2i� 3)L. This is lower than �

�+

g

2
L since i � i

�+ 1. Finally

if he quotes a price greater than or equal to p, the other dealer will maintain his quote at the

same level as long as he is not undercut or will quote p(1) at the next round. Consequently, the

dealer must choose p(1), which proves the second part of Proposition 2.

Case 2. Now consider a dealer in state fp(i); 0g with p(i) 2 [p(i� + 2); RB]. First remark that

in this case, if the dealer undercuts of one tick he obtains at least : ( �

�+

)�g

2
(2i� 3)L while if

he quotes p(1) he obtains : �

�+

g

2L. Since i > i
�+1, the dealer is better o� if he just undercuts.

Moreover his competitor will not change his quote as long as this quote is not improved since

p(i) > p(i�). Consequently in this case R(p(i); 0) = p(i) � g is a best response. This proves

the �rst part of Proposition 2. The third part of the proposition has already been obtained in

Proposition 1.

Case 3. Consider a dealer in state fp(i); 1g with p(i� + 1) � p(i) � RB. proposition 1 implies

that fp; 1g is never on the equilibrium path if p > p(1). Consequently the dealer believes that

his competitor has quoted p(i) + g. Since p(i) + g � p(i�+ 2), using the argument developed in

the previous case, it is straightforward that R(p(i); 1) = p(i) is a best response for the dealer.

This proves the fourth part of Proposition 2.

Case 4. Finally consider a dealer in state fp(i); 1gwith p(1) � p(i) � p(i�). For the same reason

as before, the dealer believes that his competitor has quoted p(i) + g. Since p(i) + g � p(i�+1),

using the argument developed in the �rst case, it is straightforward that R(p(i); 1) = p(1) is a

best response for the dealer. This proves the �fth part of Proposition 2. Q.E.D.

Proof of Corollary 1. Consider the dealer who is about to react at time 0.

There is no quote posted in the book at this time. Quoting a price strictly greater than RB is

not optimal since he has no chance to be executed as long as his quote is not lower than RB.

Case 3 in the proof of Proposition 2 shows that the dealer must quote RB if RB � p(i� + 1).

Then from Proposition 2, we deduce that the dealers will continue to undercut each other until

time ��
TPR

such that : RB��
�
TPR

g = p(i�+1). The dealer who is about to move at time ��
TPR

+1

will observe a best quote equal to p(i�+ 1) and consequently will quote p(1). If RB < p(i�+ 1)

then �
�
< 0 and the �rst dealer quotes immediately p(1). Q.E.D.

The following result is useful to prove Proposition 3 :

Lemma 5 : In equilibrium, with the random allocation rule, if p� is the greatest price such that

R(p�; 0) > p
� and R(p�; 1) > p

� then R(p�; 0) = R(p�; 1) and R(R(p�; 0); 0) = R((R(p�; 0); 1) =

R(p�; 0).
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Proof : The proof that R(p�; 0) = R(p�; 1) follows the steps of the proof of Lemma 4. The

only di�erence is that in Case 1, we cannot exclude that R(R(p�; 0); 0) = R(p�; 0) because with

the random allocation rule, a trader can still hope some gains if he matches his competitor 's

quote. The arguments used in the proof of Lemma 4 show that p� can exist only if this equal-

ity is satis�ed. Therefore it must be the case that : R(R(p�; 0); 0) = R(p�; 0). The fact that

R(R(p�; 0); 1) = R(p�; 0) comes from Lemma 3. Q.E.D.

Proof of Proposition 3.

Part 1). Suppose that it exists p� on the equilibrium path such thatR(p�; 0) > p
� and R(p�; 1) >

p
�. Then Lemma 5 implies that R(p�; 0) = R(p�; 1). De�ne �p � R(p�; 0). From Lemma 5, we

have : R(�p; 0) = R(�p; 1) = �p. Let call a price with this property a focal price. For p� to be on

the equilibrium path, it must exist : p̂ > �p such that R(p̂; 0) = p
� or R(p̂; 1) = p

�. With this

reaction at p̂, a dealer obtains :

�

�+ 

L[�(p�� �) + �(1� �)(p� � �) + (1� �)2

(�p� �)

2
] (23)

Morever since R(p�; 0) = �p, it must be the case that :

�

�+ 

(1� �)L

(�p� �)

2
� L

�

�+ 

[�

(p�� �)

2
+ �(1� �)(p� � �) + (1� �)2

(�p� �)

2
] (24)

Now at price p̂, quoting directly �p, a dealer could obtain :

�

�+ 

L[�(�p� �) + �(1� �)

(�p� �)

2
+ (1� �)2

(�p� �)

2
] (25)

Using Equation (24), it is straightforward that (25) is greater than (23). Therefore p� cannot

be on the equilibrium path. This implies that R(p; 0) � p or R(p; 1) � p 8p on the equilibrium

path. Now it is clear that R(p; 0) > p is suboptimal since it will never induce a competitor to

raise his quote above the best quote. Therefore it is always the case that : R(p; 0) � p.

Part 2. Consider a focal price �p, i.e. such that R(�p; 0) = R(�p; 1), on the equilibrium path.

The previous part implies that R(p; 0) � p 8p � �p. If R(p; 0) = p then p is another focal

point above �p but then it is easy to show that �p cannot be on the equilibrium path. Moreover

R(p; 0) < �p cannot be optimal in equilibrium. Actually this would imply that :

�L(R(p; 0)� �) + (1� �)W (p; 1; R(p; 0))> �L(�p� �) + (1� �)L
(�p� �)

2
(26)

But since R(�p; 0) = �p then :

�L(R(p; 0)� �) + (1� �)W (�p; 1; R(p; 0))� L
�(�p� �)

2
+ (1� �)L

(�p� �)

2
(27)

Since R(p; 0) < �p, W (�p; 1; R(p; 0)) = W (p; 1; R(p; 0)) and the two previous inequalities cannot

hold simultaneously. This proves that R(p; 0) 2 [�p; p) for p > �p.
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We prove now that �p � p(2). Suppose that this is not the case and that there exists an

equilibrium with �p = p(1). Consider a dealer in state fp(2); 0g. If he quotes p(2), he obtains at

least (assuming that the other dealer undercuts, choosing p(1) until the end of the game, which

is the worst possibility) :

[�(
p(2)� �

2
) + (1� �)2(

p(1)� �

2
)]L (28)

If he undercuts he gets :

[�(p(1)� �) + (1� �)2(
p(1)� �

2
)]L (29)

It is straightforward that Equation (28) is always greater than Equation (29). Consequently,

R(p(2); 0) = p(2). But then this implies that at any price above p(2), a dealer is better o�

quoting p(2) instead of p(1). Consequently p(1) cannot be on the equilibrium path. Q.E.D.

Proof of Proposition 4.

We can proceed as in the proof of Proposition 2 to show that the reaction function of Proposition

4 is an equilibrium. The computations are routine.

Proof of Proposition 5.

This proof is long and is skipped for the sake of brevity. It can be obtained upon request.

Proof of Proposition 6.

a) With time priority. We remark �rst that ��
TPR

is decreasing in g(n), i.e. increasing in n

and that it is positive as soon as n is su�ciently large for RB � p(i� + 1) to be positive. Let

n
�
TPR

be the greatest value of n such that ��
TPR

is negative (i.e. p(i� + 1) > RB). Using the

de�nition of ��
TPR

, one obtains :

n
�
TPR

= bb
(1 + 2h(�)

4(RB � �)
g � 1cc (30)

with h(�) = bb
�+1
2�

cc. First we consider the di�erence in expected trading cost for a grid of size

g(n+ 1) and for a grid of size g(n) for n � n
�
TPR

+ 1. Denote E(�TC(n+ 1)) this di�erence.

Using Equation (12), Corollary 1 and the fact that �� is decreasing with the tick size, some

algebra yields :

E(�TC(n+ 1)) �
�g

�
K(�; ��(n)) (31)

with K(�; ��(n)) = (1��(1��)(�
�(n)+1)� (��(n) + 1)(1��)(�

�(n)+1) + �
�(n)(1� �)(�

�(n)+2))

and �
�(n) = �

�
TPR

(n). As ��(n) � 0 for n � n
�
TPR

, it is straightforward that the R.H.S of
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(31) is positive. This implies that the expected trading costs increase as the tick decreases for

n � n
�
TPR

+1. Now suppose that g(n) is large enough (n � n
�
TPR

) so that ��
TPR

is negative, the

quotes adjust immediately to p(1). The expected trading cost in this case is :

E( ~TC(n)) =
g(n)

2
(32)

In this case the expected trading cost decreases with g(n). This shows that the optimal value

for n is either n�
TPR

or n�
TPR

+ 1. Now if g(n�
TPR

+ 1) is chosen, the expected trading cost is at

least :

E( ~TC(n)) = �(RB � �) + (1� �)
g(n�

TPR
+ 1)

2
(33)

This is to be compared with g(n�
TPR

)=2. Equation (33) is greater than g(n�
TPR

)=2 i� :

(�(RB � � �
g(n�

TPR
+ 1)

2
) �

1

2
(g(n�

TPR
)� g(n�

TPR
+ 1)) (34)

By de�nition of n�
TPR

, RB � ��
g(n�

TPR
+1)

2
� h(�)g(n�

TPR
+ 1) while the R.H.S of (34) is equal

to

g

(2n�
TPR

+ 1)(2n�
TPR

+ 3)
(35)

Therefore a su�cient condition for the last inequality to be satis�ed is :

�h(�) �
1

2n�
TPR

+ 1
for n

�
TPR

� 1 (36)

Using the de�nition of h(�), this is always true.

b) Without time priority. The proof follows the same lines. Now n
�
RAR

is given by

n
�
RAR

= bb
7

4(RB � �)
g0 �

1

2
cc (37)

The main di�erence is that this is independent of � and that we cannot rule out as before that

n
�
RAR

+ 1 is a solution. In this case the expected trading cost is :

�(RB � �) + (1� �)
3

2
g(n�

RAR
+ 1) (38)

This is decreasing in �. Therefore n�
RAR

is the solution if � is greater than or equal to �� such

that :

��(RB � �) + (1� ��)
3

2
g(n�

RAR
+ 1) =

3

2
g(n�

RAR
) (39)

Otherwise n�
RAR

+ 1 is the solution.Q.E.D.
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Proof of Proposition 7. When the adjustment is faster with time priority than

with the random allocation rule, i.e. p(i� + 1) > p(4) (which implies � <
1
5
) or p(i� + 1) > RB,

expected trading costs are obviously lower with time priority. When p(i�+1) < p(4), the ranking

of the two allocation rules is less straightforward. We detail the computations only in the case

p(i� + 1) < p(4) � RB. They are similar for the other possible positions of RB. Consider �rst

the case in which p(i� + 1) = p(3), i.e. � 2 [1=5; 1=3). The trading costs are the same if the

trade occurs at a time such that the price is greater than or equal to p(4). Consequently, the

di�erence between the expected trading cost with the random allocation rule and the expected

trading cost with time priority will be :

(1� �)(�
�

RAR+1)[(p(2)� �)� �(p(3)� �) � (1� �)(p(1)� �): (40)

It is direct to check that this is always positive for � <
1
3 . Consider now the case in which

p(i� + 1) = p(2), i.e. � 2 [1
3
; 1]. Then the di�erence between the expected trading costs with

RAR and TPR respectively is :

(1� �)(�
�

RAR
+1)[(p(2)� �)� �(p(3)� �)� �(1� �)(p(2)� �)� (1� �)2(p(1)� �): (41)

This is positive i� :

3 � 5� + 3(1� �)�+ (1� �)2 (42)

which is never satis�ed for � �
3�
p
5

2
>

1
3
.Q.E.D.
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