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Abstract

We analyze the role of commitment in pre-play communication for ensuring e�-

cient evolutionarily stable outcomes in coordination games. All players are a priori

identical as they are drawn from the same population. In games where e�cient

outcomes can be reached by players coordinating on the same action we �nd com-

mitment to be necessary to enforce e�ciency. In games where e�cienct outcomes

only result from play of di�erent actions, communication without commitment is

most e�ective although e�ciency can no longer be guaranteed. Only when there are

many messages then ine�cient outcomes are negligible as their basins of attraction

become very small.
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1 Introduction

Two-person pure coordination games typically have strict Nash equilibria that are

ine�cient.1 Often it has been informally argued that communication will help players

coordinate on the e�cient equilibrium. However, formal game theoretic models of cheap

pre-play communication also have Nash equilibria that are ine�cient. For example, play-

ers may speak randomly and refuse to listen. In recent years it has been argued that those

uninformative ine�cient equilibria are not evolutionarily stable and that only the e�cient

outcomes are evolutionary stable. The reason for this result is basically twofold. First,

if there are unused messages then these can be used by mutant strategies to coordinate

on e�cient outcomes. Second, if all messages are used because of randomization, then

players must be indi�erent between them and the population of strategies may drift to one

where some messages are not used, which brings us back to the �rst case. However, this

second argument is valid only when players are role-conditioned, i.e. when there is one

population of player 1 types and one population of player 2 types. Examples of evolution-

ary stability concepts based on two-population models are Sobel's (1993) NES, Swinkels'

(1992) EES Sets and Matsui's (1992) CSS. However, traditionally evolutionary models

have considered symmetric games where players are drawn from a single population. In

fact, many real life examples of coordination problems have this intrinsic symmetry in

which individuals are identical (e.g., going through doors, shaking right or left hand, kiss-

ing once, twice or three times when meeting). Since the second argument does not hold in

this case, e�ciency is no longer guaranteed: mixed Evolutionarily Stable Strategies (ESS)

that are ine�cient are known to exist (Schlag, 1993, 1994, W�arneryd, 1998). These ESS

are of the babbling type in that all messages are used. Of course, the e�cient outcome

remains an alternative prediction. The set of strategies leading to play of the e�cient

action is an Evolutionarily Stable Set (ES Set, Thomas, 1985). It is not that we �nd these

babbling ESS particularly plausible as descriptions of real behavior. Instead, the possi-

ble emergence of ine�cient outcomes and the common belief that typically the e�cient

outcome should result in such simple games leads us to believe that there is more behind

communication than merely cheap talk.

For large message sets, we �nd that the babbling ESS with payo�s bounded away

from the e�cient are less plausible since their invasion barrier (i.e., the maximal size of

1A pure coordination game is a symmetric simultaneous move game in which each player has a �nite

set of pure strategies; play of the same strategy results in a strictly positive payo�, miscoordination leads

to a payo� of 0:
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a mutation that they can withstand) is arbitrarily small2. However, the mixed ESS with

payo�s close to the e�cient remain to have large invasion barriers.

We investigate the ability of various communication mechanisms to ensure only e�-

cient evolutionarily stable outcomes. We choose ES Sets, a set-valued generalization of

ESS, as our solution concept. Additional to cheap talk we allow for strategy and hidden

commitment. Under strategy commitment, a player publicly commits to a strategy, under

hidden commitment he commits to not be able to react to messages sent by others with-

out disclosing the strategy he intends to play, e.g., he does not show up for the pre-play

communication. It comes at no surprise that strategy commitment, a generalization of the

endogenous timing model of Van Damme and Hurkens (1996), induces e�cient outcomes.

The argument relies on speci�c drift taking place before a mutant committing to the e�-

cient strategy enters since simply committing to the e�cient strategy must not be a best

reply. Hidden commitment has the same e�ect of inducing e�ciency through enabling

beliefs to form that hidden commitment is associated to play of the e�cient strategy.

Next we test the robustness of the failure of e�ciency without commitment in two

ways. First we assume that there are as many cheap talk messages as there are actions

and that messages are associated to announcing the willingness to play an action. When

the degree of commitment is exogenous, we �nd that ine�cient outcomes persist if there

is either very little commitment or almost certain commitment. Only intermediate ranges

of commitment guarantee e�ciency. In our second test of robustness we add external

private signals. Ine�cient outcomes persist without commitment opportunities whenever

players can never rule out that their opponent has received the same signal.

In the second half of our paper we investigate the evolution of play under pre-play

communication when players want to coordinate on choosing di�erent actions. To our

knowledge, this has not been done before. First we consider the simplest case: a task

allocation game with two pure strategies, zero payo�s on the diagonal and two asymmetric

strict equilibria on the o�-diagonal. Its unique ESS is completely mixed since the strict

equilibria are o�-diagonal and thus cannot be reached by identical players.3 Adding pre-

play communication we �nd that all messages are sent in any ESS as coordination is easier

when di�erent \types" (distinguished by message sent) are matched. Players sending

di�erent (cheap talk or commitment) messages coordinate on a strict equilibrium while

2They only fail to exist under the implausible assumption of an in�nite message set (Ayoagi, 1998).
3Although correct, we avoid using the term `Battle of Sexes' that seems to imply that the game is

played between players belonging to di�erent roles and that focus rests on selection among the strict

equilibria.



3

players sending the same cheap talk message play the (mixed) ESS of the underlying

game. In particular, hidden commitment (when allowed) is associated with play of a

unique action. Predictions are similar with or without commitment when there is no

con
ict of interest in the task allocation game, i.e., if both players always receive the

same payo�. Outcomes in ESS are close to the e�cient when the number of cheap talk

messages is large. When there is however con
ict of interest in the task allocation game

then there are multiple evolutionarily stable outcomes. Ine�cient ESS now exist that

yield payo�s below the minimal payo� on the o�-diagonal. While under pure cheap talk

there is an ESS with payo� close to the e�cient for large message sets, once commitment is

added, evolutionarily stable outcomes are bounded away from the e�cient one. In order to

compare the stability of the various ESS we consider the corresponding invasion barriers.

Only the nearly e�cient ESS that arise under pure cheap talk have a substantial invasion

barrier when there are many messages. All other ESS under pure cheap talk and all ESS

in the model that allows for commitment have very small invasion barriers when there

are many cheap talk messages. Thus, while adding commitment opportunities enforces

e�ciency in pure coordination games, it dampens evolutionary stability when players aim

to choose distinct actions. Coordination on di�erent tasks is most e�cient with pure

cheap talk using many messages.

Finally, we investigate pre-play communication in a symmetric 4�4 game that combines

pure coordination with task allocation. There are two jobs where one is better than

the other. In order to obtain a non-zero payo�, players must choose di�erent actions

within the same job. Both players always receive the same payo�. We �nd that strategy

commitment is necessary to ensure some choices of the Good job in each evolutionarily

stable outcome. Under cheap talk with or without hidden commitment there is an ESS in

which only tasks within the Bad job are chosen. Once again we �nd that ESS with payo�

bounded away from the e�cient payo� have small invasion barriers for large message sets.

Common interest between the players allows there to be near e�cient ESS with or without

commitment; their invasion barriers are never small.

2 Evolutionary Stability

In this paper we consider the following situation: Two players are drawn at random from a

large (essentially, in�nite) population of identical individuals to play a base gameG, which

is basically a coordination game. Before play starts, we allow for pre-play communication
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which may take the form of cheap talk or commitments. This extended game GM is a

matrix game in which players have N pure strategies e1; : : : ; eN . The N�N payo� matrix

is denoted by A. Let x and y denote probability distributions on the set of pure strategies.

Then the payo� of strategy x when meeting y equals x �Ay. x is called a Nash strategy if

x �Ax � y �Ax for all strategies y.

A Nash strategy x is an Evolutionarily Stable Strategy (ESS) (Maynard Smith and

Price, 1973) if for every strategy y 6= x, y � Ax = x � Ax implies that y � Ay < x � Ay.
This is equivalent to the fact that there exists an invasion barrier " > 0 such that y �
A ((1� "0)x+ "0y) < x � A ((1 � "0)x+ "0y) holds for all y 6= x and 0 < "0 < ": In some

games ESS do not exist and we therefore also consider a setwise stability concept. A

subset X of the set of all Nash strategies is an Evolutionarily Stable Set (ES Set, Thomas,

1985) if it is nonempty and for each x 2 X and each y, y �Ax = x �Ax implies that either

(i) y �Ay < x �Ay, or
(ii) y �Ay = x �Ay and y 2 X:

Again, this is equivalent to the fact that there exists an invasion barrier " > 0 such that

y �A ((1 � "0)x+ "0y) � x �A ((1� "0)x+ "0y) holds for all x 2 X; y and 0 < "0 < " where

equality implies y 2 X (Balkenborg and Schlag, 1995). Any singleton ES Set contains an

ESS and every ESS constitutes an ES Set as a singleton, so that ES Sets can be seen as

the set-valued extension of the ESS concept.

3 Pure Coordination Games

In the base game G1 players have action set K = f1; : : : ; kg. They receive ai if they

coordinate on action i, and zero otherwise, in the literature often referred to as pure

coordination games. We assume a1 > a2 > : : : > ak > 0. All pure strategies are

evolutionarily stable and ine�cient outcomes persist. We extend the game by allowing

the players to send messages before they take actions. We assume that all messages are

costless. We will consider two types of messages, binding and non-binding ones. A non-

binding message (or cheap talk) may signal the intention to play a certain action, but the

player who sent such a message is free to choose any action he likes. On the other hand,

a binding message (a commitment) is a promise to play a certain action and the player

cannot break his promise.

Let us start by considering cheap talk messages only. Each player will send one message

m from the �nite message set M = fm1; : : : ;mng with n � 2: After receiving the message
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of the other player he decides on his action. So a pure strategy for a player is a pair (m; f)

consisting of a messagem 2M and a decision rule f :M ! K. The payo� strategy (m; f)

receives when playing against (m0; f 0) is ai if f(m
0) = f 0(m) = i and zero otherwise. Then

it is easily shown that the set of all strategies that yield the e�cient payo� a1 when played

against themselves is an ES Set. In each matching only action 1 is played although it can

be that the opponent would play a di�erent action if he had received a di�erent message.

Moreover, there is no other ES Set in which the same action is played in all matchings

(see Schlag, 1993, 1994). However, as pointed out by Schlag (1993, 1994) and W�arneryd

(1998), cheap talk does not guarantee e�ciency as there exists an ESS with payo� strictly

less than a1. Namely, consider the mixed strategy x where a player mixes uniformly over

all messages and plays action k if the messages are the same and action k � 1 otherwise.

Then x is a Nash strategy that puts positive weight on each of its best replies and x earns

b = [ak + (n� 1) ak�1]=n < ak�1 against itself. Suppose that x
0 is a best reply to x that

uses a non-uniform probability distribution over the messages. Then x0 earns less than b

when meeting itself because the probability of two identical messages is more than 1=n.

Thus, x is an ESS that achieves payo�s bounded below ak�1 irrespective of the number of

messages. Notice that in the play of x the cheap talk messages are revealing in the sense

that each message identi�es the strategy used by the player who sent this message.

We would however like to point out that the resistance to mutations (described by the

size of the invasion barrier) of these ine�cient ESS declines as the number of messages

increases if there are more than two actions. Consider a mutant y who sends message m1

and plays action 1 when receiving message m1 (and the same as x when receiving message

mi 6= m1). In a population in which the fraction (1� ") play x and " play y; y performs

worse than x by at most ak�1 when matched against an x who sent message m1 (an event

that occurs with probability (1� ") =n) and better than x by a1 when matched against y

(an event that occurs with probability "). Since the strength of x vanishes as n gets large

it follows that the invasion barrier of x gets arbitrarily small once the number of messages

is su�ciently large. To get a feel for the actual numbers, it is easily shown that the

invasion barrier is bounded above by 1= (n+ 1) :4 On the other hand, the invasion barrier

of the ine�cient ESS that speci�es to play action i > 1 when sent and received messages

coincide and to play action 1 otherwise remains large. This follows from checking that

y �A ((1� ")x+ "y) < x �A ((1� ")x+ "y) for all " < ai=(a1+ai) and arguing that other

4Actually, a tighter upper bound is
ak�1=a1

ak�1=a1+n
so when a1; a2; a3 equal 10; 2; 1 respectively, then we

�nd that the upper bound is 2

2+10n
and thus below 0:02 when there are just 10 messages.
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mutants y0 are even worse competitors against x:

Notice that we only showed above that the invasion barrier of the ine�cient ESS that

relies on playing actions ak and ak�1 vanishes as the message set becomes large. Of course

there are many ine�cient ESS. However, our above argument is easily generalized to any

sequence of invasion barriers "(n) corresponding to a sequence of ESS x(n) for the game

with n messages that satis�es limsup
n!1

x(n) � Ax(n) < a1: Thus, given large message

sets, ESS with substantial invasion barriers must yield payo�s close to the e�cient.

3.1 Commitment

We will now consider the possibility of commitments. A player can pre-commit to some

action i by sending message mi. If each message is such a commitment message then

we are back to the original game without cheap talk. Hence, we also allow players to

send a cheap talk message from the set fm1; : : : ;mng where we now allow for n � 1.

If n = 1 this means that players are not obliged to commit. In this case the game is

exactly the game of endogenous timing considered in Van Damme and Hurkens (1996).

If n � 2 then players can also \cheap talk". Again, a pure strategy for a player is a pair

(m; f) as before with the restriction that f(m0) = i for all m0 if m = mi, i.e. a player

that has committed to action i must play i whatever the opponent says or does. Let

M = fm1; : : : ;mkg [ fm1; : : : ;mng. Now the game GM1 has a unique ES Set and it earns

a1, i.e. it is fully e�cient:

Theorem 1 (Strategy Commitment) GM1 has a unique ES Set, namely X = fx : x �Ax =

a1g.

Proof. Note that X is the set of mixed strategies that yield the e�cient payo� against

themselves. X is the set of strategies where a player either commits to action 1 or

randomizes between some cheap talk messages and plays action 1 in case he receives one

of the messages that were sent with positive probability. In particular, X contains the

weakly dominated strategy (m1; f) with f(m1) = 1 and f(mi) = k:

X is an ES Set: Suppose mutant y is a best reply against a strategy x 2 X but y 62 X.

We need to show that y �Ay < x�Ay. Well, the presumptions about the mutant imply that

y �Ax = x �Ax and y �Ay < a1. The symmetry of the game implies that x �Ay = y �Ax.
Hence, it follows that y �Ay < a1 = x �Ax = y �Ax = x �Ay.

Now, suppose X 0 is an ES Set with x 2 X 0 and x �Ax < a1. If x puts positive weight

on committing to action i, mi would be a best reply (since x is a Nash strategy) that gets
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at most payo� ai against x and exactly ai against itself. The ES Set conditions imply

that mi 2 X 0; x � Ax = ai and i > 1: But then to wait (i.e. send cheap talk messages)

with probability one, and to always play i must also be in X 0. Notice however that it

cannot be that all individuals wait and then achieve an ine�cient outcome. Whenever all

individuals wait, there is no selection pressure against reactions to commitment strategies.

Thus, we can assume that all individuals who wait play a best reply in case the other

commits. But it is clear that m1 is the unique best reply against such strategies. We

therefore get a contradiction and, hence, no ES Set gives an ine�cient payo�. 2

Next we assume instead that individuals are able to publicly commit to not be able

to react to messages sent by opponents. This could be done by (visibly) destroying

one's receiver or taping one's ears. It can be interpreted as a credible message saying

\I have already chosen my action but I do not tell you which one." This we will also

refer to as hidden commitment as opposed to the case of strategy commitment considered

before. Alternatively, it is as if each player is given the option of not showing up to the

exchange of cheap talk, hence one could also speak of commitment by absencyabsence..

Let mH be the message sent by an individual who commits to not react to received

messages. Thus the strategy
�
mH ; f

�
has the property that there exists i 2 K such

that f (m) = i for all m 2 M: Hence we also write
�
mH; i

�
: Notice that, in contrast to

strategy commitment, hidden commitment does not change the information structure of

the underlying game. We �nd that evolution leads to e�ciency if players are not forced

to join pre-play communication.

Theorem 2 If M = fmHg[fm1; : : : ;mng (n � 1) then the unique ES Set contains only

e�cient payo�s.

Proof. It follows easily that the set of strategies that yield a1 against itself is an ES

Set. In fact, this implies that any other ES Set X must contain only strategies that

yield a payo� strictly below a1 against themselves. Consider x belonging to the ES Set

X and assume that
�
mH; i

�
is used with positive probability in x: Since (mH; i) yields

ai against itself and at most ai against any other strategy (including x), we must have

that (mH; i) 2 X and i > 1: However, then (m1; f) with f(mH) = i and f(m1) = 1 is a

best response that achieves the maximal payo� against itself. This yields a contradiction.

Hence, (mH; i) with i > 1 is not in the support of x 2 X. Since mH is not sent in x; there

is no evolutionary selection pressure against strategies in the support of x reacting to mH

by playing action 1. This however contradicts the fact that X is an ES Set that does not

contain strategy combinations yielding the e�cient payo�. 2



8

3.2 Probabilistic Commitment

Communication without commitment is modelled above as cheap talk. Messages have

no meaning (i.e., connection to later play) unless through play in an ESS. In practice

however, we use words or phrases to communicate that have a meaning, such as \I plan

to choose action i". Adding such a meaning does not change the results unless there is

some degree of commitment or belief that the other player is committed to what he says.

In the following we consider a very simple model in which messages can be attributed with

a meaning. We will consider our pure coordination game from above with two actions and

two messages where sending message mi now means that the player signals that he wants

to choose action i: We add an exogenous probability � 2 (0; 1) (which is the same for all

players) that a player sending message mi is committed to play action i; with probability

1 � � sending message mi is pure cheap talk. Whether or not the message is in fact

a commitment is not observed by the opponent. Thus, a large/small � corresponds to

large/small degree of truth in what players communicate about their later intentions. The

following results are easily veri�ed by analyzing the corresponding 8� 8 matrix and show

that only an intermediate degree of truth (not too small and not too large) will guarantee

e�ciency.

The set of e�cient strategies remains an ES Set for all � 2 (0; 1) (send message m1

and play action 1 whenever receiving message m1). For a1=a2 < 1��
�

there exists an

ine�cient mixed ESS with support on strategies that play action 2 when observing the

same message and action 1 otherwise. For a1=a2 <
1

1��
(, � > 1� a2=a1) there exists an

ES Set with outcome a2 (send message m2 and play action 2 when receiving m2). Thus,

whenever a1=a2 is above max
n
1��
�
; 1
1��

o
(which means that a1=a2 must be greater than

2=
�p

5 � 1
�
� 1:6) we �nd that evolutionary stability selects the e�cient outcome a1. In

particular, when a1=a2 = 2 then this e�ciency result holds for � 2
�
1
3
; 1
2

�
:

Next we consider probabilistic commitment by absence.. This we model by assuming

that a player does not show up to cheap talk with an exogenous probability � and shows

up to cheap talk otherwise (thus actual cheap talk occurs with probability (1� �)2). In

contrast to probabilistic strategy commitment, here the realization of the commitment of

the opponent is observed by uncommitted players. It follows easily that there is always

an ine�cient ESS: when both players show up to cheap talk then each plays the same

ine�cient ESS of the game with only cheap talk, whenever at least one player does not

participate in cheap talk then both play action k:
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3.3 External Signals

Up to now we assumed that players can only condition play on messages or signals sent

by other players. In the following we brie
y consider the situation where players can also

condition on external (or exogenous) signals. Before two players begin playing a given

game (with or without pre-play communication), each of the two players receives a private

signal that is not observed by the other player. For simplicity assume in the following

that there are two signals s1 and s2: Let p (si; sj) be the probability that player one (two)

receives signal si (sj). Since players are identical, p (si; sj) = p (sj; si). For example, an

external third party 
ips a coin and then assigns one player to be player one and the

other to be player two; hence, p (si; si) = 0 and p (s1; s2) = 1=2.5 The role of the third

party could also be replaced by the event of who came �rst to the interaction provided

that ties occur with probability zero. Since the signals of the two players never coincide,

this situation is called a truly asymmetric game (Selten, 1980). Alternatively one might

imagine settings in which the order of arrival can not always be determined and hence

p (s1; s1) � p (s2; s2) > 0.

If neither of the two signals is ever received by both players simultaneously (i.e.,

p (s1; s1) = p (s2; s2) = 0), then e�ciency is recovered. The set of strategies that yield the

e�cient payo� is the unique ES Set. The argument is as follows. Any ES Set X must

contain a strategy that speci�es to play a pure strategy after receiving s1. This follows

quite generally from Selten (1980).6 Consequently, there are unsent messages after receiv-

ing signal s1: Hence, there is no selection pressure to prevent players with s2 signals from

reacting to unsent messages by playing action 1: However, such a situation does not even

constitute a Nash strategy unless s1 recipients obtain the e�cient payo� a1. This implies

that X contains a pro�le that yields the e�cient payo�. Checking that there is a unique

ES Set that contains an e�cient pro�le, the statement is proven. Thus, evolutionary

stability leads to e�ciency in truly asymmetric games which is very much in the spirit of

the e�ciency results of Sobel (1993) for coordination games between di�erent players.

However, if there is only a small probability that each signal can be received by both

players then the above e�ciency result is no longer true. Assume that both p (s1; s1) and

5This signalling technology is commonly used when analyzing evolutionary stability in asymmetric

games.
6The underlying argument is as follows. Let (y1; y2) be the behavioral strategy notation of an element

of the ES set X and assume that e1 is a pure strategy played with positive probability in y1: Then

(y1; y2) when matched against (e1; y2) attains a payo� of (y1 �Ay2 + y2 �Ae1) =2 which equals the payo�

(e1 �Ad2 + y2 �Ae1) =2 that (e1; y2) attains against itself. Hence (e1; y2) 2 X:
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p (s2; s2) are strictly positive. Then the set of outcomes found in an ES Set is enlarged.

In particular, here external signals are of no help to eliminate ine�cient evolutionarily

stable outcomes. This follows from the fact that whenever X is an ES Set of a game

without external signals then the set of mixed strategies that yield play of x whenever

receiving either s1 or s2 for any x 2 X is an ES Set of the game with external signals.

In this sense, it is evolutionarily stable for players to ignore their external signals, even if

the probability of both receiving the same signal is very small.

4 2� 2 Task Allocation Games

In the rest of the paper we aim to gain some understanding of play in games in which

players want to coordinate on di�erent actions. At �rst we consider the base game G2
with actions 1 and 2 and the payo� matrix

2
4 0 b

1 0

3
5

where b � 1:7

We call G2 a task allocation game since players want to coordinate on di�erent actions

or tasks (when played among players of di�erent types, G2 is more commonly known as

\Battle of Sexes"). For example, two tasks need to be done and it does not matter who

does which task as long as both tasks are done. b > 1 may indicate that task 1 is more

pleasant conditional on the two players coordinating on di�erent tasks. For example, two

individuals who are walking side by side come to a door that needs to be opened and

only allows for one to pass at a time. Here action 2 could describe opening the door and

passing through second. Or two cars could simultaneously arrive at a four way stop and

action 1 (2) could describe to drive �rst (second).

When there is no pre-play communication then this game has a unique ESS
�

b

1+b
; 1
1+b

�
that yields the payo� b

1+b
< 1:

4.1 Common Interest

We start with a task allocation game where both players always receive the same payo�,

i.e. b = 1 (this makes it a partnership game, Hofbauer and Sigmund, 1988). Since

7O�-diagonal payo�s are normalized to keep notation simple.
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there is a unique e�cient outcome this is a game of common interest (Aumann and

Sorin, 1989) However, since players are identical, play cannot be coordinated on this

outcome. Payo�s are maximized when both actions are played with equal probability and

the expected payo� is 1=2. This strategy is the unique ESS of the game without pre-play

communication. We will see below that pre-play communication will increase e�ciency.

However, it should be already clear now that the e�cient payo� can never be reached as

there will always be a positive probability that the two players matched send the same

message and choose the same action and hence receive the payo� 0:

First we consider cheap talk messages only. Suppose M = fm1; : : : ;mng with n � 2.

Theorem 3 Consider the cheap talk (partnership) game GM2 : Any connected ES Set is a

singleton containing an ESS. The expected payo� in any ESS is 1� 1
2n
. ESS exist.

Proof. There are many ESS, depending on how messages are interpreted. For example:

mix uniformly over all messages. When the same message is received mix with equal

probability between actions 1 and 2. When di�erent messages are received then choose 1

(resp. 2) if the index of the sent message is lower (resp. higher) than that of the message

received. With probability 1=n the same message will be sent and expected payo� in that

case equals 1=2. With the remaining probability 1 � 1=n di�erent messages are sent in

which case coordination occurs and the payo� is 1. Clearly, any best reply against the

above strategy must use the same decision rule in case di�erent messages are received.

When the same message is received then both actions are best replies, but a strategy that

does not mix uniformly between them will do worse against itself. Moreover, any best

reply that does not use all messages with equal probability will also do worse against itself

because the probability that the same message is received will then be larger than 1=n.

Any element of an ES Set is an ESS that yields payo� 1 � 1= (2n) : This is because

elements of an ES Set are characterized in this game by three properties and hence are ESS.

(i) All messages must be sent with positive probability. If some messagemi is not sent then

there is no evolutionary pressure against the population reacting to the unsent message

by playing action 1 which makes it a strict best response to send mi and to play action

2: This however contradicts the fact that elements of ES Sets are Nash strategies. (ii)

After receiving di�erent messages a strict equilibrium must be played and after receiving

the same message an ESS of the base game G2 must be played. Following Selten (1980)

this is necessary to prevent mutants entering who send the same messages but react in a

di�erent way than the incumbent. (iii) Each message must be sent with equal probability

in order to support a Nash equilibrium strategy with the �rst two properties. 2
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In the above proof we found an ESS that contains a pure strategy in its support that

always plays action 1 after pre-play communication (it sent message m1). However, we

also found that in an ESS there is no message after which players always choose such

stubborn play. This is because each action is played equally likely among the matchings in

which both players send the same message (see (ii) in the above proof). More generally,

in an ESS there can be no revealing messages in the sense that the opponent know which

pure strategy the player is using after receiving the message.

Next we add strategy commitment and assume n � 1. The basic properties of an

ESS found for the case of only cheap talk extend when we add commitment. ESS exist.

Each message (cheap talk or strategy commitment) will be sent with positive probability.

Cheap talk senders best respond to commitment strategies, coordinate on the payo� 1

when received and sent message do not coincide and play each action with probability

1=2 when received and sent message coincide. Thus, each ESS yields the same outcome.

Adding strategy commitment possibilities will improve e�ciency, but replacing a cheap

talk message by a commitment possibility worsens e�ciency. The reason is that an extra

commitment possibility reduces the possibility of receiving the same message. On the

other hand, when a cheap talk message is replaced by a commitment, the possibility

of receiving the same message does not decrease, while coordination is impossible when

two of the same commitment strategies are matched. Recall that with cheap talk there

is still a chance of 1=2 of reaching coordination even if the same messages were sent.

With n cheap talk messages and one commitment possibility any ESS yields a payo�

1 � 1= (2n+ 1), while with two commitment strategies and n cheap talk messages the

payo� will be 1� 1= (2n+ 2) (the same as with n+ 1 cheap talk messages). It is easy to

check that these payo�s are necessary. In an ESS each message must be sent with positive

probability and each cheap talk message must be sent equally likely. Moreover, ESS are

Nash strategies. Thus it is easily veri�ed that, given one strategy commitment possibility,

the weights are 1= (2n + 1) on the commitment message and 2= (2n + 1) on each cheap

talk message (given two strategy commitment possibilities, the weights are 1= (2n + 2) on

each strategy commitment and 1= (n + 1) on each cheap talk message). Referring again

to the properties of partnership games shows that these strategies are in fact ESS.

Finally, consider hidden commitment instead of strategy commitment. Then we �nd

that in any ESS, hidden commitment is used with positive probability where all players

using hidden commitment also choose the same action in the game. Thus, results on hid-

den commitment are analogous to the results when there is a single strategy commitment
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message. In particular, replacing hidden commitment with an extra cheap talk message

improves e�ciency. Given our analysis on strategy commitment, all we must show is that

hidden commitment is followed by a unique action in any ESS. Assume instead that both

hidden commitment possibilities are used in an ESS x: Then indi�erence between these

two strategies implies that the population is equally likely to react to mH by action 1 and

action 2: Thus, the ESS x yields a payo� of 1=2: Cheap talk will be used in x; hence we

may assume that some cheap talk senders respond to mH by choosing action 2: De�ne

the strategy ~x as x conditional on sending cheap talk and responding to mH by choosing

action 2: Let z put equal weight on ~x and on sending mH followed by playing action 1:

Then z � Ax = x � Ax and z � Az = 1=2 + ~x �A~x=4 > 1=2 = x � Az which contradicts the

fact that x is an ESS.

4.2 Lack of Common Interest

Now let us consider the more interesting, yet more di�cult case where b > 1. Without

communication the population will obtain b= (1 + b) < 1 in an ESS. With pre-play com-

munication, the basic properties of an ESS found for the case where b = 1 carry over (see

(i)-(iii) in the proof of Theorem 3). Existence is more di�cult to prove as the game is no

longer a partnership game. We will see that it is di�cult to guarantee outcomes above 1

or even close to 1
2
(1 + b). When there is only cheap talk we obtain:

Theorem 4 Let M = fm1; : : : ;mng and let G2 be a task allocation game with b > 1.

Then GM2 has an ESS x that yields x �Ax < 1.

Proof. Consider the following strategy x: Send message mj with probability rj =

b2(j�1)= (1 + b2 + b4 + � � � + b2n�2). When the message received is the same as the one

sent, play the mixed equilibrium of the base game
�

b

1+b
; 1
1+b

�
. If the message received

has a higher index than the message sent, play action 2. If the message received has a

lower index than the one sent, play action 1. Thus, x puts positive probability on the

pure strategy e to send message mn and then to always play action 1 and on the pure

strategy ~e to send message m1 and then to always play action 2: It is easily veri�ed that

x is a Nash strategy. For a given message received, players prefer to send a message with

a higher index. On the other hand, the higher the index of the own message, the higher

the probability that the same messages are sent. To make players indi�erent between the

messages we need the probabilities rj described above. This strategy earns (against itself)

q := x �Ax = 1 � 1= (1 + b+ : : :+ b2n�1). It is clear that any best reply against x must
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use the same decision rule in case of di�erent messages. A best reply y that di�ers from x

only with respect to the probabilities in case of equal messages will do worse against itself:

y �Ay < x �Ax = x � Ay. Now consider a best reply y that uses the same pure strategies

but with di�erent probabilities than x, let us say �1; � � � ; �n. Then y � Ax = x � Ax, and
y � Ay < x � Ay. To see where this inequality comes from, consider the n � n matrix B

where Bii = b=(1 + b), Bij = b when i > j and Bij = 1 when i < j. This matrix is the

restriction of A to the strategies used in x. The maximization problem

max
y2�n�1

y �By � x �By

has a unique solution, namely x. This follows since x satis�es the �rst order conditions

and the function above is concave in y on �n�1. For further details we refer to the

Appendix. 2

There are also ESS that give much higher payo�s for particular message sets when there

is only cheap talk. Assume that there is an odd number of messages (i.e., n = 2k + 1 for

some positive integer k) and consider the strategy v that mixes with equal probability

over all messages, playing the ESS of the base game in case of equal messages, playing

action 2 if the index of the message received j is in the set fi+ 1; : : : ; i+ kg (mod n)

where i is the index of the message sent and playing action 1 otherwise. The fact that v is

an ESS follows from setting up the ESS conditions after verifying the following simply to

prove statements. v puts positive weight on any of its best replies. d �Av = v �Av implies

v �Ad = v �Av:The corresponding payo� v �Av =
�
1� 1

n

�
1+b
2
+ 1

n

b

1+b
is e�cient in the sense

that v is the unique maximizer of average payo�s among all symmetric strategy pro�les

of the extended game. Notice that the payo� the ESS v yields for large n approaches

(1 + b) =2.

Notice that none of the pure strategies in the support of the above e�cient ESS v

always plays the same action regardless of the message received. This is no coincidence

according to the following result. The payo� in any ESS x that contains such stubborn

pure strategies is bounded above by 1 or 2b= (1 + b) depending on whether the �xed action

is action 2 or action 1: The claim follows immediately for stubborn play of action 2 since

this strategy is a best reply to x but never obtains a payo� greater than 1. The claim for

stubborn play of action 1 follows from calculating the Nash strategy of the reduced game

where we consider stubborn play of action 1 and combine the remaining strategies in the

ESS to obtain the payo� matrix 2
4 0 b

1 q

3
5
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where q is bounded above by (1 + b) =2:

Next we add strategy commitment. In any element of an ES Set there will always be

some commitment to action 1 but never stubborn play of action 1 after sending cheap

talk. We can not rule out the existence of stubborn play of action 2, however none of the

cheap talk messages will be revealing. The reason that m2 is not necessarily used relies

on the fact that m2 is only a best response to population play in which cheap talk players

play action 1 against m2 if the average payo� is below 1 which is no longer necessary.

Adding strategy commitment possibilities will not either help to guarantee an ESS

payo� of at least 1. Suppose that one can commit to both actions 1 and 2 and that there

are n cheap talk messages. Consider the following strategy x: with probability � commit

to action 1, with probability � commit to action 2 and with the remaining probability

play the ESS of the game with n cheap talk messages that yields a payo� of q < 1 (i.e.,

the ESS described in Theorem 4), with the understanding that if a commitment message

is received, the best reply is played, if possible. It is straightforward to check that, when

� = (b2 � bq)= (1 � q + b+ b2 � bq) and � = (1 � q)= (1 � q + b+ b2 � bq), x is an ESS

that yields a payo� of 1 � � 2 (q; 1). Notice that the addition of strategy commitment

improves payo�s if the play among the cheap talk senders remains unchanged and q < 1:

This follows from analyzing the reduced game with pure strategies m1; m2 and the

ESS w of the game with only cheap talk that yields the payo� matrix

A0 =

2
6664
0 b b

1 0 1

1 b q

3
7775 . (4.1)

It su�ces to look at the reduced game since any best reply to x must use the same decision

rule as x. Any best reply that uses di�erent relative weights for the cheap talk messages

will do worse against itself (same argument as in case of only cheap talk messages). Finally,

any best reply that uses the commitment strategies with probabilities di�erent from �

and � will do worse against itself. (This is because x� = (�; �; 1� � � �) is an ESS in

the reduced game. Proof is as before: x� maximizes y �A0y � x� �A0y subject to y 2 �2.)

Consider now the situation where the payo� q achieved among the cheap talk senders

is greater than 1: Looking at the matrix A0 in (4.1) we see for this case that no player will

choose to commit to action 2: Here it is easily shown that there is a unique ES Set in which

players mix between committing to action 1 and exchanging cheap talk. (Commit to action

1 with probability (b� q) = (1 + b� q)). This yields the payo� b= (1 + b� q) 2 (1; q)

when played against itself. The maximal payo� attainable in an ES Set with strategy
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commitment and n cheap talk messages zn is strictly below the maximal payo� attainable

when there is only cheap talk. In particular, unlike pure cheap talk, zn is bounded

away from the e�cient symmetric outcome 1
2
(1 + b) since zn < 2b= (1 + b) : Thus, adding

strategy commitment is harmful to potential maximal payo�s but raises minimal payo�s.

To consider hidden commitment instead of strategy commitment does not a�ect the

existence of an ESS with payo� below 1 nor the upper bound 2b= (1 + b) on ESS payo�s.

This is because, as in the case of b = 1; hidden commitment is treated like a single strategy

commitment. The proof is a simple extension of the case of b = 1 and is thus omitted..

4.3 Large Message Sets

In the following we consider the size of the invasion barriers when the message sets are

large. When there is only cheap talk then only ESS that yield payo�s close to the e�cient

payo� (1 + b) =2 have an invasion barrier that does not vanish for large message sets. To

see this, consider a sequence x(n) such that x(n) is an ESS when there are n cheap talk

messages and x(n) yields a payo� below (1 + b) =2 � �: W.l.o.g. assume that the weight

put by x(n) on sending message mi is increasing in i: Let m = 2k + 1 be such that the

e�cient ESS ~y found in the previous section yields a payo� above (1 + b� �) =2 when

played against itself. For n > m let y(n) be a mixed strategy that sends each of the

�rst m messages with equal probability, after sending message mi it acts like x
(n) after

receiving a message j > m and behaves like ~y when receiving a message j � m: Let

A(n) denote the payo� matrix of the extended game with n cheap talk messages. Then

x(n) �A(n)y(n) � m

n
b+ x(n) �A(n)x(n) and it follows that�

x(n) � y(n)
�
�A(n)

�
(1 � ") x(n) + "y(n)

�
� (1 � ")

m

n
b+ "

h
x(n) �Ay(n) � (1 + b� �) =2

i

� m

n
b+ "

h
x(n) �Ax(n) � (1 + b� �) =2

i

� m

n
b� "�=2 .

Consequently, the invasion barrier "(n) of x(n) approaches 0 as n tends to in�nity.

On the other hand the invasion barrier of the e�cient ESS v based on n = 2k + 1

messages does not vanish since it is at least 1= (1 + b) for any k: To see this, �rst verify

that (p � q) �Ap � 1
b
p � A (p � q) � 0 holds for any q: Using the fact that p �Ap � q �Aq

we then obtain

(p � q) �A ((1� ") p + "q) = (1� ") (p� q) �Ap� "p �A (p� q) + " (p �Ap� q �Aq)
�

�
1 � "

b
� "

�
p �A (p � q) � 0
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whenever " < 1= (1 + b) :

When strategy (or hidden) commitment is allowed, then as shown in Section 4.2, there

will be strategy commitment in each ES Set. However, all invasion barriers approach 0 as

the number of cheap talk messages n tends to in�nity. The reason for this is as follows.

Given our results in Section 4.2, the payo� in an ES Set is bounded above by 2b= (1 + b) :

Construct the mixed strategy ~y as above with � = (1 + b) =2 � 2b= (1 + b) : Again we

obtain that the payo� di�erence between x(n) and y(n) is bounded above by bm=n when

matched against x(n) and bounded above by ��=2 when matched against y(n): Hence, the

invasion barrier must approach 0 when n tends to in�nity.

4.4 External Signals and Sequential Cheap Talk

Consider now additional external signals as modelled in Section 3.3. As argued in that

section, we can only expect ine�cient evolutionarily stable outcomes to be eliminated if

signals create a truly asymmetric contest (i.e., p (s1; s1) = p (s2; s2) = 0). In this case,

without cheap talk we obtain two ESS and both are e�cient. An ESS is induced if action

1 is played when s1 is received and action 2 is played when s2 is received. Similarly an

ESS results if the roles of s1 and s2 are interchanged.

When cheap talk (and possibly strategy commitment) is included, then an ES Set

exists if and only if the game is a partnership game (i.e., b = 1). When b = 1 then

it is easily veri�ed that the set of strategies that yield the e�cient payo� is an ES Set.

Moreover, there are no other ES Sets since the outcome 1 is the only payo� that can be

attained in a pure Nash strategy. Assume now that b > 1: As shown in Section 3.3, any

ES Set X must contain a pure strategy pro�le e. In this state, we can assume that an

individual with signal s1 obtains a payo� below b and does not send message mi (in a

pure strategy pro�le, a unique message is sent after each s1). Then there is no selection

pressure to prevent individuals with s2 signals (who are the opponents of players with s1

signals) from reacting to mi by playing action 2: However, such a situation does not even

constitute a Nash strategy since players with signal s1 would strictly prefer to send mi in

order to obtain the maximal payo� b:

So pre-play communication destroys evolutionary stability whenever players are sure to

be facing an opponent in a di�erent role (Schlag, 1994, Kim and Sobel, 1995). This phe-

nomenon will also e�ect evolutionary stability whenever pre-play communication occurs

in several rounds before the actual game is played.

Consider the following simple model of sequential pre-play communication without
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external signals. There are two rounds of pre-play communication. In each round, each

player can send a message mi; i 2 f1; ::; ng : If the game played after communication is

a task allocation game without common interest then ES Sets fail to exist. The proof

follows in three easy steps. In any element of an ES Set it follows as before that all

message combinations will be sent with positive probability. Conditional on the fact that

the two messages sent in the �rst round do not coincide, the players must coordinate on

the o� diagonal - they agree on how to coordinate. However, in such situations each player

still sends a message in round two. This will destroy any agreement on which player gets

the better payo� b in the same way cheap talk destroys evolutionary stability in truly

asymmetric contests. A way out of this dilemma is to only allow for communication in

round two after both sent the same message in round one - continue communication only

if an agreement has not been reached. In this case ESS exist. In fact, we obtain a game

that is equivalent to the game with simultaneous cheap talk with n2 messages: send mi

in round one and send mj in round two if mi is received in round one, i; j 2 f1; ::; ng.8

5 A Larger Task Allocation Game

Consider the following game with four pure strategies G1; G2; B1 and B2 with the corre-

sponding payo� matrix: 2
6666664

0 b 0 0

b 0 0 0

0 0 0 1

0 0 1 0

3
7777775

where b > 1. This game can be seen as a composition of a task allocation game and a

pure coordination game. That is, players can coordinate on di�erent tasks in a Good job

or in a Bad one. Again we consider whether evolution leads to outcomes that are close to

the e�cient or whether it at least causes individuals to choose only strategies within the

Good job? It is clear that e�ciency can not be guaranteed when there is only cheap talk:

Players may use cheap talk to coordinate on the ones in the bottom right corner (as in the

task allocation game analyzed in Section 4.2). All messages will be sent in equilibrium

and hence there will be no extra messages to suggest play within the Good job.

Adding strategy commitment, we �nd that there will always be commitment to (a

strategy in) the Good job but never to the Bad job. To see this, assume for example

8Notice that sequential cheap talk will not eliminate the ine�cient ESS in pure coordination games.
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that x belongs to an ES Set and that there is no strictly positive weight on commitment

to G1 in x: Then we may assume that x reacts to a commitment to G1 by playing G2:

Consequently, committing to G1 is a strict best reply to x since x � Ax < b must hold.

The reason that no one will commit to the Bad job in an ES Set is as follows. Looking

at the payo� matrix of the reduced form game with pure strategies 1
2
G1 +

1
2
G2; B1 and

the ESS w of the game with only cheap talk with payo� matrix

A0 =

2
6664
b=2 0 b

0 0 1

b 1 q

3
7775

we see that there cannot be commitment to B1 but not to B2 in an ES Set. When there is

commitment to both B1 and B2, this has to be with equal probability and we can consider

the reduced form game with pure strategies 1
2
G1 +

1
2
G2;

1
2
B1 +

1
2
B2 and w with payo�

matrix

A00 =

2
6664
b=2 0 b

0 1=2 1

b 1 q

3
7775 :

For this matrix there is no ES Set that includes play of the second strategy.

However, allowing for strategy commitment does not rule out individuals choosing the

Bad job: there exists an ES Set in which each strategy mixes between committing to G1,

committing to G2 and sending cheap talk messages which are used to coordinate tasks

within the Bad job in case nobody has committed himself. This follows from the fact that

the reduced game with the three pure strategies G1; G2 and the ESS w of the game with

only cheap talk that yields the payo� matrix

A000 =

2
6664
0 b b

b 0 b

b b 1 � 1
2n

3
7775 .

has a unique ESS. The corresponding payo� is bounded below by max
n
b=2; 1� 1

2n+2

o
;

is increasing in n and approaches b (2b� 1) = (3b � 2) for large n. The full game has no

ESS because of the lack of evolutionary pressure against reaction towards commitments

B1 and B2. However, the full set of strategies with the above properties is an ES Set.

Thus, adding strategy commitment to cheap talk substantially improves minimal pay-

o�s in ES Sets for b > 2 while maximal payo�s remain approximately the same. When
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the cheap talk message set is large then only the invasion barriers of ES Sets with pay-

o�s close to b (with or without commitment) remain large. In this sense, we argue that

strategy commitment is very valuable, in particular for small message sets, in these games

involving job coordination and task allocation. The above claim for large message sets

follows from analogous arguments to ones used at the end of Section 4.3.

Notice that hidden commitment is less successful than strategy commitment in coor-

dinating on the Good job. Under hidden commitment there exists an ESS with payo�s

below 1: choose the ESS under hidden commitment from Section 4.1 for our larger task

allocation game restricted to actions B1 and B2 (let hidden commitment be associated to

choosing B1): Then this also remains an ESS of the entire larger task allocation game.

6 Conclusion

We analyze the e�ect of pre-play communication on the evolutionary stable outcomes

in various games involving coordination. Cheap talk alone is not su�cient to guarantee

e�cient outcomes when players aim to coordinate on the same action. One might say

that this is due to the fact that players are forced to communicate. Adding a commitment

device such as giving a player the possibility not to show up to the pre-play communication

generates e�cient outcomes. Communication itself need not even take place as a single

cheap talk message su�ces to generate e�ciency. On the other hand, when players need

to coordinate on choosing di�erent actions and there is lack of common interest among

the players then it is best to force pre-play communication and to rule out commitment

possibilities, the more cheap talk messages the better. Players will choose to sometimes

commitwhen given the opportunity which lowers evolutionary outcomes and even weakens

stability when there are many messages. Without commitment possibilities, the most

stable outcome under large message sets is when players allocate tasks fairly in that they

perform each task approximately equally often. It is important that communication only

takes place as long as asymmetries between players have not been developed. Further

communication after an asymmetry arises will destroy evolutionary stability. In more

complex games that involve coordination on di�erent tasks within the same job we �nd

that commitment by not showing up to pre-play communication is not enough to signal

willingness to choose a task in the Good job. Allowing observable commitments to speci�c

tasks is useful to guarantee higher evolutionary stable outcomes. Large message sets will

again enforce equal (or fair) allocation of tasks within the Good job as the most stable
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outcome.

We chose the concept of ESS and its set-wise generalization ES Set as method for

selecting outcomes for simplicity and as this is the traditional approach to evolutionary

selection.9 Alternatively one might choose to work directly with a selection dynamic such

as the replicator dynamic or a more general aggregate monotone dynamic. This would tie

our results to boundedly rational \optimal" learning by imitation scenarios as developed

by Schlag (1998, 1999). In fact, any ESS or ES sets is under an aggregate monotone

dynamic also an asymptotically stable strategy and an asymptotically stable set (in the

de�nition where the set is attracting and each point is Lyapunov stable) respectively. Of

course, generally there could be asymptotically sets that are not ES Sets. However, for

the games analyzed in this paper, it can be veri�ed (though beyond the scope of this

paper) that asymptotically stable sets that are not also ES Sets fail to exist.

An alternative approach in the literature assumes that matched players belong to di�er-

ent populations or roles. Many interactions have this property, e.g., interactions between

men and women. However, evolution under pre-play communication has drastically dif-

ferent predictions in these models. In this two population approach, the labelling of the

strategies in the one population has no e�ect on the analysis. Consequently, 2 � 2 task

allocation games with common interest are formally identical to symmetric pure coordi-

nation games. For these games, Sobel (1993) found that cheap talk and evolution always

leads to e�ciency if there are at least two messages (see also Schlag, 1994). With lack of

common interest, evolutionarily stable outcomes of the basic game without communica-

tion are extremely unfair. Play will be at a strict equilibrium with one population always

better o� than the other. When pre-play communication is added, evolutionary stable

outcomes cease to exist (Kim and Sobel, 1995, Schlag, 1994, see also Section 4.4). Neither

commitment nor the extent of communication (i.e., number of messages) plays a role.

Other mechanisms to reach e�ciency in coordination games have been suggested. The

option of publicly burning money before choosing actions will not guarantee e�ciency

when selecting outcomes using ESS (see Ben-Porath and Dekel (1992)10). Sobel (1993)

considered in�nitely repeated games, again based on two-population models where the �rst

few stages of the repeated games are interpreted as cheap messages (see also Balkenborg's

9Recently there has been lots of work with �nite population dynamics. However, typically these

dynamics do not select only mixed strategies which we �nd the natural solutions to our task allocation

game.
10In fact, notice that after identifying L with U and D with R; that 0:75 �ODU + 0:25 � BUD is an

ESS of the game in Fig 2.3b on page 45 in Ben-Porath and Dekel (1992).
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(1995) �ndings on repeated games.)
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Appendix

Completion of proof of Theorem 4.

Setting up the Lagrangian and taking the derivative with respect to yi yields

�(b+ 1) = (b+ 1)2 � yi(b
2 + 1)� (x1 + : : :+ xi�1)� b� b2(xi+1 + : : :+ xn)

So the �rst order conditions for yi and yi+1 yield

(yi+1 � yi)(b
2 + 1) = �xi + b2xi+1

Using the expression for x it is easy to see that y = x satis�es all �rst order conditions.

To see that the Lagrangian is a concave function of y, note that the bordered Hessian

(the Hessian of the Lagrangian) is

0
BBBBBB@

0 �1 : : : �1
�1
... B +Bt

�1

1
CCCCCCA

where B+Bt is an n�n matrix with 2b=(b+1) on the diagonal and b+1 o� the diagonal.

By applying a series of operations on this matrix (�rst subtract the second row from row 3
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through row n+1 to obtain zeros in all but one entry in the �rst column; second, subtract

multiples of the �rst column from all other columns to obtain zeros in all but one entry

in the second row; third, add the j-th column to the second column for j = 3 through

j = n+ 1), one sees that the matrix is positive de�nite. 2


