Panel index VAR models: Specification, Estimation,
Testing and Leading Indicators

Fabio Canova *
Universitat Pompeu Fabra and CEPR
and
Matteo Ciccarelli
European Central Bank

First Draft, June 2002
This Revision, July 2003

Abstract
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sis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods
are used to estimate the posterior distribution of the features of interest. The model
is reparametrized to resemble an observable index model and specification searches
are discussed. As an example, we construct leading indicators for inflation and GDP
growth in the Euro area using G-7 information.
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1 Introduction

There has been a growing interest in using panel VAR models for applied macroeconomic
analysis. This interest is due, in part, to the availability of higher quality data for a large
number of countries and, in part, to advances in computer technology, which made the
estimation of large scale models feasible in reasonable time. Problems concerning the trans-
mission of shocks across countries, sectors or industries; issues related to convergence and
to the evaluation of the effects of regional policies or the composition of portfolio of assets
are naturally studied in this framework. Two characteristics distinguish macro panels from
micro ones: first, cross unit interdependencies are likely to be more important in explaining
the dynamics of the data in the former than in the latter, especially once a (common) time
effect is taken into account. Second, while in micro panels the number of units is typically
large and the time series short, in macro panels the number of units is generally limited and
the time series dimension is of moderate size. These distinctive features make the inferential
problem non-standard. So, for example, the GMM estimator of Holtz Eakin et al. (1988),
the QML and a minimum distance estimators proposed by Binder, Hsiao and Pesaran (2001),
all of which are consistent and asymptotically normal as the cross section dimension becomes
large or the group estimator of Pesaran and Smith (1996), which is consistent as the time
series dimension becomes large, are inapplicable.

Regardless of which dimension is assumed to be asymptotically large, one is generally
forced to impose strong restrictions to obtain estimates of the parameters of interest. For ex-
ample, it is typical to assume that slope coefficients are common across units; that there are
no interdependencies across units; that the structure is stable over time or a combination of
all of these. None of these restrictions is appealing in macroeconomic frameworks: unit spe-
cific relationships may reflect differences in national regulations or policies; interdependencies
are the results of world markets integration and time instabilities are the natural consequence
of evolving economic structures. Recently, Canova and Ciccarelli (1999) proposed a frame-
work which allows for unit specific dynamics and time variations in a panel VAR. Given
the nature of the model, a hierarchical Bayesian approach is used to construct posterior
estimates of the features of interest. Although the framework has appealing features, and
its forecasting performance is good relative to more parsimoniously built candidates, the
estimation process is computationally demanding whenever the structure of time variations
is different across variables and units.

The last few years have also witnessed a renewed interest in using index models in macro-
economics - for example, to extract national and international business cycles or to capture
the driving forces in APT models. Index models are based on the idea that the dynamics of
a large number of macroeconomic series can be represented as the sum of low dimensional
factors which are common to all (or a subset of the) units or variables, and of an orthogonal
idiosyncratic residual. Static versions of one-index models have been used e.g. by Stock and
Watson (1989) to construct coincident and leading indicators of economic activity and are
routinely employed in statistical and government agencies. The static setup has been ex-
tended by Forni, Hallin, Lippi and Reichlin (FHLR) (2000) who allow for serial dependence



in the index, by Otrok and Whiteman (1998) who study a Bayesian version of it, and by
Stock and Watson (1998) and Marcellino, Stock and Watson (2003). Pesaran (2003) con-
siders unobservable indices in dynamic cross sectional setups. Camba Mendez et al. (2001)
provide a forecasting comparison of these models with VAR and BVAR. Despite remarkable
progresses in the specification and estimation of these models, problems still remain. For
example, in the FHLR approach estimates of the indices are functions not only of present
and past dynamics but also of the future ones, therefore preventing their use for forecasting
and policy purposes. Furthermore, all approaches but Otrok and Whiteman require a large
cross sectional dimension for standard asymptotic theory to apply. Finally, time variations
are not typically allowed for.

This paper develops a methodology for conducting inference in general macro panel VAR
models. Because of interdependencies, unit specific dynamics and time variations in the
coefficients, no classical estimation method is feasible. We take a Bayesian viewpoint and
restrict the coefficient vector to have a low dimensional time varying factor structure. These
factors are by construction orthogonal and capture, for example, variations in the coefficients
which are common across units and variables (a “common” effect); variations across variables
within a unit (“fixed” effects) or variations across units in a particular variable (“variable”
effects). Factors relating to lags, time periods, or combinations of any of the above, can
also be included. We complete the prior specifications using a hierarchical structure for the
factors which allows for exchangeability across units, time variations and heteroskedasticity
in the innovations driving the factors.

The factor structure on the coefficient vector allow us to transform a potentially over-
parametrized panel VAR into a parsimonious SUR model where the regressors are a set
of observable indices, constructed using certain linear combinations of the right-hand-side
variables of the VAR, and the loadings are the time varying factors. We derive posterior
estimates for the unknowns using Markov Chain Monte Carlo (MCMC) methods. Posterior
distributions of interesting functions of the loadings can be obtained as a by-product of the
Monte Carlo routine. In particular, we show how to compute forecast revisions (generalized
impulses) in response to unexpected perturbations in either the innovations of the VAR or in
the loadings of one of the observable indices. These exercises are useful to trace out distribu-
tions of future scenarios following, e.g. disturbances to the systematic and the unsystematic
part of policy reactions functions or to describe the effect of disturbances which commonly
affects coeflicients of one or more units.

The reparametrization of the VAR in terms of dynamic observable factors has a number
of appealing features. First, it reduces the problem of estimating a large number of, possibly,
unit specific and time varying coefficients for each equation into the problem of estimating a
small number of loadings on certain combination of the right hand side variables of the VAR.
Thus, for example, in a model with G variables, N units and k coefficients each equation, a
setup which requires the estimation of GNk, possibly time-varying parameters, our approach
requires the estimation of 1+ N + G loadings when a common, a unit and a variable specific
vector of factors are specified. This considerably reduces the computational burden and
allows the estimation of large scale models in reasonable time. Second, since indices are



constructed and estimated recursively in real time, they can be employed for a variety of
policy and forecasting purposes. For example, one can construct a multi-step multi-country
leading indicator of economic activity; produce real-time estimates of core inflation or the
natural rate of unemployment; extract recursive estimates of world and national business
cycles (see Canova, Ciccarelli and Ortega (2003)); or study the propagation of shocks across
countries in various time periods. Third, since indices are observable and predetermined
with respect to the endogenous variables, it is easy to design a statistic to determine how
many should be included in a model. We propose a simple approach, based on predictive
Bayes factors, which can be used for this purpose.

While our reparametrization leads us to estimate something similar to an index model,
it is important to stress that our starting point is a panel VAR with interdependences and
that our factorization is on the coefficients of the model. This should be contrasted with
standard index models where indices are constructed directly from the variables entering
the model. Also, because of our Bayesian setup, we can allow for time variations in the
loadings - a feature which is not easily dealt with in standard index models - and for cross
unit interdependencies - a possibility typically excluded in micro panel VARs. Finally, by
construction, our observable indices dynamically span the interdependencies of the data.

The structure of the paper is a follows: the next section presents the setup of the model
and the prior restrictions. Section 3 describes estimation and inference. Section 4 deals
with measurement errors. Section 5 discusses the transformation of the panel VAR into
an observable index model and a number of specification searches. Section 6 deals with
generalized impulse responses. In Section 7 we apply the methodology to constructing leading
indicators for inflation and GDP growth in the Euro area. Section 8 concludes.

2 A general framework
The panel VAR model we consider has the form:
Yit = Di(L)Y;—1 + Cyp(L)Wi1 + ey (1)

where i =1,...,N; t =1,...,T; y; is a G x 1 vector for each i, Y, = (Y14, Yo, - - - Unt)'s Dirj
are G x G matrices each j, Cj ; are G x ¢ matrices each j; W, is a ¢ X 1 vector of exogenous
variables, common to all 7, and e;; is a G x 1 vector of random disturbances. We assume
p lags for the G’ endogenous variables and r lags for the ¢ exogenous variables. In (1) we
say that there are cross-unit lagged interdependencies whenever DZ’h,(L) # 0 for any b’ #£ h
some L. To see what this feature entails, consider a version of (1) with N = 2, G = 2,
p =2, ¢ =0 of the form:

Yi=DuYi1+ DaYi o+ e (2)

where Y = [y11¢; Y12t; Yo1¢; Y2oi|” and var(e;) = .. Then, lagged cross units interdependencies
appear whenever Dy, or Do, is not block diagonal. The presence of lagged cross unit inter-
dependencies adds flexibility to the specification but it is not without costs: the number of



parameters is greatly increased (we have now k = NGp + ¢r parameters in each equation);
furthermore, the G variables entering the model must be the same for each 7.

In (1) the dynamic relationships are allowed to be unit specific. Furthermore, the coeffi-
cients are allowed to vary over time. While this latter feature may be of minor importance
in micro panels whenever 7' is short, it is crucial in macro setups where structural changes
are more common. A flexible and parsimonious specification for the law of motion of the
coefficients is specified below. We rewrite (1) as:

Y;g - Xtét + Et Et ~ N <O7 Q) (3)
where X; = Ing @ X5 Xy = (Y, Y/ o, .., Y/, Wi oo, W), 60 = (04, -+, 0)" and
8 = (0, ...,05"). Here &Y, are k x 1 vectors containing, stacked, the G rows of the matrices

Dy and Cj, while Y; and E; are NG x 1 vectors containing the endogenous variables and
the random disturbances.

Whenever 9§, varies with cross—sectional units in different time periods, it is impossible to
estimate it using classical methods. Two shortcuts are typically employed in the literature: it
is assumed that the coefficient vector does not depend on the unit, apart from a time invariant
fixed effect or that there are no interdependencies across units (see e.g. Chamberlain (1982),
Holtz Eakin et al. (1988) or Binder et al. (2001)). Neither of these assumptions is appealing
in our context. Instead, we assume that J, can be factored as:

F
515 = El)\t + Egat + Z Efpf,t -+ Uy (4)
f=3

where =; is a matrix of ones and zero of dimensions NGk x N; << N; Z5 is a matrix of ones
and zeros of dimensions NGk x N, and Z; are conformable matrices. Here \; is a vector
of common factors, a; a vector of unit specific factors (the fixed effect), and ps; a set of
factors which could be indexed by the unit i, the variable g, the variable in a given equation
m (independent of unit), the unit in a given equation s (independent of variable), the lag h
or combinations of all of the above.

All the factors in (4) are assumed to be orthogonal to each other and allowed to be time
varying. Time invariant structures can be obtained via restrictions on their law of motion,
as detailed below. Also, while it is possible to decompose d; exactly, in practice only a few
factors will be specified and the error term u, will aggregate all the omitted terms.

Continuing with the previous example, rewrite (2) as in (3) where J; now is a 32 x 1
vector with typical element §"9 Then

m,s,h,t"

6253,)1,7: = M+ ai + pf; + ngt + pg,t + pZ,t
= M+ +u’ (5)

m,s,h,t

As it is clear from (5) each coefficient can be decomposed in several factors reflecting the
position that the coefficient occupies in the system (unit, equation, variable, lag, etc.). Here,
\¢ is a common factor, a; = (o}, a?) is a 2 x 1 vector of unit specific factors, py; = (pi,, p3)’
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is a 2 x 1 vector of variable specific factors, py; = (p%yt, p%yt)’ is a 2 x 1 vector of variable
specific factors in equation m, ps; = (p3,, p3,) is a 2 x 1 vector of unit specific factors in
variable s and py; = (g, pi,)" is a 2 X 1 vector of lag specific factors across variables and
equations. In the second line of (5), we have retained only the common and the unit specific
factors and pooled the remaining ones into the error term.

While we interpret (4) as part of the prior, one is also free to see it as a part of the
model. In the former case, the interest of the researcher or computational considerations
dictate many factors are included. For example, in cross country study of business cycle
transmission, a common and a country specific factors are probably sufficient while when
constructing leading indicators of GDP in one country, one may want to specify at least a
common, a country and a variables specific factors. In the latter case, the size of F' can be
statistically determined. We discuss this issue in section 5.

We let 0, = [\, oy, 'y, - - -, Plpy)- Then (4) can be compactly written as

5t:Eet+ut UtNN(O,E®V) (6)

where = = [Z;, g, Z3,...,Zp|, V is a k X k matrix and ¥ a NG x NG matrix. We assume
a hierarchical structure for 0, of the form:

Ht = (I — C) é + C‘gtfl + Ur Ne ~ N (O7 Bt) (7)

0 = Pu+e e~ N(0,¥) (8)

where 6 is the unconditional mean of §,. Furthermore, we assume that u,, 7,, and € are
mutually independent and that P,C are known. Here C is a full rank matrix, P a matrix
which restricts (part of the) the means of 6;’s with an exchangeable structure. Finally we let

V = O'2Ik (9)
B, = 71*Bt—1+72*B:§t*B (10)

By = B with & =~ + 728:13 where B = diag(B, ... Br), and 7, and 7, are known.

(6)-(10) describe the prior for the coefficients of the panel VAR. We have chosen to
be general at this stage. Restricted specifications will be examined using the posterior
distribution for the parameters. In (6) the form ¥ is application dependent - for example,
it could be the identity matrix, the Kronecker product of a unit specific and a variable
specific matrices or a multiple of the variance covariance matrix of the innovations in (3).
In (7) the factors evolve over time in a geometric fashion. When the eigenvalues of C are
all less than one, this is simply an AR(1) with nonzero mean. If C is a circulant matrix,
seasonal relationships could be modelled. In (8) the means of the factors are weakly linked
across units. Thus, for example, if the unit specific factors are thought to be drawn from
a distribution with common mean and there are, e.g. four units, two variables and three




factors in (4), then:

1000
0100
0100

P=10100
0100
0010

(000 1|

The variance of the innovations in 6, is allowed to be time varying to account for het-
eroskedasticity and other generic volatility clustering that may appear in several, or all,
coefficients within and across units. The specification is flexible, builds on the one used by
Canova (1993), and nests two important special cases: (a) no time variation in the factors,
v =7 =0, and C = I, and (b) homoskedastic variance v; = 0 and v, = 1. The spherical
assumption (9) reflects the fact that factors are measured in common units, while the block
diagonality of B is needed to guarantee the orthogonality across factors (which is preserved
a-posteriori), and hence their identifiability.

Recently, Cogley and Sargent (2002) have used a specification similar to the above to
study the changing dynamics in US inflation. However, to capture conditional heteroskedas-
ticity in inflation they set B, = B and specify € to be a function of a set of stochastic
volatility processes. Our specification also produces conditional heteroskedasticity in the
endogenous variables of the model and has two advantages. First, it retains conditional
linearity, therefore making simulation of the posterior distributions substantially easier. Sec-
ond, it captures a variety of non-normal patterns because of the interaction between changes
in the law of motion of the coefficients and the evolution of the variables in the VAR.

Several specifications are nested in our general framework. For example, we can accom-
modate the case where some components of §; are a-priori independent of time, by making
B; a reduced rank matrix and setting the appropriate elements of C to zero. Thus if a; is
time invariant and three factors are used then B; = block-diag|By, 0, Bs;] and C = [Cy, 0, C3].
Furthermore, if exchangeability is not appropriate a-priori, we can choose ¥ to be large.
Alternatively, if mean pooling is deemed necessary we can make ¥ — 0. Finally, if enough
factors are included, (6) can be made exact by setting 0% = 0.

Although we have specified normal distributions for all errors, we can account for aber-
rant observations or errors with fat-tailed distributions simply replacing one of these dis-
tribution with a family of longer-tailed distributions. For example, we could assume u; |
hy ~ N(0, (X ®V)) with hy ~Inv-x? (v, 1), where Inv-y? is an inverted chi-squared with v
degrees of freedom and scale equal 1, in which case u; ~ t,(0,2® V). As we will show below
fat tail distributions in the errors of the model naturally emerge from our factor structure
even assuming normality of all disturbances.



3 Inference

The likelihood of the data is proportional to

T
— 1 ! -
Q) T/2exp{_§§ (Y= Xiby)' Q2 1(Y;—Xt5t)}

t=1

_ 1 _ _ _
= |7 exp [—5 (Y- XE6,) (Y)Y, - thet)]

t

where T = Q + 02XXX,.

To calculate the posterior distribution for the unknowns we need prior densities for
Q7Y »7 u, UL 672 B7Y). Considerable simplifications in the calculations can be
achieved if we assume X = (), as it is done e.g. in the Minnesota prior (see Doan, Litterman
and Sims (1984)) or in other standard priors (e.g. Kadiyala and Karlsson, 1997). In this case
T reduces to T = (1 + 02X} X;)Q2 = 0,£2. Intuitively, this assumption induces a correlation
between the innovations of the model and those of the coefficients. Hence, innovations in
the panel VAR may alter the dynamics of the model. Having this feature is important in
forecasting contexts, as we will show in section 7.

We assume that an investigator has available a “training sample” which can be used to
“estimate” prior features of the model or that observations on similar units provide infor-
mation on how the hyperparameters of the model are likely to behave. This assumption is
not restrictive: when no such information is available or when a researcher is interested in
minimizing the impact of prior choices on the posterior, one simply need to appropriately
modify the expressions for the posterior moments presented below. Furthermore, for large
T, the posterior will be invariant to the specification of the prior distribution.

We let p(Q71, 1, U1, 03, B™) = p(Q)p(p)p(¥~)p(oy ') [ [ p(B; ") where
f

p(Q7") = W(z1, Q1)
p(p) = N(i,%,)
p(T™") = Wi(z,Q0) (11)
o) = o (55)
p(B;Y) o« Wiz, Qy) f=1,...F

and where s;' = F(o;'). Here N stands for Normal; W for Wishart and G for Gamma
distributions. The hyperparameters (2o, 21, 22r, (, vec(fr), vech(X,,), vech(Qo, @1, Q2f)) are
assumed to be known or estimated from the data where vec (-) (vech (+)) denotes the column-
wise vectorization of a rectangular (symmetric) matrix.

The assumed distributions imply, among other things, that the prior distribution for
the forecast error v; = Y; — X;Z0; = E; + Xju, has the form (v|oy) ~ N (0,0:Q) where



oy ~ Inv-x? (¢, s;). Therefore innovations are endogenously allowed to have fat tails (v;
is distributed as a multivariate ¢ centered at 0, with scale matrix proportional to €2 and ¢
degrees of freedom).

Given the large number of parameters, the analytical integration needed to obtain pos-
terior distributions is unfeasible. Therefore, we integrate numerically using the Gibbs sam-
pling. This method is particularly useful in our framework since it only requires knowledge
of the conditional posterior distribution of the unknowns, which we can calculate analytically
given (11). Let Y7 = (Y7, ..., Y7) denote the data, v = (27,0, p, B;l, o', U {6,},) the
unknowns whose joint distribution needs to be found and v _,, the vector of i excluding
the parameter s. Furthermore, let 67 ; = (I —C) + Cf;_; and 0, = 0, — CH,_,. Given

({Gt}tTZO : YT>, the conditional distribution for the unknowns are:
Q! | YT,M ~ W (731, Ql) ;

é\YT,¢_g~N(§,ﬁ/>;

where expressions for 2y, 21, Zay, Q07 Ql, QQf7 9, \@’17 il f]u, é, R are in the appendix.
The conditional posterior of (0y,....,07 | YT, 4 _4,), can be obtained with the Kalman
filter. In particular, given 6y and Rgo we have

ét|t - éat—l + Kt (}/t - XtEGt)
Rt|t — (I - KtXtE) R:\t—l
K, = Ry, X,BF/

t|t—1

Fi = (X8) By (X2 + Y (12
where é;’]t_l = é;"_”t_l and R;’]t_l = R:—1|t—1 +§tB, and é;‘k—1|t—1 and R;‘_l‘t_l are, respectively,
the mean and the variance covariance matrix of the conditional distribution of 92"7”7?71. Draws

for 0, are made from N (ét‘t, Ry;) if recursive estimates are needed or from N (ét‘T, Ryr) if
smoothed estimates are preferred. The recursions can be started by choosing R to be
diagonal with elements equal to small values, while 0y can be initialized by running a
constant coefficient version of the model.



Convergence of the Gibbs sampler to the true invariant distribution is somewhat standard
since the model (3) with the factor structure (6) is a time-varying SUR model with serially
correlated errors (see e.g. Chib and Greenberg (1995)). Convergence in these setups typically
occurs under a set of mild conditions (for example see Geweke (2000)).

Inference on any continuous function G(v) of the unknowns can be easily constructed
using the output of the Gibbs sampler and the ergodic theorem. For example E(G(v))) =
[ G(W)p(¥|Y)dip can be approximated using + [ZerLL "1 G(H) 7 L Predictive distributions
for future yir’s can be estimated using the recursive nature of the model and the simple
conditional structure of (3). In particular, let Y™ = (Y;,4,..., Y ;). To compute forecasts
and turning points we need to construct

FOO) ) = [F (00 V) p(v | i)

where F (G(Y') | Y;,4) is the conditional density of the function G of future Y’s, given
1. Forecasts can be obtained drawing ) from the posterior distribution and simulat-

ing the vector Y47 from the density F (Y'*" | V;, p®). {Y”*T}jjf ., constitutes a sam-
ple, from which we can compute moments and function of interest. For example, a point
estimate of the forecast is the ergodic average Y'*™ = L[S/ HF (Y*+7)~1]~1 or the

median of the distribution; its numerical variance can be estimated using var (Y”T) =
-1

Qo+ 2 (1= 725) (Q + Q)] where Q, = L™ [ ZL;ZHL( [Yét-i—r - }A/;t+7:| |:}/Zt+7' - f@w]/)l]

and interdecile ranges can be obtained ordering the draws for each ¢t+7. Turning point distri-
butions can be obtained by appropriately defining the function G. Impulse response profiles
can also be computed using these forecasts. We describe their calculation in some details in
section 6.

As mentioned the prior distributions we use are informative. Uninformative structures
can be obtained setting ( — 0, Q;l — 0,2;1 — 0. It is easy to see that the form of
the conditional posterior distributions is unchanged if non-informative priors are preferred.
However, posterior moments now reflect only sample information.

4 Measurement Error

An issue of crucial importance in examining cross-sections of time series is the one of measure-
ment error. In macro panels measurement error may emerge because of the uneven quality
of data across units or because of different definitions of the same quantity in different units.
For example, since the establishment of the European Central Bank, the harmonized CPI
has substituted national CPI measures to reduce cross country biases in the measurement
of price indices. Measurement error can be easily allowed for in our framework. Let y;; and
W, be unobservable and let instead y;g = yit + u}, and W =W, + uy’ be available, where
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ul,, j =y, w are serially uncorrelated and uncorrelated with ;, and W;. Then (3) implies
Et = Et + Uty - Ut5t (13)

where U/ is the stacked vector of measurement errors in y;;, U; = Iyg @ U] and U, =
(u?l_l, u?l_Q, . .7u?l_p, u .. .,u%”iq)’ . The presence of serially uncorrelated measurement
error makes the model a panel VARMA. Hence, if measurement error is deemed important,
one has two alternatives: (i) specify a long lag length for the VAR so that at least the
dominant elements of the MA components are accounted for; (ii) impose a particular MA
structure on the error of (3). Here we discuss this second strategy.

Let E, = ¢k, where ¢ is a r x 1 vector, r is the length of the MA components and
kt ~ N(0,I). Then, as in Chib and Greenberg (1995), define y; = yr — > ._, @iyi_;, @F =
Tp— Yy iy with yf =2t =0if s <Oand vy = —> ., 04— ; + 0111 where vy; =0
if s < 0. With this transformation the model is:

r—1
}/;* = X;(St + thi/i_i + Ky (14)
i=0
or in matrix form
Y*=X0+Tw+k (15)

where @ = (Ko, k_1,...Kk_rt1). The addition of @ and ¢ to the set of conditioning variables
leaves the conditional posterior of 1) unchanged. The posterior distribution of w conditional
on (6, p,y*, z*) can be found by rewriting (15) as y = Y* — X*§ = Tw + k. Finally, with
normal prior ¢ ~ N(@, R™1), the conditional posterior kernel is ¢(8) [T/, exp{—0.5x2} x
exp{—0.5(¢ — @) R (p — @) } where ¢(0)is the density of the first 7 observations. Sampling
from this posterior requires a MH step within the Gibbs algorithm, but not further compli-
cations. As a candidate density for ¢ one could take exp{—0.5 (gp — ng)/ RT (gp — ng)} where
o' and Rfare nonlinear least square estimates of ¢ and R.

5 An interpretation

It turns out that (3) endowed with the factor structure (6) is equivalent to an observable
index model. In fact substituting (6) into (3) one obtains

P
Y = Wik + Ay + Y Zpappe + vt (16)
=2

where W, = X,5,, Ay = X;Z and Z;; = X2y,

In (16) the NG x 1 vector of endogenous variables depends on a vector of common time
indices W}, on a vector of unit specific indices A;, and on a set of Z;, vectors indexed
by variables, lags, unit, etc. These indices are particular combinations of right hand side
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variables of the panel VAR, while )\, oy, ps: play the role of loadings and measure the impact
that different linear combinations of the regressors have on the current endogenous variables.

As (16) makes it clear, if the loadings A, oy, py+ were constant, estimates could be ob-
tained by regressing Y; on appropriate averages. Roughly speaking this is what the index
models of Forni and Reichlin (1998), Stock and Watson (1998) and Forni et al. (2000) do.
But while Forni and Reichlin use cross sectional averages, Stock and Watson and Forni et al.
use principal components, we average over the right hand side variables of the VAR. There-
fore, our indices are observable, they can be recursively constructed as new data becomes
available and involve only information coming from predetermined and exogenous variables.

The machinery developed in section 3 shows how regressions on these averages can be
computed when coefficients are time varying and cross-unit interdependencies are allowed for.
Intuitively, to permit time variations, our setup forces estimated loadings to obey particular
restrictions - e.g. that the responses to changes in the unit specific index are the same for
every variable in the unit. Since time variations are difficult to account for in index models,
our approach provides an intuitive way to incorporate them in such frameworks.

One advantage of the factorization (16) is that the over-parametrization of the original
panel VAR is dramatically reduced. This has two implications. First, estimation and the
specification searches described below are constrained only by the dimensionality of 6, not by
the one of §;. That it is to say, our approach is feasible even when NGk is large or the number
of degrees of freedom in the original panel VAR is small. In the application of section 7, the
model has 146 coefficient in each of the 28 equations. However, since 6; is a 13 x 1 vector
estimation is feasible and fast on available PCs. Second, since a parsimonious structure is
adopted noise is averaged out and reliable estimates (and forecasts) can be obtained even in
large scale models.

A second advantage of our reparametrization is that it provides a method to automatically
construct multi-unit leading indicators of economic activity. In fact, a leading indicator for Y;
based on the common information is C'LI; = W, \; a vector of leading indicators based on the
common and unit specific information is CULI; = W A+ A;qy; a vector of indicators based
on the common and variable specific information is CV LI, = W A+ Z1:p¢; finally, a vector
of leading indicators based on the common, unit specific and variable specific information
can be constructed as CUV LI, = W\ + Ay + Z1p;.

Five additional points needs to be emphasized. First, single-step and multi-steps leading
indicators can be easily obtained from (16). For example, one can construct medium term
measures of core inflation, potential output and the natural rate of unemployment using
multi-unit information available at each t. Second, since posterior estimates of the load-
ings are obtained with the Kalman filter, the timing of the relationship among variables is
maintained. Hence, these leading indicators can be used to conduct a number of real time
experiments. Third, there is no need to preliminary categorize variables in leading, coinci-
dent and lagging: for example, all variables in the VAR enter the construction of the leading
indicator based on the common information. By appropriately averaging, we therefore con-
siderably robustify the selection of leading indicators (much in the same spirit as Granger’s
(2001) robust predictors). Fourth, contrary to index setups, our approach works even when
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series are non-stationary and the posterior distributions for leading indicators we derive are
meaningfully even when both N and T are small. Finally, with uninformative priors, our
leading indicators are identical to those produced in a frequentist framework.

Although we have setup the problem so that the factors in (4) are chosen a-priori by
the investigator, one may be interested in statistically determining the number of indices
necessary to capture heterogeneities in the coefficients across time, units and variables. It is
easy to design a out-of-sample predictive diagnostic to discriminate across models. For this
purpose consider the predictive Bayes factors,

_ E(Yt+T|Mh)
B = Ly M) 17)
where
LY M,) = / FV s My)plthn) My )i (18)

is the predictive density for Y™™ of model with % indices (M}). Here p(1y| M) is the
prior density for + in model h and F(Y'"*7|4,, M},) the density of future data under the
parameterization given by M},. Since predictive densities can be decomposed into the product
of one-step ahead prediction errors, model A can be evaluated against model A + 1 using its
out-of-sample prediction record. When the two specifications are nested, that is ¢* = (11, 19)
and 1), = vy is the restriction of interest, if £(11|M;) = [ L)1, 2| Mp41)dips and 1)y and

1y are independent, then (17) reduces to B = %ﬂ% (see Kass and Raftery (1995))

which requires only estimates of the model with h + 1 indices.

The predictive density of model A can be easily computed using the output of the
Gibbs sampling. To do so, draw 6}, from the updating distribution (12), construct fore-
cast Y;fH for each horizon 7, compute the prediction errors at each step and for each draw
and average across draws. The numerator and the denominator of (17) can be computed
using [, LYTp5)~1]7" where ° is the (-th draws for the parameters of model
j=hh+1 AsL— oo, +[3 00 LV l) ™t — LY M)

Various other specification searches can be easily conducted. For example, it is possible
to check whether the factorization in (6) is exact or not. As seen above, the conditional
posterior distribution of o; is of inverted gamma type and E(o; ') = 1 if 6 = 0. Therefore,
if posterior draws are centered around one, there is evidence in favour of o = 0.

One way of formally evaluating the closeness of o2 to zero is to construct the ratio S =
ng(zﬁizgggiigy) where the numerator is computed using posterior draws and the denominator
using prior draws. A similar approach can be used also to examine the posterior support,
e.g., for time variations in 6, or the importances of interdependencies in the model. For
example, in the former case and setting, e.g., B 5 = by *x I, time variations are significant if
the posterior draws of b; are large relative to prior draws.

Instead of sequentially examining a series of hypotheses regarding the structure of the
model, one may want to take a general view about the uncertainty surrounding the number
of indices to be included in (6). In this case, let M; be the model with one index and M,
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the model with A indices, h = 2, ... H, and suppose we run a sequences of tests of model A
against model 1. Let Bj; be the corresponding Bayes factor. Then the posterior probability

for model h is p(M,|Y;) = ZHM% where @, are the prior odds for M;. Using such an
a 1

expression in (18), it is immediate to recognize that model uncertainty is accounted for by
weighting the posterior density of 4'*™ by the posterior probability of the model.

6 Dynamic analysis

Impulse response profiles can be computed as posterior revisions of forecasts. Since the model
is only conditionally linear, the impulse responses we compute differ from those obtained in
standard VARs. In fact, forecasts for y;;,, may change for two reasons: because of the
model’s error are different from zero and because the coefficients vary over time. Since
coefficients are time varying, impulse responses depend on the history and the point in time
in which these revisions are computed (as in Gallant, Rossi and Tauchen (1993) or Koop,
Pesaran, Potter (1995)).

We briefly illustrate how these revisions can be computed using the output of the Gibbs
sampler. Rewrite the model as:

Y, = X0, +T¢ (19)
6 = E((I-C)(Pu+e€)+Cl1+m) +w (20)

where I'T" = 2, é; ~ (0,). The companion form version of (19) is
Y =AY 141 (21)

where 0; = vec(Ay;) and Ay, is the first row of A;.
Iterating 7 times on (21), using a matrix J = [I,0, .., 0] such that JY; =Y;, J'J = I and
Ju; = T'é;, we have

T—1 T—1
Yier = J(H Apprs)Y; + Z Qo ttr Ctr—m (22)
s=0 m=0

where @, .+, = J([[2, At—H' s)J'T and ®g4r = I. Iterating on (20) we have

5t+r—~(c)7+1 71+~ch I C)(PM+6 +~ZC Ntpr—i + Uttr

=1 =1

Define impulse responses at step j, given information at ¢ and terminal horizon 7 as IR;; =
Ei;Yeir — BEYipr, V7 > j + 1. Since EYir = JE; ([[Zg At4r—s) Yi, we have

j—1
IRj,T = (Et+j(b7'fj+s,t+T) étJrjfs
s=0
T—j—1
Et+j ( H AtJrT s) H AtJrT s Et (H At+7’ s)] (23)
s=0 s=T—j




From (23) it is clear that revisions of the forecast at ¢ + 7 can occur because é;,,_s # 0
or because shocks at some stage of the the hierarchy (u;r—s, N11r—s, €) make d;,_s change.
Equation (23) also indicates that impulse responses depend on the point where they are
generated and on the initial conditions. To operatively see this note, for instance, that

IR, 2 = FEy1Yiio— EYio
= Ei1 (Pra42) 61 + J [Err1 (Avi2) A1 — By (ApioAii1)] Y

where ®1 49 = JA4 2 J'T, and that

IRy3 = FEyaYi3— EYigs

1

= E (Et+2(1)1+s,t+3)ét+2fs
s=0

+J [Et+2 (At+3) AIer2A7f+1 - Et (At+3At+2At+2)] Yt (24)

1
where 2520 (EtyoPiist43) €ry2—s = JEipo (Aryz) J'Terpo + JEpo (Avys) Appa ' Tesyq.
Hence, forecast revisions in Y;,3 due to structural innovations are

JEi 9 (Ayy3) JTE 0+ JE 0 (Ayy3) Ao TE
while movements due to innovations in the coefficients are
J [Erro (Avys) AiaDipr — By (AsAipo D) Yo

To further illustrate the point consider a scalar time varying AR(1) model

Y = Y1 + € (25)
a; = (I — C)(l + C(lt_l + € (26)
Then
arpr = (C)ap + Z(CS)(I —Cla+ Z(CS)(EHT_S) (27)
s=1 s=1

T T m—1
Ytrr = (H Utr—s)Yt—1 + Z(H Utgr—s)Ctir—m T €iyj (28)
s=0

m=1 s=0

Note that if only e;4; # 0 the summation term disappears from (28). On the other hand if
only ¢, is different from zero the summation term in (27) disappears. Forecast revisions of
Yo in (28) occur because a shock € has realized - this will feed into v, via changes in a; -
or because a shock € has realized - this will feed into y;,, via changes in y;.

The output of the Gibbs sampling can be used to compute the expressions in (23). For
example, consider one period revisions (one-step ahead impulse responses) constructed at ¢.
To construct IR, » we need the following three steps:
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1. Given I', draw é;,.1 and A;. 1, Ayyo from the posterior distribution L + 1 times.

2. For each draw ¢ = 2,...,L + 1 compute df = Af ,A!,, and the quantities czl,t =
L1 5 L1
% e:Jrz dy, and dy; = % e:Jrz Af+2-
3. Given Y}, the draws for €41 Ayy1, Ario from step [1], and 021775 and 0Z27t from step [2]
compute [ R o

Assuming that é; # 0 and that all future values of the shocks are integrated out, we can
generalize the above algorithm to any j-period revision as follows. Given T,

1. Draw (€, €141, €112, -..,645) and (Appr, Aryo, ..., Ayyy) from the posterior distribu-
tion L + 1 times
2. For each ¢ =2,... L+ 1 compute dj ; = ( T AY ). Calculate dy = 1 s dy ;.

. L+1 ¢
3. For each draw compute é;,, = é; (ersr)

4. Given Y, the draws (é,4;, Ar;) from step [1], d;; from step [2] and &, from step [3]
compute I R; ;

Note that using the output of the Gibbs sampler drastically simplifies the calculation of
the impulse response profiles relative e.g. Gallant, Rossi and Tauchen (1993). Also the state
space nature of the model allows us to characterize what move conditional expectations,
while this is impossible in general nonlinear impulse response analyses.

7 Leading Indicators of Euro inflation and output growth

There are many interesting problems to which apply we could apply the framework of analy-
sis we have described in this paper. Here we discuss how to construct leading indicators of
economic activity and inflation for the Euro area using information coming from the cross
section of G-7 countries. The last twenty years have witnessed an increased globalization of
world economies. Given the current high level of integration of G-7 economies, inflation and
economic activity in the Euro area are closely related not only to those of the US but also of
the other industrialized countries. Therefore, it makes sense to try to exploit cross sectional
information to construct probability distributions of future developments in the continent.
Furthermore, the evolutionary nature of the relationship suggests that a time varying spec-
ification will be probably most useful in modelling cross country interdependencies. Given
that Italy, France and Germany account for about 70% of total activity in the Euro area,
and since several European countries have closely related cycles, we approximate area wide
aggregates using real and nominal variables of Italy, France and Germany.

For each of the G-7 countries we use 4 endogenous variables (real GDP growth, CPI
inflation, employment growth, and rent inflation); three predetermined ones (a commodity
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price index, the median stock return and the trade weighted US real exchange rate) and a
constant. Besides GDP growth and CPI inflation, the other two endogenous variables have
been selected because they have the largest in-sample predictive power across countries.
While this preliminary step is unnecessary from the point of view of the model specification,
we find it is useful to reduce the noise in the estimates caused by the near-collinear infor-
mational content of certain variables. Five lags of the endogenous variables and two lags of
the predetermined variables are used. Therefore, each equation has k=7*4*542%*3+1=146
coefficients. The sample covers the period 1980:1-2000:4. We calculate leading indicators
four and eight quarters ahead, as these are the most interesting horizons for policymakers,
directly from the model, i.e. we set up (1) with D;(L) and Cy(L) different from zero either
for L > 4 or L > 8. By doing so we avoid to have a separate model to forecast future values
of the exogenous variables.

We produce 24,000 iterations of the MCMC algorithm starting from arbitrary initial
conditions. Runs of 40 elements were drawn 600 times and the last observation of the final
500 runs was used for inference. We checked convergence by calculating the mean of ) for
200, 300, 400, 500 observations. We found that convergence was achieved using 200 to 300
observations. Convergence was confirmed also when splitting the sample in two parts and
testing (in a classical sense) for differences in the means across subsamples.

We conducted the analysis with a partially non-informative specification (¥ =0, P = I,
( =0, B, = b+ 1,i = 1,2,3 and p(b;) is proportional to a constant. @ is initialized
with a sequential OLS on the sample 1975-1980 on the time invariant version of (16) and
o? is calculated averaging the estimated variances of NG AR(p) models. The vector §; is
decomposed into 3 factors: a 2 x 1 vector of common factors (\;) - one for the Euro area
and one for the rest of the world; a 7 x 1 vector of country specific factors (a;); and a 4 x 1
vector of variable specific factors (p;). Hence, 8; = ()\;, o}, p,)" is 13 x 1 vector.

Using the 500 draws for 6; we examined posterior support for a number of hypotheses.
First, we checked whether a model with three indices can be reduced or not. We find that
the predictive Bayes factor for the 1996:1-2000:4 period always prefers a model with three
indices to a model with any combination of two of the three indices. The least favorable
specification obtains in comparison with a model which excludes country specific factors
(Bayes factor is 1.08). In all other cases the Bayes factor exceeds 1.25.

Second, we examined the support for the exactness of the three factor decomposition.
That is, we examine if the posterior for o2 is concentrated around 0. Since when o2 = 0 the
prior for o; ' is centered around 1 and since figure 1 suggests that the posterior time series
for o, ! is on average around 0.8, the posterior and the prior distributions are concentrated
around different values. Hence, the posterior support for o2 = 0 is small.
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Posterior distribution of inv(sigma_t) over time: prior centered on 1
mean and 68% bands
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Figure 1

Third, we checked whether interdependencies are an important ingredient to character-
ize the dynamics of the data. Comparing a model without interdependencies (7 seemingly
unrelated VARs) and a model with interdependencies for the period 1996:1-2000:4 we obtain
a Bayes factor of 1.14, suggesting that interdependencies play some role in the data. We
have also compared the MSE of the forecasts of the two models. The out-of-sample per-
formance of a specification with interdependencies appears to be superior to the one of a
model without interdependencies: the relative four (eight) steps ahead MSE for the sample
1996:1-2000:4 of a model with interdependencies is 0.90 (0.82) on average across variables.
Diebold and Mariano (1995) test for predictive accuracy also reject the hypothesis that the
two specifications are equivalent from a forecasting point of view.

Fourth, we examined whether time variations in the coefficients are important. Using
the approach described in section 5, we find that for ¢ = 0.008 the statistic S for the
three indices is 1.085, >> 20, >> 20 respectively. Hence, time variation appears to be
significant only in the vector of common factors. To assess the economic importance of these
time variations, figure 2 plots the profile response of EU output growth and inflation to
one standard deviation change in the non-EU part of ;. This picture is constructed using
t =2000:4, 7 =28, 5 =0,...,7. The initial impact appears to be large but there is
little persistence in the responses. Note that the bands shrink with the horizon because the
difference between the two expressions appearing in the bracket term in (24) is getting smaller
as J increases. Interestingly, inflation and output growth react in the opposite direction over
the adjustment path as it would be typical if a supply shock was perturbing the economy.
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Fifth, we examined how important are cross sectional differences. We have already seen
that the country specific factor appears to be the least important of the three factors, at least
according to predictive Bayes analysis. In figure 3 we plot the time series for the posterior

Responses to a positive shock in non-EU component

EU inflation

EU gdp growth

Figure 2

mean and the 68% band for oy (constructed using information one year ahead).

Evolution of fixed effects over time
posterior means and 68% bands
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Visual inspection indicates that there is a modest amount of time variation, that the seven
components are small in size and not different from zero at most of the dates. Concentrating
on the last five years of the sample, we see that Germany and Japan’s a’s deviate (negatively)
from the time path determined by the world factors, while Italy and again Germany display
significant country specific variations in the dynamics in the early part of the 1990’s.

To conclude our specification searches, we examined whether the predictive ability of
the model depends on the prior specification and compared it with the one of three other
forecasting specifications: a univariate AR(4), a BVAR(4) with a simple Minnesota prior and
an observable factor model like (16) with constant loadings and no prior (Benchmark). Table
1 reports the Theil-U statistics for GDP growth and inflation in the Euro area, four and eight
steps ahead, the total number of turning points correctly recognized for seven countries and
the total number of existing turning points. Turning points are identified using a standard
two-quarters rule. These statistics are constructed in real time and recursively over the
1996:1-2000:4 period. The hyperparameters of the informative prior are estimated on the
sample 1975-1980 with a rough grid search.

Table 1: Forecasting statistics

Step Inflation GDP growth Downturns Upturns
Recorded/Actual Recorded/Actual
Non-informative 4 0.59 0.47 35/57 22/36
8 0.39 0.48 27/39 19/30
Informative 4 0.45 0.97 36/57 18/36
8 0.35 0.90 26/39 14/30
Benchmark 4 1.34 0.81 31/57 21/36
8 1.02 0.85 25/39 18/30
AR(4) 4 0.94 1.07 28/57 23/36
8 0.79 1.30 21/39 20/30
BVAR(4) 4 0.93 0.89 32/57 23/36
8 1.09 0.92 24/39 19/30

Several features of the table deserve comments. First, our basic specification is superior
in MSE sense to all competitors in forecasting GDP growth and comparable to a specification
with informative priors for inflation two years ahead. Gains are large and exceed 50% in
almost all cases. Second, turning point recognition is also superior but the improvements
over other specifications are more limited. Third, it matters which prior specification one
uses: for inflation an informative prior produces smaller MSE while for GDP growth and
upturns a non-informative one is preferrable. These results are robust, for example, to the
substitution of the MAD statistic to the MSE or to alternative turning point dating rules.
Apparently, the information contained in the 1975-1980 sample is important to understand
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the developments of inflation in the latest part of the 1990’s but not those of GDP growth.
Using a model with three indices, time variation in the vector of common factors and
a partially uninformative prior we constructed leading indicators for the two variables of
interest recursively in real time (i.e. draws for #; are from posterior estimates consistent
with the information available up to t). Figures 4 plots posterior 68% bands for the two
leading indicators, constructed using information available one and two years ahead.

LEADING INDICATORS: Europe LEADING INDICATORS: Europe

68% bands of index and true variable 68% bands of index and true variable

inflation inflation

~.
NS

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

gdp growth gdp growth

4 quarters ahead 8 quarters ahead

Figure 4

Both indicators appear to be remarkably good in tracking the ups and downs of inflation
over the sample. For the period between 1992 and 1996 the actual value of inflation is at
the lower edge of the posterior 68% bands suggesting a slight overstatement of expected
inflation, but also in this case, the direction of changes and the shape of the resulting
dynamics are appropriate. The one year ahead indicator of GDP growth is also remarkably
good in capturing the ups and downs of the variable over the sample. In fact, using a simple
two quarters decline/increase rule (and one quarter tolerance on each side) we find that our
indicator misses only one turning point for the 15 years sample. In levels the one year ahead
indicator is reasonably good except for the period 1992-93, a sharp and strongly recessionary
period in Europe. For example, the probability that our indicator is equal to -1.8 in 1992:2
(the actual GDP growth for that quarter) is less than 1.0% even though the probability
that a recession is recorder at that time is 54%. For the two years ahead indicator, the
actual value appears to be often around the lower hedge of the 68% posterior band, but
the probability that GDP growth falls by 1.8 in 1992:2 is now around 10%. The figure
also shows that, thanks to time variations in the parameters, the model is able to quickly
adjust when mistakes are made without the need of any exogenous correction. Furthermore,
by exploiting time variations and cross sectional information, the model captures changing
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local trends in GDP growth and inflation which are common across countries. Therefore,
it produces leading indicators which are stable and reliable over time, contrary to many
existing specifications, which track either variables only over short stretches of time.

The output of our model can be used to construct a variety of measures which are
of interest for policymakers. In figure 5 we present the time series for the posterior 68%
band for a recursive measure of potential world output growth, constructed as CV LIFPY =
Wikt + Z14p¢ using information two years ahead. Two features are worth emphasizing.
First, the cyclical movements of potential output roughly correspond to those of actual
output. Second, there is a small trend increase in the level of potential output growth in the
last 6-7 years of the sample. The increase is not extraordinary (3.07% as compared to 2.36%
of the previous 10 years) but is significant. Note also that our measure of potential output
begins to decline already at the beginning of 1999.

Potential output

R
Figure 5

To conclude, one should mention that the computation time needed to obtain posterior
estimates for the 28 variable Panel-VAR model used in this section is relatively short. One
complete run (drawing 24,000 sequences from the posterior, calculating the predictive density,
computing impulse responses and constructing the distribution of leading indicators and
potential output growth) took about 45 minutes of CPU time on a Dell Inspiron 4000 with
a Pentium IV processor and 256 Mb of RAM memory.
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8 Conclusions

This paper develops a methodology for conducting inference in time varying coefficient Panel
VAR models with cross unit interdependencies. We take a Bayesian viewpoint and restrict
the coefficients to have a low dimensional time varying factor structure. We complete the
specifications using a hierarchical prior for the vector of factors which allows for exchange-
ability across units, time variations and heteroskedasticity in the innovations.

The factor structure on the coefficients allow us to transform a potentially overparame-
trized panel VAR into a parsimonious SUR model where the regressors are a set of observable
indices, constructed using certain linear combinations of the right-hand-side variables, and
the loadings are the time varying factors. We derive posterior estimates of the vector of
loadings using Markov Chain Monte Carlo methods. Posterior distributions for interesting
function of these loadings can be obtained as a by-product of the Monte Carlo routine. We
show how to compute forecast revisions in response to unexpected perturbations in either
the innovations of the panel VAR or in the loadings of one of the observable indices.

The reparametrization of the VAR has a number of appealing features. First, it reduces
the problem of estimating a large number of, possibly, unit specific and time varying coeffi-
cients for each equation into the problem of estimating a small number of loadings on certain
combination of the right hand side variables of the VAR. The computational advantage in-
herent in our setup is large: we are able to estimate large multicountry and multisector
models with interdependencies and time variations in less than an hour of computer time.
Second, since indices are constructed and estimated recursively in real time, they can be em-
ployed for a variety of policy and forecasting purposes. In section 7 we have shown how to
construct leading indicators of economic activity in the Euro area and a measure of potential
world output using the information available at each ¢. Third, since indices are observable
and predetermined with respect to the endogenous variables, it is easy to design a predictive
measure to select the number of indices to be used. We propose a simple statistic, based
on predictive Bayes factors, which can be used for this purpose. We also suggest how to
deal with general forms of model uncertainty using a simple variant of Leamer’s measure of
posterior uncertainty.

As mentioned, there is a number of applications to which the tools developed in this paper
can be applied. For example, Canova, Ciccarelli and Ortega (2003) use a specification similar
to the one of section 7 to extract world and national business cycles. The construction of
measures of core inflation and of the natural rate of unemployment in multi-country settings,
the study of the transmission of monetary policy shocks across economic areas and sectors,
or the construction of portfolios of assets in different geographical regions can all be fruitfully
studied within the general framework suggested in this paper.
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Appendix

This appendix reports the expressions of the parameters of the posterior distributions
derived in section 3. They are:

ZA’():Zo—Fl; 21221+T; ZA’Qf:T*dim(9{>—|—22f,f:1,..,F;

Qo= [@0"+ (0-Pw) (-Pw)]
Q1= Q'+ X, (Vi — XiZ0,) o, (Y — X,E6,)']
Qu = [0zt 45, (01 —ait) (o ~0) 1|
=¥ |vPut (1) B, 0/c]
V=[0I -C)B(I-0),1/6]"

S, (P10 + 2,40 5
S, = (PU P s )

(= (+NG
R = (se+ (Y — X:20,)" Y71 (Y, — X,Z6;)

1

where notation Qtf refers to the f-th sub vector of #;, and dim («9{ ) to its dimension.
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