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Introduction.

ReVelle’s Maximum Capture Problem (1986) initiai@dseries of studies on the location of
retail facilities in discrete space (see Serra ReWelle (1995)). The MAXCAP model makes
the following assumptions: (1) the product soltiésnogeneous, (2) the consumer’s decision on
patronizing the store is based on distance andr(iB)costs are the same in all stores regardless
of ownership. Examples of services that best &séhthree assumptions can be found mainly in
the fast food sector, in convenience stores anithénbanking sector. However, in all these
examples, not only the distance but also waitimgetiseems to determine the consumer’s
decision. The number of persons the consumer fimdgieue, when he or she arrives at the
store, can be a measure for the consumer’s pesoepttiwaiting time. Furthermore, the waiting
time for one visit may affect future decisions asmhich store to patronize the next visit. This
seems to be quite relevant for some retail stéassfood restaurants or ATM machines.
Kohlberg (1983), in pioneer work in the same liferesearch, considers a variant of the
classical Hotelling model for store locations. Tdnghor assumes that when choosing a store,
consumers take into account not only travel timediso waiting time for the service at each
store, which in turn depends on the number of cmess patronizing that store. Assuming that
each consumer makes the decision that minimizeslttiane plus waiting time, stores’ market
shares are shown to be continuous functions of kbeations.

There is also a general consensus that the distamas be interpreted in a functional,
proximity, or similarity context rather than in agmetrical one. Our claim is that in some types
of services, waiting time has a strong impact endbnsumer’s perception of proximity.

In chapter 1 we will revise some literature on cetitive spatial modeling. In chapter 2 we
describe a model, which incorporates explicitly twa time, and in chapter 3 we propose a
metaheuristic to solve the model. Some resultsuofcomputational experiments are described

in chapters 4 and 5.



1Literature Review.

In its simplest scenario the game works as folldbws:leader firm locates a number of facilities,
anticipating that the follower will react to thechtion pattern. The follower, in turn, will then
solve the conditional location problem of locating own facilities given the leader’'s chosen
locations. Following Hakimi (1983), we refer to tleader’s problem of locating a fixed number
of facilities, knowing that the follower will subgeently locate his own facilities, as an (r|p)
centroid problem. The follower, in turn, will théace a location pattern of the facilities of the
leader and, given that, optimize the location af divn facilities. This is known as the (r|Xp)
medianoid problem.

A typical model in the former category is the MapQGaaximum capture) model introduced by
ReVelle (1986). The model formulated by ReVelledfinthe optimal location on a network
considering that each demand point will patronize tlosest facility. Several authors have
expanded ReVelle’s formulation: Eiselt and Lapq889) generalize ReVelle’s findings in
two directions: they allow differential weights fttre facilities and they leave a parameter of the
cost function variable so as to facilitate sengitianalysis, Serra and ReVelle (1993) introduce
in the model facilities that are hierarchical inura and where there is competition at each level
of the hierarchy, the same authors, Serra and Re{494), account the possible reaction from
competitors to the entering firm in the preemptiveation problem, in which the leader wishes
to preempt the entering firm in its bid to captorarket share to the maximum extent possible.
Serra, Ratick and ReVelle (1996) offer a modificatof the MaxCap problem in which they
consider uncertainty. The authors consider diffefature scenarios with respect to demand
and/or the location of competitors.

Most competitive location problems were at firsveleped under the hypothesis that different
firms provide the same indistinguishable product dahat all customers have the same
preferences, i.e., the same deterministic utilityction. Some literature refers to the topic of

dropping the hypothesis of the homogeneity of ttuelpct.



In Drezner (1994), customers base facility choiceao utility function that incorporates a
facility’s attributes and the distance to the fiagilAlthough customers are no longer assumed to
patronize the closest facility, customers at aaterdemand point apply the same utility
function.

Drezner and Drezner (1996) assume the utility fiondio change from one consumer to another
for customers located at the same demand poinhgUsiis assumption the “all or nothing”
property disappears.

Serra, Eiselt, Laporte and ReVelle (1999) developen models allowing different customer
choice rules. One model assumes that customersdeoriBe closest facility of each firm and
then patronize the two facilities in proportionthe customer-facility distance. The other model
assumes that the demand captured by a facilitjfestad by the existence and location of all
facilities of both firms.

Other improvements over the initial maximum captonadel refer to minimum market shares
that firms need to capture in order to survive.r@as and Serra (1998) present a model that
locates the maximum number of services that cawxisb@ a given region without having
losses, taking into account that they need a mimrdamand level in order to survive.

Serra, ReVelle and Rosing (1999) considered thel@no of locating several facilities such that
each faclility attracts a minimum threshold of costos. Drezner and Eiselt (2002) consider a
minimum market share threshold to be captured,vbeltich the firm cannot survive and
propose the objective of minimizing the probabilibhat revenues fall short of the threshold
necessary for survival.

2 The model.

The MAXCAP problem seeks the location of a fixednier of stores belonging to a firm in a
spatial market where there are other stores beigntp other firms already competing for
clients. The objective of the entering firm is taximize its profits. Whenever the prices
charged at the different facilities are equal dmetd are no location-specific cost differences,

the profit-maximizing objective reduces to maxintiaa of sales.



A customer is an individual or a group with a umgand identifiable location and behavior.
Since a customer has a location and issues derttanderm demand point is also used. The
expression “point demand” as defined by Plastri{2 refers to discrete demand concentrated
in a finite set of points.

We consider a discrete location space in the shias¢here is only a finite list of candidate sites
and the market is characterized by point demand.

Each customer feels some attraction towards eattteafompeting facilities, usually referred as
“patronizing behavior”. The “attraction function’edcribes how a customer’s attraction, also
called utility, towards a facility is obtained.

When we incorporate waiting time in the MAXCAP, tareers will patronize a given firm if
the sum of the traveling time plus the waiting tieeone of its stores is the lowest when
compared with other firms’ stores.

Let us assume an entering firm (firm A) that watttdocate p new outlets when there are g
other outlets from another firm (firm B) alreadyngoeting at the market place.

In order to solve the problem we consider thatghtering firm wants to maximize its market
share, that is

Max

Z:zzaixij (1)

i jogA
Where,
i,I index and set of demand points
j,J index and set of potential locations
J* set of firm A’s (entrant firm) store locations
a demand at node
Xij  =1if demand point i patronizes a storg at

=0 otherwise



Considering an independent M/M/1 queue for eachesethe average waiting time at j is given

by:
A
w, = ' )
M\~ A
Where,

fi frequency of persons from demand node i thatbwiif the product/service (e.g. persons per
hour)

14 service rate

As in Marianov and Serra (1998) let us accept gsei@ption that request for service at

each demand point appear according to a Poissaegsavith intensity;. Each center

serves a set of demand points, therefore the resjfmsservice at that center are the

union of the requests for service of the nodesiénset. Thus they can be described as a

stochastic process equal to the sum of severab®&viprocesses. The new stochastic

process is also a Poisson process, with an ingehséiqual to the sum of the intensities

of the processes at the nodes served by the cdihisrset of nodes will result from the

problem’s solution. Variables; are used in order to rewrite parameter

A =2 6X, 3)

idl
If a particular variableX;; is one, meaning that nodas allocated to a center gtthe
corresponding intensitly will be included in the computation df . Let us also assume
an exponentially distributed service time, with arerage rate of4 so that, assuming

steady-state each center can be modeled as an M(M(iing system.

Equation (2) can then be rewritten as

Z f; Xi

w; = 4)




In order to compute the value of firm A’s objectivee need additional information concerning
the allocation of demand nodes to the stores détim®ugh variableX;;.

Assuming that all customers will patronize the stlmcation that minimizes traveling time plus
waiting time, a good estimate for the allocationriafales value will result from the
minimization of average total time (average trayglime from a demand point to an outlet +
average waiting time at a outlet). For each of f&im potential store locations, and in order to
obtain the value of th¥; , we solve the following p-median type model:

Min

DX
Z :Alzzaidijxij +Azz i (5)
o jod j0d " (,Uj _Z fixijj

st.
> Xy =1 i O (6)
jod
X, <C, 0ioJd (7)
iol
X, 0{og} oigl,ood (8)
with
1 1
A=— and A, =—
1 Za. 2 |J|

Where the additional notation is the following:

d; distance from node i to nogle

C; capacity at store locatign

Constraint (6) limits the allocation of one demaraint to only one store and constraint (7)
fixes the capacity of each store (in order to obtaifinite queue capacity we impoSgto be
smaller or equal tgx).

Once the allocations of all the demand points ediores’ location are known it is possible to

compute the market share of firm A as given by &qod1).



Kariv and Hakimi (1979) prove that the p-Medianhgem is a NP-Hard problem on a general
graph. Besides that, notice that the p-median tilgets non-linear and that we need to solve a
p-median model for each of the possible locatidres firm A store. This explains the important
role played by the metaheuristics described irfadewing section.

3 Metaheuristics to solve the model.

3.1 Description of Metaheuristics.

Ant Colony Optimization (ACO) introduced by Coloyrdorigo and Maniezzo (1991) is a
cooperative search algorithm inspired by the bairani real ants. In analogy to the biological
example, ACO is based on the indirect communicatioa colony of simple agents, called ants,
mediated by pheromone trails. The pheromone tmil&CO serve as distributed, numerical
information, which the ants use to probabilistigadlonstruct solutions to the problem, and
which the ants adapt during the execution of therithm to reflect their search experience. For
a recent description of these metaheuristics, tygitications and advances refer to Dorigo and
Stutzle (2003). For the application to the paracutase of an assignment problem, refer to
Maniezzo and Colorni (1999) and to Lourenco andeSgr998).

The problem described can easily be cast intordmadwork of the ACO metaheuristic. It can
be represented by a graph in which the set of coemts comprises the set of demand points
and the set of facility locations. Each assignmeitit consist of a coupling (i, j) of demand
points and store locations and it corresponds tand’s walk on the graph.

Lourenco and Serra (1998) present new metaheugridtic the Generalized Assignment
Problem. The best result was found using a MAX-MANt System (MMAS), based on an
algorithm suggested by Stitzle (see as an exantfilzlés (1998)). Also, Stitzle and Hoos
(1997) refer the MMAS as one of the most efficialgorithms for the Quadratic Assignment
Problem.

The MMAS is an improvement of the more general 8ystem metaheuristic, which introduces
upper and lower bounds to the values of the phenentrails, as well as a different initialization

of their values.



The pseudo code for the metaheuristics we useadlte the problem in section 2 is described in

Figure 1:

procedure ant

1 Initialize MAX-MIN ant systems upper and lower bounds;
2 for iter=1ton_iter do

3 allocation « initial _solution(tau_i _j);
4 allocation  local _searcr(allocation);
5 Update_allocation(Allocation,Best_Allocation);
6 Update_attractiveness(tau_i_j);

7 enddo;

8end ant

Figure1: Ant's Algorithm Pseudo Code

In point 1 of the algorithm MMAS upper and lowernals are initialized. With this purpose we
used the following procedure:

1. For each demand pointomputer; , the attractiveness to a store locatedadtgre:
1

The closer it is located, the more attractive tloees At this point of the algorithm it is not
possible to compute the waiting time since we dohawe information about the allocation
of the demand points to the stores.

2. Compute the minimum af; and the maximum af;

3. Compute the lower and upper bounds for the phene trails according to the following

expressions:

Tmax = max(rij )x numberof demandpoints

Tpin = 0.1x min(rij )

These are the same expressions used in Louren¢8erra (2000) and they give us initial
values for the limits in the MMAS.
At each of the iterations an initial solution isnstructed as a function of attractiveness

(point 3) and a local search procedure is implesepoint 4).



The pseudo code for the initial solution procedsn#iustrated in figure 2.

procedureinitial_solution (tau_i_j)
{allocate every demand point to a store location}

1 for i=1to Ndo
{actualize waiting time at each store}

17 end initial_solution;

2 for j=1 to NPdo
3 W_j « W_ j(allocations);
4 enddo;
{incorporate waiting time in the stores attraetiess}
5 for i=1 to Ndo
6 for j=1 to NPdo
7 tau i j—tau_i_j+ 1_?
W_]j
8 enddo;
9 enddo;
{compute probabilities}
10 for i=1 to Ndo
11 for j=1 to NPdo
12 i g
prob_i_j 7tau_|'_j'
>tau_i_|j
j
13 enddo;
14 enddo;
{allocate demand point i to a potential facilibgation}
15 alloc_i « allodprob_i_j);
16 enddo;

Figure 2: Initial Solution’s Algorithm Pseudo Code

Starting with the first demand point in the demaraints’ list, each demand point will be

allocated to a store location according to theofgihg three steps: a) actualize waiting times at

the stores, b) actualize stores attractivenesgpoompute new probabilities.

One of the main characteristics of the algorithnthet we are incorporating waiting time at a

store location in the attractiveness of that storall demand points. Attractiveness is inversely

correlated with waiting time:

if W z0

otherwise

Whenever there is a new allocation, waiting timgesaand the stores’ attractiveness is updated.

Since probabilities are positively related to atiraeness, also the probabilities will be updated.
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Each of the demand points are allocated to a patestbre location according to the probability

rule:

p =t

' Z T

j0J

where,

Jis the set of both firms store locations.

P; is the probability that one ant will assign demagmaint i to a potential facility

location af.
At this point of the algorithm it this possible abtain solutions violating constraint (5), i.e. the
resulting arrival rate to a store is bigger tham $krvice rate. In order to avoid this solution we
opted to penalize the objective with a large vélue
As suggested in Stitzle and Hoos (1997) we dedidextid a local search phase to the ACO
algorithm, in which ants are allowed to improve ithsolutions. This may improve the
performance of the algorithm with respect to qyadihd convergence speed. The Pseudo Code
for the local search phase is illustrated in Figdire
The local search phase consisted in the followirgggdure: de-allocate each demand point i
from potential store location j, and allocate ttisnand point to each one of the other potential
locations. Keeping i new allocation, de-allocateheaf the other demand points, one at a time,
and check for all possible alternative allocati@hsays computing the respective objective.

Whenever the objective improves accept new objecid allocations.

procedurelocal_search (allocation)

1 for all i1 ODdo

2 j* < alloc_is;

3 for all j, 0S\{j,*}do

4 alloc_i; « j;;

5 for aIIiZDD\{il}do

6 j2* < alloc_iz;

7 for all j, 0S\{j,*} do

8 alloc_i, « j,:

9 evaluate objective;

10 if obj_best>obj do

11 obj_best : = obj;
12 ese

13 alloc_iy « ji*;

11



14 alloc_ip « j7*;
15 endif

16 enddo

17 enddo

18 enddo

19 enddo

20 end local_search

Figure 3: Local Search Algorithm Pseudo Code

In line 6 of the ant procedure (figure 1), the mmeone trails (attractiveness of each demand
point to a potential store location) is updatedoading to the following expression:

new __
where:

A = QXxT .., If nodeiisallocatedto afacility at |
! 0, otherwise

and,

Q= {0.01, if the solutionisinfeasible

005, if the solutionisfeasible

Parametep works out as the persistence of the trail, thees@rto say thal-p gives the
evaporation of the pheromone trail. This parametest be fixed to a value smaller than one to
avoid an unlimited accumulation of trace.

In the MMAS pheromone trails must be restrictechimitupper and lower bounds, i.e.:

Z-max)

new _
z-ij — f max

if (7=

\Y)

if (ri?e‘” <Ton )

new _
Ui = Thin

For a more detailed exposition of MAX-MIN ant syste see as an example Stitzle and Hoos
(1998).

3.2 Analysis of the Metaheuristic performance.

In order to obtain a measure of the metaheurisficetision we randomly generated 100

examples and solved the problem of allocating 20adal points to 3 stores, whose locations

12



are known, in order to minimize the sum of avertigeel time and average waiting time as
described through the model in section 3.

For each example we solved the integer problemndéfithrough equations (3)-(6) with a
commercial package (LINGO 6) and compared the teswith the ones obtained using the
metaheuristic suggested in section 2. The restdtdescribed in table 3.2.1.

The examples are divided into two groups. The ejesnplefined as “regular examples”
consisted of generating both the coordinates ad aslthe populations from a uniform
distribution. The other group of examples resultsrf the use of the procedure described in
Cordeau et al (1997). The latter procedure gereiattances in which customers tend to be
clustered around some fixed centers, as is ofecake in real life.

Table 3.2.1: examples with 20 demand points and 3 facilities

Iterations 25 50 100

Regular examples

% identical objectives 78% 80% 82%
Average Deviation (% optimal obj.) 2.23% 2.03% Pl
% identical allocations 97% 97% 97%
Average computing time LINGO 126.86 s 126.86 s 386
Average computing time Heuristics 3.19s 7.28 s 785.

Cordeau et al (1997)

% identical objectives 70% 72% 72%
Average Deviation (% optimal obj.) 1.77% 1.73% 265
% identical allocations 97% 97% 97%
Average computing time LINGO 16.5s 16.5s 16.5s
Average computing time Heuristics 2.34s 441 s 791

For each one of the examples the metaheurisicwakeimented with 25, 50 and 100 iterations.
The results seem to be quite close in terms ofticknallocations, which coincides with our
initial interest in the metaheuristic. In respect ¢omputing times, the metaheuristic’s

advantages are clear even for small examples.

13



4 Computational experiments.

4.1 Comparison of theresults obtained with and without waiting time.

In the MaxCap model as defined by ReVelle (1988)¢ces waiting time depends on market
share and the objective of the firms maximizes miaskare, there is a tendency for the entrant
firm to accumulate large waiting times.

We illustrate this tendency with 30 examples inahhiirm A wants to locate a new store when
there are already two other stores pertainingrto 8 operating in the market. In all examples
we randomly generated the coordinates and the atipas of 20 demand points from a uniform
distribution. The coordinates where generatedgr@square and the populations in the interval
[6000,8000. The frequency of people looking for the servigeunit of time was fixed at 10%
of the population. Service rate was fixed at 1008if of time. In the examples, we considered
that every demand point is also a potential stocation.

Let us call the original ReVelle (1986) MaxCap mipareodel 1, and the model described in
section 3, model 2. Results for model 1 were okthsolving the respective integer program in
LINGO 6. Results for model 2 were obtained using tietaheuristic defined in section 3 and
solving the model for all possible locations foe thew firm’s store, from which we choose the
best one (maximizes market capture).

Table 4.1.1 shows the main results obtained witheogeriments. In this table, we see how
small the percentage is of our 30 examples fronthithe use of both models resulted in the
same location.

Table4.1.1: Results from the computational experiments.

Model 1 Model 2
Average waiting time in one outlet 713.8 62.2
Standard deviation for the waiting time in one eutl 867.7 100.6

14



Average waiting time in the new outlet 2141.2 174.8

% of examples with the same location in both models 10%

4.2 A numerical example.

The problem is also illustrated with Swain's (1974&ll-known 55-node network. In this
example we consider an entrant firm (firm A) thainis to locate a new store when there are
already two stores of another firm (firm B) openmgtin the two demand points’ location with
the higher populations. Then, we vary the senate from 0.5 customers per minute to 0.6, 0.7
and 0.8 customers per minute. In Table 4.2.1, wepewe the results obtained with model 1 and
model 2. Once again results presented as mode$ult feom the application of the original
formulation of ReVelle’s (1986) MaxCap model ane tresults presented as model 2 result
from the application of the model suggested inisac8, evaluating all possible new firm’'s
location.

In all the examples, the arrival rates originatirgn each of the demand points by unit of time
(minute) were fixed at 0.02% of the respective pafiens. The Euclidean distances computed
from the original coordinates fulfill the distano®atrix, measured as traveling time in minutes.
In order to simplify the problem the potential gtdocations were restricted to the 15 demand
points with the higher populations.

Table 4.2.1: results for Swain’s 55-node network.

1=0.5 1=0.6 1=0.7 1=0.8
Model 1 Location: 3 Location: 3 Location: 3 Location: 3
Objective: 1673 Objective: 1673 Objective: 1673 Objective: 1673
W;=5.06 W;3=2.47 W;=1.5 W;=1.08
W;=0.83 W1=0.54 W1=0.38 W;=0.28
W,=0.10 W,=0.07 W,=0.05 W,=0.04
Model 2 Location: 3 Location: 3 Location:3 Location: 3
Objective: 1354 Objective: 1409 Objective: 1509 Objective: 1579
W;=2.59 W;=1.59 W;=1.16 W;=0.87
W;=1.62 W;=0.99 W,;=0.67 W;=0.41

15



W,=1.82 W,=1.02 W,=0.59 W,=0.46

Average traveling Average traveling Average traveling Average traveling
Time :10.74 time :10.61 time :10.59 Time :10.68

W, average waiting time at store 1;\Average waiting time at store 2;\&verage waiting time at store 3 (entrant)

We can verify how the tendency for the waiting time the three facility locations becomes

similar with increases in the service rate. Fordolevels of service rate, the deviation from the

waiting time in the new store and the waiting timehe other two stores is clearly greater for

model 2. The objectives resulting from both modeis different in all the examples. Waiting

time has no impact on the objective of model 1 hh&ducing the objective in model 2. We

give additional information on the average travgliimes resulting from model 2.

5 A Heuristic Concentration algorithm to solve larger problems.

An obvious limitation of the methodology proposedhie previous sections is the time required

to solve larger problems. A possible strategy toidish this problem is the use of a heuristic

concentration algorithm.

Heuristic concentration was developed specificidlydeal with larger problems. HC is a two

stage process. Stage 1 involves doing some nurgpef fandom start runs of an interchange

heuristic. A number of these solutions are therjesiéd to a simple analysis in order to develop

the concentration set.

Stage 2 is the construction of a (heuristicallyivtet) good solution or the best solution (by an

exact method) from the concentration set. For ailéet description of this methodology, see

Rosing and ReVelle (1997) as an example.

A general description of the heuristic concentratédgorithm proposed to solve the problem

formulated in section 2 consists of the following:

e Stage 1:

1. Find p random initial locations for firm A’s stores

2. Allocate each demand node to its closest storditotaFind the demand served by each
firm A outlet as well as total firm A market captudf the utilization factor is bigger than

one, set the market capture to zero and go to3step

16



10.

11.

12.

13.

Choose the first of firm A’s outlets from a listitd stores and trade its location to an empty
node within the set of potential locations.

Find again the demand served by each of firm ABets1 Compute market capture. If the
utilization factor is bigger than one, set the nearkapture to zero. If market capture has
improved, store the new locations. If not, restbeeold solution.

Repeat steps 3 and 4 until all potential emptytlona have been evaluated one at a time
for each outlet.

If firm A improved its market share to a value degdhan in Step 2, go to Step 3 and restart
the procedure.

When no improvement is achieved for a completeofaine-at-a-time trades, store final
solution.

Go to Step 1 until a number q of iterations of 8tags met.

Stage 2:

Use all final locations obtained from all startisgjutions or use the final locations from the
best k out of the multiple starting solutions iragt 1 to form the new, reduced set of
potential locations (the concentration set - CS).

Find p random initial locations in the CS for fies stores;

Solve the P-Median model: find the demand serveédsh of firm A’s outlets as well as
total market capture of firm A using the ant algfum described in section 3. If the
utilization factor is bigger than one, set the neaidapture to zero and go to step 9.

Choose the first of firm A’s outlets from a list it stores and trade its location to an empty
node within the set of potential locations in th&.C

Find again the demand served by each of firm Aetaiusing the ant algorithm described
in section3. Compute market capture. If the utilaa factor is bigger than one, set the
market capture to zero. If market capture has ingulp store the new locations. If not,

restore the old solution.

17



14. Repeat steps 3 and 4 until all potential emptytlona have been evaluated one at a time
for each outlet.

15. If firm A improved its market share to a value gegahan in Step 11, go to Step 12 and
restart the procedure.

16. When no improvement is achieved for a completeo$aine-at-a-time trades, store final
solution.

17. Go to Step 10 until a number p of iterations ofgsta is met.

In stage one we hope to eliminate some of the fiatestore locations due to their periphery,

increased traveling distances and consequent gatiah on the P-Median objective.

We used the heuristic concentration algorithm oteotto locate 2 and 3 stores of an entrant firm

when there is another firm operating with two ssdiecated in the two demand points with the

larger populations.

In our experiments, we compare the solutions obthinsing an algorithm that considers all

possible combinations for the location of new stdi@gorithm 1) with the ones obtained using

the above algorithm. For each different combinatbnumber of demand nodes and number of

new stores, we randomly generated 10 numerical pbe@mAs in section 4, the examples were

generated using the procedure described in Corelieali(1997). Coordinates where randomly

generated from a uniform distribution on a66square, distances are Euclidean, populations

were generated from a uniform distribution betw8660 and 8000 and the arrival rates at each

demand point were fixed at 10% of the respectiveutadions. Every demand point is also a

potential store location.

Table5.1; Results from concentration heuristics.

20 nodes 35 nodes
2 stores 3 stores 2 stores 3 stores

Algorithm 1

Average computing time (seconds) 136.062 181.917  712.217 6263.09
Algorithm 2

Number of different objectives 0 1 0 2

Average number of elements in the CS 12 13 19 23

Average computing time (seconds) 11.764 22.598 84.96 187.144
Algorithm 3

Number of different objectives 0 1 1 2
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Average number of elements in the CS 6.1 7.9 7.3 11
Average computing time (seconds) 7.115 20.602 38.251 214.453

Given the small size of the examples (20 and 3%gpde only considered 100 iterations in
stage 1. The difference between algorithms 2 andn3ists of the fact that in algorithm 3, we
adopted the procedure of incorporating a new swiuth the CS whenever the objective is
greater or equal to 90% of the best objective foanthe moment and in the second stage we
used complete enumeration for the potential loaatia the CS.

Table 5.1 resumes the results obtained with ouresxents. In general the HC shows
interesting results allowing significant reductionghe problem.

Conclusions.

The model proposed in this paper seems to be gsiéul in the location decisions of new
stores for services in which waiting queues arernom as is the case of fast food restaurants,
supermarkets or commercial banks.

When the service rate is not large enough relatiibe arrival rate which, in turn, results from
the market share, waiting time may have a signitiéapact on the optimal location of a new
outlet of an entrant firm.

The metaheuristics we propose in this paper prodeselts that are close to optimal, offering

important savings in computational processing times
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