
Secret Information Acquisition in Cournot Markets�

Esther Hauk

Department of Economics

Universidad Carlos III

Calle Madrid 126

28903 Getafe (Madrid)

Spain

Sjaak Hurkens

Department of Economics

Universitat Pompeu Fabra

Ramon Trias Fargas 25-27

08005 Barcelona

Spain

this version: August 1997

�rst version: March 1996

Abstract

Two-stage game models of information acquisition in stochastic oligopolies re-

quire the unrealistic assumption that �rms observe the precision of information

chosen by their competitors before determining quantities. This paper analyzes

secret information acquisition as a one-stage game. Relative to the two-stage

game �rms are shown to acquire less information. Policy implications based on

the two-stage game yield, therefore, too high taxes or too low subsidies for research

activities. For the case of heterogeneous duopoly it is shown that comparative stat-
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1 Introduction

Demand for a good is not deterministic but subject to stochastic shocks, that is, demand

depends on some random variable. These shocks are usually modeled as uncertainty

about the intercept of demand (as in this paper), the slope of the demand function, but

more complex con�gurations are also possible. By doing market research, �rms acquire

information about this random variable. Having good information bene�ts �rms since

they will be able to predict better how large (residual) demand is, and therefore will

make better production (or price) decisions which will result in higher pro�ts (gross

of the costs of information acquisition). Market research is also important for social

welfare, because it allows demand and supply to be matched better. On the other hand,

too much duplication of costly research is socially undesirable.

In most of the relevant literature information acquisition in stochastic oligopoly mar-

kets (and auctions) is modeled as a two-stage game. In the �rst stage the players decide

how much to invest in information acquisition. In the second stage the choices made in
the �rst stage become public and further decisions (quantities in oligopoly markets or

bids in an auction) may therefore depend on these choices. In our view this "observ-
ability" assumption is unrealistic. How should a �rm be able to observe the information
acquisition decisions of its opponents? Disregarding espionage1, the only possibility
seems to be that all �rms publicly announce their information acquisition decisions. The
only way to credibly announce the precision of information might be to make the reports,

received from the market research agencies, public. However, �rms often do not want to
share their private information. (See e.g. Gal-Or (1985).) Of course, each �rm will have
some conjectures about how well informed the competitors are. And in equilibrium (of
a one-stage game where information is gathered secretly) these beliefs will necessarily
be con�rmed. But this does not imply that the �rm's quantity decision depends on the

information acquisition decisions of the opponents.
Given the implausibility of the assumption that information acquisition decisions are

observable, it is remarkable that the vast majority of the relevant literature has made
this assumption without giving any justi�cation.2 There could be two reasons for this.
First, the analysis of the two-stage game seems to be easier since it can be solved by
backward induction. The second stage game belongs to the class of games with imperfect

(and asymmetric) information with which one is quite familiar by now. Plugging in the

payo�s of the (unique) equilibria of the second stage games, the total game is reduced to
one where players only decide how much information to acquire. However, solving the
reduced game turns out to be not that straightforward after all. Checking the second

1Recall that information acquisition decisions in the two-stage game become public. In particular,
each �rm knows that its competitors know how well informed it is. This would imply that the presence
of spies is also public knowledge.

2Information acquisition was studied in Cournot markets by Chang and Lee (1992), Daughety and
Reinganum (1992), Hwang (1993, 1995), Li et al. (1987), Ockenfels (1989) and Vives (1988). Matthews
(1984) and Milgrom (1981) studied information gathering in auctions. Only Matthews did not make
the observability assumption, while Hwang (1995) stated that it would be desirable to analyze the game
without this assumption. Hurkens and Vulkan (1995) considered information gathering by potential
entrants and also criticized the observability assumption.
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order conditions is not an easy task.3 Moreover, explicit solutions could only be obtained

for the limit case when the number of �rms becomes in�nite. We show that the one-stage

game allows for explicit solutions for any number of �rms.

A second reason for assuming observability of the information acquisition decision

might have been that the authors were led to believe that the results do not depend

on whether the assumption is made or not. In fact, Ponssard (1979, footnote 3) claims

the latter to be the case in his oligopoly model where information is learned either

perfectly or not at all. Although most authors did not model information acquisition

as a binary choice, they may have thought that Ponssard's claim is valid also when the

precision of information can be chosen from a continuum. However, even in the binary

case Ponssard's claim is not completely correct. Section 2 contains a counterexample

in which (for some parameter values) the one-stage game has more equilibria than the

two-stage game.

When the precision of information can be chosen from a continuum the di�erence

between the outcomes of the one and two-stage games is even more clear. We show that
in �nite Cournot markets �rms will acquire less information if information is acquired
secretly. This is the main result of the paper. The intuition is as follows. Firms gather

information because they want to estimate residual demand. Raising the precision of
information has two direct bene�ts, which are present in both models of information
acquisition. It reduces the prediction errors of the intercept of demand and of the signals
received by the competitors. Hence, both the demand curve and the production levels
of the competitors can be estimated more accurately. In the two-stage model there is an

additional bene�t. If one �rm raises its precision of information (in the �rst stage) other
�rms will react less aggressively to their own signal (in the second stage). This implies
that the competitors' quantities will be predicted more precisely. Since the equilibrium
level of information precision is found where marginal bene�t equals marginal cost, it
follows that �rms invest more in research when they know that the competition will

observe it (and respond to it).
The above argument reveals that in �nite Cournot markets more information is ac-

quired in the two-stage than in the one-stage game. This has an immediate consequence
for policy implications concerning the need for taxes or subsidies on information gath-
ering activities. Namely, policy advice based on the two-stage game will be biased in

the direction of lower subsidies or higher taxes, compared to policy based on the (in our
view) more realistic one-stage model. In fact, we show that even the direction of policy

can be overturned: For some parameter constellations the one-stage game will advocate

subsidies while the two-stage game will support taxes.
Since Vives (1988) and Li et al. (1987) were mainly interested in the competitive

market, viewed as the limit of �nite Cournot markets, it is interesting to analyze whether

in the limit (when the number of �rms goes to in�nity) this di�erence disappears. It

does. This is obvious if the competitive market with a continuum of �rms is analysed
directly: clearly the average precision of information in the market cannot be changed by

an individual neglegible �rm. However, when the competitive model is seen as the limit
of �nite Cournot markets, it is not obvious that both models of information acquisition

3This required about one page in both Vives (1988) and Li et al. (1987).
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yield the same results. As argued above, in each �nite market �rms' quantity decisions

can be manipulated by a change in precision of information of a single �rm. Even though

the in
uence is small per opponent, the aggregate reaction of the market on a change

in precision of information of one individual �rm could be substantial also in the limit.

That it is not does not justify the use of the two-stage model since most markets are

�nite.

The rest of the paper is organized as follows. The next section illustrates how impor-

tant the assumption of observable information acquisition can be. We show this most

convincingly in a simple example that is not related to oligopolistic markets. Then we

show that Ponssard's (1979) claim that the two models of information acquisition are

equivalent if information is either learned perfectly or not at all is wrong. In Section 3 a

general model of information acquisition in an oligopolistic market with heterogeneous

�rms (of which Vives (1988), Li et al. (1987) and Hwang (1993) are special cases) is

presented. We present our main result that �rms acquire less information when informa-

tion acquisition is not observed. We also show that equilibrium payo�s in the one-stage
game are higher than in the two-stage game.

Section 4 analyzes the special case of homogeneous oligopoly and reconsiders the

models of Vives (1988) and Li et al. (1987). We derive the explicit expression for the
equilibrium amount of information gathering. Since we know that in the limit as the
number of �rms grows, the di�erence between secret and observable information acqui-
sition disappears, we reinforce Vives'(1988) result, that competitive markets are second
best e�cient. In �nite oligopolistic markets, however, �rms may over- or underinvest in

information acquisition. Conditions are stated under which �rms underinvest relative
to the social optimum. Finally, it is shown that policy implications derived from the
di�erent models of information acquisition may give qualitatively di�erent results.

Section 5 concentrates on the special case of heterogeneous duopoly and reconsiders
the model of Hwang (1993). Again we give the explicit expression for the equilibrium

amount of information gathered and it is shown that �rms will acquire less information
when information is acquired secretly. We compare the comparative statics for the one-
stage game with those obtained by Hwang's (1993) for the two-stage game. In most cases
the same conclusions are reached: (1) The �rm with the higher marginal production cost
will gather less information; (2) An increase in initial uncertainty and a decrease in the

cost of information leads both �rms to gather more information, but the �rm with the
higher marginal production cost increases information acquisition more; (3) An increase

in the marginal production cost of one �rm leads to a decrease of information acquisition

of that �rm and to an increase of information acquisition of its rival. However, our
comparative statics results di�er when considering changes in the slope of the demand
function. This di�erence underlines once more the importance of modeling information

acquisition in the right way.

Section 6 concludes and discusses some of the other models of information acquisition
that have employed a two-stage model.
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2 Secret vs. Private Information

A very simple example (taken from Levine and Ponssard (1977)) illustrates how striking

the di�erence between secret and private4 information acquisition can be. Suppose that

Nature determines which of the two bimatrix games of Fig. 1 is going to be played, I or

II. Game I is picked with probability 2/5.

L R

T 2,4 2,2

B 3,1 0,0

I

L R

T 2,2 2,4

B 0,0 3,1

II

Figure 1.

Only player 2 has the opportunity to learn the outcome of the random move. If
neither player knows which game is played, both players have a dominant strategy and
the outcome will be (T,R), yielding an expected payo� of (2,16/5). However, if player
2 observes which matrix is chosen, he will play L in game I and R in game II. If player
1 knows that player 2 observes the outcome of the move of Nature, player 1 will play
B and the resulting payo� vector will be (3,1). In the two-stage version of the game of

information acquisition player 2 will choose (commit) not to obtain information, and the
outcome will be (T,R). In the one-stage version, where information is acquired secretly,
player 1 cannot condition his action on whether player 2 learned or not. In equilibrium
player 1 will know that player 2 cannot resist to observe the outcome of the random
move and therefore player 1 will choose B. Secret and private information acquisition

lead to di�erent outcomes.
The above example is of theoretical interest but does not have any economic content.

Hypothetically, it could be that in examples of economic interest the di�erence between
private and secret information acquisition is not important. Ponssard (1979) claims this
to be the case in a linear model of quantity competition with n �rms and stochastic

demand. The information acquisition decision is a binary one: one learns the true
demand or one learns nothing. Ponssard computes the equilibria for each "subgame"

where k �rms are informed and the remaining n � k �rms are uninformed. He shows
that the uninformed �rms always choose to produce the same quantity, independent of

how many �rms are informed, and that they always have the same expected payo�.

This is caused by the fact that the expected quantity produced by an informed �rm is

independent of how many other �rms are informed. From this he concludes that "...

this theorem makes immaterial whether the acquisition of information is made privately
or secretly". However, Ponssard has shown only that the incentives for an informed

�rm to deviate from any strategy pro�le are the same in the two di�erent games, and
that the incentives to deviate from the all-�rms-stay-uninformed strategy pro�le are the

4This terminology is borrowed from Levine and Ponssard (1977).

4



same in the two games. But he failed to examine the incentives for uninformed �rms to

deviate from any other strategy pro�le. The latter incentives do di�er in the two games.

Therefore, the solutions of the two games might not coincide.

To make the point more clear let us consider a very simple case. Consider a Cournot

duopoly where price is given by p = d � q, where q is the aggregate production and

where d is stochastic; with equal probability it is high (h) or low (l). Let a = (l + h)=2

denote average demand. For convenience also assume that production is costless. Firms

can learn the true realization of demand at cost c. First consider the two-stage game.

If both �rms learn the true demand they will produce d=3. Expected payo� is therefore

(l2 + h2)=18 = a2=9 + V ar(d)=9. If both �rms stay uninformed they will produce a=3

resulting in an expected pro�t of a2=9. If only one �rm learns the demand it is a little

bit more complicated. The uninformed �rm will produce a=3. The informed �rm will

produce (d � a=3)=2. (Note that the expected production of the informed �rm equals

a=3.) The expected pro�ts are a2=9 for the uninformed �rm and a2=9 + V ar(d)=4 for

the informed �rm. The pure equilibrium outcomes of the two-stage game are therefore:
(1) if c > c := V ar(d)=4 both �rms stay uninformed; (2) if c < c := V ar(d)=9 both �rms
become informed; (3) if c 2 (c; c) one �rm becomes informed.

Now consider the one-stage game. Ponssard (1979) already has shown that the incen-
tives to deviate for informed �rms are the same. He also has shown that the incentives
to deviate from the all-�rms-stay-uninformed pro�le are the same. It follows that the
situation where both �rms become informed is an equilibrium outcome of the one-stage
game if c < c, and that the situation where both �rms stay uninformed is an equilib-

rium outcome if c > c. But the situation where only one �rm becomes informed is an
equilibrium outcome of the one-stage game if c 2 (ec; c), where ec := V ar(d)=16. Namely,
given the fact that the informed �rm chooses (d� a=3)=2, the optimal deviation for the
uninformed �rm is to learn demand and produce d=2 � (d � a=3)=4 yielding a pro�t of
a2=9 + V ar(d)=16. Hence, when the cost of becoming informed lies between ec and c the
situation of asymmetrically informed �rms is an equilibrium outcome of the one-stage
game but not of the two-stage game. In the two-stage game the uninformed �rm would
deviate and learn the true demand. In this case an informed �rm prefers the other �rm
to know that it is informed.

3 The Model

We will set up a model of information acquisition in Cournot markets which is very
similar to Vives (1988). In fact, the present model will be slightly more general such

that the models of Vives (1988), Li et al. (1987) and Hwang (1993) can be considered

as special cases.
There are n � 2 �rms. The inverse demand function is given by p = � � �n

Pn
j=1 xj,

where xj is the output of �rm j, �n > 0 is a constant and � is a random parameter with

mean � and variance �2. Firm i has a cost function Ci(xi) = cixi + �ix
2
i , where ci � 0,

�i � 0. Each �rm i can buy information of certain precision 1=vi about demand. This

means that �rm i will receive a signal si = �+"i where "i is a noise term with zero mean,
variance vi and with Cov(�; "i) = 0. The signals received by the �rms are independent
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conditional on � and furthermore it is assumed that E(� j si) is a�ne in si. These

assumptions imply that E(� j si) = E(sj j si) = � + ti(si � �), where ti = �2=(�2 + vi).

Note that as vi ranges from 0 to in�nity, ti ranges from 1 to 0. Instead of working with

vi, we shall work with ti and refer to ti as the precision of information. We assume

that the cost of information acquisition is linear in 1=vi, or equivalently, information of

precision ti costs

C(ti) =
cti

�2(1 � ti)
:

A typical example of such an a�ne information structure is for � and "i to be Normal.

si could be the average of ni observations from a Normal distribution with mean �

and �xed variance. The precision of information 1=vi is proportional to the number of

observations. When the marginal cost of an extra observation c is constant, the cost of

information will be linear in 1=vi. (See Vives (1988) for a description of a number of

other distributions that de�ne an a�ne information structure.)

Let �1 denote the one-stage game of information acquisition. A strategy for �rm i in
this game is a pair (ti; xi(�)), where ti 2 [0; 1) is the choice of precision and where xi(�)
maps private signals into quantities. Let �2 denote the two-stage game. In this game a

strategy for �rm i is a pair (ti; yi(�; �)), where ti again denotes the precision of information
and where yi(t; si) denotes the quantity produced by i in case it receives signal si while
�rms have chosen to acquire information according to the tuple t = (t1; � � � ; tn). Let �2(t)
denote the second stage continuation game of �2 where precision tuple t was chosen
in the �rst stage. It is quite straightforward to solve for the Perfect Bayesian Nash

equilibrium of �2. First one solves for the (unique) Bayesian Nash equilibrium of �2(t),
for all t. Substitution of the equilibrium payo�s �i(t) � C(ti) reduces the two-stage
game to a game where only precision levels have to be chosen. This gives rise to reaction
functions, and the equilibrium level of information is found by computing the intersection
of these reaction functions, or, if the solution is interior, by equating the marginal value

of information with its marginal cost:

@�i

@ti
= C 0(ti) (all i).

At �rst sight it seems that solving �1 will be more complicated. The precision of

information ti and the action function xi(�) have to be chosen simultaneously. Hence, it
is not possible to work with reaction functions. However, a �rst order condition approach
can be used. In fact, it will turn out that this is easier for the one-stage game than for

the two-stage game. In particular, an explicit solution for �1 will be derived whereas

the solution for �2 can be given only implicitly. The key observation is that if (t; x)
is a pure Nash equilibrium of �1, it must be the case that x is an equilibrium of �2(t).

This reduces the number of candidate solutions of �1 considerably. Only these candidate
solutions have to be checked against unilateral deviations (t0i; x

0
i).
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The Continuation Game

As outlined above, the �rst step in the analysis of both �1 and �2, focuses on the

continuation games �2(t). From the previous literature it is known that the equilibrium

strategies in each continuation game are a�ne with respect to the signal. Instead of

proving this here, we will impose that all quantity choice functions are a�ne.

Let t = (t1; � � � ; tn) be a tuple of information precisions and consider the continuation

game �2(t). Fix strategies xj(sj) = aj(sj � �) + bj for all j 6= i. The best reply for �rm

i is that function xi(�) that maximizes conditional expected pro�t

E

0
@xi(si)(� � �n

X
j 6=i

xj(sj)� ci � (�i + �n)xi(si)) j si
1
A :

Hence,

xi(si) =
E(� j si)� �n

P
j 6=i E(xj(sj) j si)� ci

2(�i + �n)

= bi + �aiti(si � �); (1)

where

bi =
� � ci � �n

P
j 6=i bj

2(�i + �n)
and �ai =

1 � �n
P

j 6=i aj

2(�i + �n)
: (2)

The conditional expected payo� (gross of information cost) from responding in this

optimal way equals (�i + �n)(xi(si))
2. The unconditional expected pro�t can now be

computed to be

�i(t) := E
�
(�i + �n)(xi(si))

2
�

= (�i + �n)([E(xi(si))]
2 + V ar(xi(si)))

= (�i + �n)(�b
2
i + �a2i t

2
i (�

2 + vi))

= (�i + �n)(�b
2
i + �a2i ti�

2): (3)

Using (1) and (2) the equilibrium strategies can be computed and written as xi(si) =

bei + �aei [t]ti(si � �), where

2(�i + �n)b
e
i = �� ci � �n

X
j 6=i

bej (i = 1; : : : ; n) (4)

and

2(�i + �n)�a
e
i [t] = 1� �n

X
j 6=i

tj�a
e
j[t]: (i = 1; : : : ; n) (5)

Note that the constants bei (i = 1; � � � ; n) do not depend on the precision of information

in the market.

Lemma 1 Solutions to systems (4) and (5) exist. Moreover, they are unique.
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Proof. See Appendix.

Endogenous Information Acquisition

The information acquisition games are now easily solved. We consider �rst the two-

stage game. The Perfect Bayesian equilibrium (t�; y�(�; �)) of �2 needs to be such that

y�(t; �) is the unique Nash equilibrium of �2(t) as computed above, for all t. Hence,

y�i (t; si) = bei + aei [t]ti(si � �) for all t. Furthermore, no �rm must have an incentive to

gather any di�erent amount of information. Assuming an interior solution this amounts

to demanding that (@�i=@ti)t� = C 0(t�i ) or

(�i + �n)�
2((�aei [t

�])2 + 2t�i �a
e
i [t

�](
@�aei
@ti

)jt�) = C 0(t�i ): (6)

It is not so easily veri�ed that the second order condition is satis�ed, but it can be done.

(For the special cases of homogeneous �rms and of heterogeneous duopoly see Vives
(1988) and Hwang (1993), respectively.)

Consider now the one-stage game. In order for (�t; �x(�)) to be a pure equilibrium of
�1, �x(�) needs to be the equilibrium of �2(�t). As before, this strategy pro�le can be

computed and written as xi(si) = bei + �aei [�t ]�ti(si � �). The additional condition is that
no �rm must have an incentive to deviate from this pro�le. Note that �rms can deviate
from the information precision and the quantity decision function at the same time.
However, given a deviation from �ti to ti, the optimal deviation from �xi(�) is easily seen to
be xi(si) = bei +�aei [�t ]ti(si��). This follows from (1) and (2). (Recall that the opponents
do not observe the deviation and stick therefore to their strategies.) Note that �aei [�t ]

depends on �t, but not on ti. Assuming an interior solution it follows from (3) that this
amounts to demanding that

(�i + �n)�
2(�aei [�t ])

2 = C 0(�ti): (7)

Here it is easily veri�ed that the second order condition is satis�ed, since C 00(ti) > 0 and
the left-hand side does not depend on ti.

Comparing (6) and (7) it becomes obvious that the solutions of the two di�erent
information acquisition games do not coincide, as long as they are interior. In fact,

whenever @�aei [t]=@ti > 0 the solution of the two-stage game will yield higher levels of

precision than the one-stage game. Indeed, we establish our main result:

Theorem 1 The equilibrium precisions of information in �1 are strictly smaller than

those in �2, unless they are zero in both.

Proof. From the equations (5) corresponding to �rms i and j 6= i we deduce that

2(�i + �n)�a
e
i [t] + �ntj�a

e
j[t] = 2(�j + �n)�a

e
j[t] + �nti�a

e
i [t]:

It follows that �aei [t] > 0 for all i in view of (5). Moreover, di�erentiating with respect to

ti yields

��n�aei [t] + (2(�i + �n)� ti�n)
@�aei [t]

@ti
= (2(�j + �n)� tj�n)

@�aej[t]

@ti
:
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If it were true that
@�ae

i
[t]

@ti
� 0, then

@�ae
j
[t]

@ti
< 0, for all j 6= i. This is impossible in view

of equation (5). Therefore,
@�ae

i
[t]

@ti
> 0 and the result follows from inspection of equations

(6) and (7). 2

Lemma 2 The equilibrium payo�s of �2 are strictly lower than those of �1, unless no

information is gathered in any of the games.

Proof. See Appendix.

Lemma 2 provides an argument why �rms would not want to play the two-stage game

even if they could choose to do so. Suppose �rms acquire information secretly but some

way exists to credibly inform the other �rms of (a lower bound on) the precision of one's

information. Given that each �rm enjoys an additional bene�t of information acquisition

if the other �rms are informed about the precision of its information, each �rm would opt

for the announcement. In equilibrium�rms will acquire the level of information predicted

by the two-stage game. Lemma 2 shows that the precision announcement game is a type

of prisoner's dilemma: each �rm prefers to gather more information and announce it,
but when all �rms do that, they are all worse o�. Folk Theorem-type arguments support
a no-announcement outcome in the in�nitely repeated version of this game. Given the
higher equilibrium payo�s of the one-stage game �rms will consciously choose not to
reveal the precision of their information.

4 Homogeneous Firms

In this section the special case of homogeneous �rms will be considered. Let �i � � and
ci � 0 for all i.5 Given Lemma 1 it su�ces to look for symmetric candidate solutions and

unilateral deviations thereof. Let t̂ denote a tuple of information precisions where t̂j � t�

for all j 6= i. Consider the equilibrium x(�) of �2(t̂). From (4) and (5) the equilibrium
strategies can be computed. In particular, xi(si) = bei + �aei [t̂ ]t̂i(si � �) where

bei = �=(2� + (n+ 1)�n) (8)

and

�aei [t̂ ] =
2(� + �n)� �nt

�

2(� + �n)(2(� + �n) + �n(n� 2)t�)� �2
n(n� 1)t�t̂i

:

It follows that

aei [t̂ ]jt̂j=t� = 1=(2(� + �n) + (n� 1)t��n) (9)

and that  
@�aei [t̂ ]

@ti

!
jt̂i=t�

=
�2
n(n � 1)t�

(2(� + �n)� �nt�)(2(� + �n) + (n� 1)�nt�)2
: (10)

5The marginal cost parameter ci enters only in the constant term of the equilibrium strategies and
does, therefore, not a�ect the results.
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Substitution of (9) and (10) in (6) and some further manipulations yield that the sym-

metric equilibrium precision of information t� is found by solving MPV2(t
�) = C 0(t�),

where

MPV2(t) = �2(� + �n)
2(� + �n)(1 + (n� 1)
) + (n � 1)
t�n

(2(�+ �n)(1 + (n� 1)
)� (n� 1)
t�n)3
;

if this solution is nonnegative. In this expression


 =
t�n

2(� + �n)� t�n
:

We use the notationMPV2(t) to denote the marginal private value to a �rm of increasing

its precision when all �rms have acquired information of precision t. It is impossible to

get an explicit solution for t�. Only the limit solution for the case of in�nitely many

�rms can be computed after taking the limit of MPV2 as n goes to in�nity. This limit

case will be of interest in order to compare our results with Vives (1988) and Li et al.

(1987) who focused on this case.

Consider now the one-stage model. Substitution of (9) into (7) yields that the sym-
metric equilibrium precision of information �t is found by solvingMPV1(�t) = C 0(�t), where

MPV1(t) =
�2(� + �n)

(2(� + �n) + t(n� 1)�n)2
;

as long as this solution is nonnegative. HereMPV1(t) denotes themarginal private value
of information in the one-stage game. Using C 0(t) = c=(�2(1� t)2), the above expression
can be solved explicitly to obtain:

�t = maxf0;
�2 � 2

q
c(� + �n)

�2 + (n� 1)�n
q
c=(� + �n)

g:

It is easily checked that MPV2(t)�MPV1(t) > 0 for all t > 0. To be precise,

MPV2(t)�MPV1(t)

�2(� + �n)
=

2(n � 1)(t�n)
2

(2(� + �n)� t�n)(2(� + �n) + (n� 1)t�n)3

The di�erence is proportional to (and of the same sign as) @�ai=@ti. (Compare (6) and
(7).) Hence, t� > �t, unless t� = �t = 0.

Note, however, that when n tends to in�nity MPV2(�) and MPV1(�) converge to the
same function. Therefore, in the limit the di�erence between the outcomes of the two

di�erent information acquisition games disappears. This is independent of whether the
market is replicated a la Vives (1988) or a la Li et al. (1987). In the model of Li et al.

(1987) this result is not surprising. Since in their model �n = �, which is independent of
n, demand is not replicated when the number of �rms grows. When n goes to in�nity, the

gross pro�ts per �rm go to zero. Therefore, the amount of money spent on research has

to go to zero. In the model of Vives (1988) where demand is replicated since �n = �=n

the result is not at all obvious. In this case private information acquisition information

has an additional bene�t. If one �rm raises its precision of information other �rms will

10



react less aggressively to their own signal. Therefore competitors' quantities will be

predicted more precisely. This implies that in each �nite Cournot market �rms' quantity

decisions can be manipulated by one single �rm changing its information acquisition.

When the number of �rms grows, the in
uence per opponent diminishes. However, it is

not obvious that the aggregate of these small in
uences is not substantial.

Note also that MPV2(0) = MPV1(0) and that MPV 0
2 (0) = MPV 0

1(0). This implies

that when the equilibrium amounts of information acquisition are close to zero (because

information gathering is very costly or because initial uncertainty is quite small), then

the two models predict approximately the same levels of information acquisition. For

low information cost and high initial uncertainty the models will, however, predict very

di�erent levels of information gathering.

Welfare

Firms gather information in order to estimate residual demand and make higher

pro�ts. Consumers also bene�t from the fact that demand and supply are matched
better. When �rms receive imprecise signals, some �rms will overestimate demand while
others will underestimate it. As a result �rms will produce di�erent quantities and, since
production costs are convex, they will produce at di�erent marginal costs, which clearly

indicates an ine�ciency. Better information reduces this ine�ciency. On the other hand,
a �rm gathering information imposes a negative externality on its rivals. It raises its
pro�ts at the expense of the other �rms. At high levels of information acquisition this
lowers total industry pro�t. The duplication of market research by many �rms also has
a negative e�ect on social welfare.

The welfare aspects of information acquisition are therefore not clear and need to be

examined. We need to de�ne the e�cient level of information and examine which policy
measures are needed in order to obtain this optimal level. Since �rms acquire more
information in the two-stage game than in the one-stage game, policy implications are
likely to di�er with the model we use. Moreover, if our claim that the one-stage game is
more realistic is true, it is important to understand how wrong policies based on the two-

stage game would be. Will policy implications be reversed, i.e. will the two-stage model
recommend to tax (subsidize) information acquisition when it ought to be subsidized
(taxed)? Or will it advocate a di�erent magnitude of the same policy direction?

To address this issue three di�erent de�nitions for the best (e�cient) level of infor-
mation will be examined that are characterized by a trade-o� between e�ciency and

feasibility.

Def. 1 The �rst best (e�cient) level of information is that level of information
acquisition that maximizes welfare when �rms use welfare maximizing quantities in pro-
duction and the information of all �rms can be pooled.

Vives (1988) has shown that (with strictly convex cost functions) the competitive

market cannot attain the �rst best level of information, unless the cost of information is
zero. There are simply no strategies that could yield the �rst best outcome, since convex

costs imply that �rms will surely operate at di�erent marginal costs if they are to rely

on their own private signal. With constant marginal cost, however, �rst best e�ciency
is possible. This result is opposed to the one of Li et al. (1987). The di�erence of results

11



is caused by the fact that Li et al. (1987) do not replicate the market appropriately.

Therefore, from now on we will only consider the properly replicated market, that is

�n = �=n.

The assumption that the information of all �rms can be pooled is unrealistic. It does

not respect the decentralized decision structure of the economy. E�ciency of competitive

markets is restored if the constraint of decentralized information acquisition is recognized.

Def. 2 The second best (e�cient) level of information is that level of information

acquisition that maximizes welfare when �rms use welfare maximizing quantity functions

in production while information cannot be pooled.

Vives (1988) has shown that the competitive market attains this second best level.

Since in the limit case �rms acquire the same amount of information in the one-stage

game of information acquisition as in the two-stage game, we get the following corollary

to Vives' result:

Corollary 1 When the number of �rms goes to in�nity, the one-stage game model of
information acquisition yields the second best e�cient level of information.

The second best e�cient level of welfare is problematic because it is based on �rms
maximizing welfare in production. It thereby implicitly assumes either a policy measure
in the form of subsidizing production that induces �rms to do so, or perfect competition.
A subsidy on production is hard to implement since the size of the correct subsidy
depends on the pool of information. The alternative implicit assumption of perfect

competition makes the criterion inapplicable to �nite oligopolistic markets. In perfectly
competitive markets the second best e�cient level of information coincides with the
following criterion:

Def. 3 The third best (e�cient) level of information is that level of information
acquisition that maximizes welfare when �rms use pro�t maximizing quantity functions
in their production decision and information cannot be pooled.

Given that the third best e�cient level of information respects the market structure

in both information acquisition and production it seems the appropriate criterion to be

used for policy recommendations. The �rst best level is irrelevant since �rms can never
be given incentives to pool their information. (See Gal-Or (1985).) Moreover, like the

second best level it assumes some policy measure that ensures welfare maximization

in production. Only the third measure concentrates on the pure e�ects of information
acquisition and will therefore be the basis for our welfare analysis.

For given precision of information t for each �rm, each �rm j will use the equilibrium
strategy xj(sj) = a(sj � �) + b� where a and b are determined by equations (8) and (9),

respectively. Total welfare (gross of information cost) for given t, � and signals sj equals

TW (t; �; s1; :::sn) =
�2

2�n
� 1

2�n

0
@� � �n

X
j

xj(sj)

1
A

2

� �
X
j

xj(sj)
2:
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We can compute the expected total welfare, ETW (t) by �rst taking the expectation

over signals conditional on �, and then taking the expectation over �. The third best

e�cient level te3 satis�es ETW
0(te3) = nC 0(te3), or equivalently,

MSV (te3) = C 0(te3);

whereMSV (t) = ETW 0(t)=n denotes the per capitamarginal social value of information.

This is equal to the marginal e�ect on total welfare when one �rm increases its precision,

when all �rms have precision t. In the appendix we show that

MSV (t) = �22�
2 + 3�2

n + 5�n�+ �(n � 1)t�n + (n� 1)t�2
n=2

(2(� + �n) + (n � 1)t�n)3
: (11)

We are now ready to compare the e�cient level with the equilibrium level of informa-

tion acquisition. Recall that at the equilibrium marginal private value equals marginal

cost, while at the third best e�cient level of information, the (per capita) marginal so-
cial value equals marginal cost. Whether under- or overinvestment takes place depends
therefore on the relative positions of the curves C 0,MSV , and MPV1 (for the one-stage
game) and MPV2 (for the two-stage game). We already know that MPV1 lies below

MPV2 from Theorem 1. The following lemma shows how the relative positions of the
other curves exactly depend on the parameters of the model.

Lemma 3

(i) MSV (t) > MPV1(t) if and only if t < t̂1, where t̂1 =
2+2n�=�

n�1
. t̂1 < 1 if and only if

n(1 � 2�=�) > 3.

(ii) MSV (t) > MPV2(t) if and only if t < t̂2, where t̂2 is the positive root of

[(n� 1)(2n�=� + 3=2)]t2 + [n(n�=� + 1)]t� 2(n�=� + 1)2 = 0:

t̂2 < 1 if and only (4(�=�)2 � 6�=�)n2 + (12�=� � 5)n+ 7 � 0.

Proof. See Appendix. 2

Lemma 3 tells us that the MSV and MPV curve intersect in a point t̂ which depends on
�=� and n. For t < t̂, MSV (t) > MPV (t) and for t > t̂ the reverse holds. The reason

is as follows. At low levels of information acquisition some �rms under- and others

overestimate demand considerably. This means that they will choose very di�erent
production levels, and since costs are convex, they will produce at di�erent marginal
costs, which indicates an ine�ciency. (The ine�ciency increases with �=�.) Moreover,

at low levels of information precision the negative externality that �rms in
ict on each

other is smaller than at high levels. The marginal social value at low (high) levels of t is
therefore relatively high (low) compared to the marginal private value.

Note that t̂1 � 1 when �=� � 1=2 and that t̂2 � 1 when �=� � 3=2. Hence,
when the ine�ciency caused by �rms producing at di�erent marginal costs is high, the

marginal social value is larger than the marginal private value, and as a consequence

�rms underinvest. This is true, whatever the size of the market, the cost of information
gathering and the initial uncertainty. In this case subsidies on information acquisition

activities could improve welfare. Note that the one-stage game model advocates higher
subsidies than the two-stage model.
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When the ine�ciency caused by �rms producing at di�erent marginal costs is not

severe (�=� is low), then for su�ciently large markets the intersection point of the

marginal social value curve and the marginal private value curve lies within the interval

(0; 1). Whether �rms over- or underinvest now depends on the initial uncertainty and

the cost of information acquisition. To be precise, it depends on the ratio �4=c. (See

Lemma 7 in the Appendix.) Fig. 2 illustrates the three possible cases.

When information is cheap and initial uncertainty relatively large (see curve C 0
3 in Fig.

2), �rms will overinvest. Taxes on information acquisition activities could restore this.

(Note that the one-stage game calls for lower taxes than the two-stage model.) When

information is expensive and initial uncertainty small (curve C 0
1), �rms will underinvest

relative to the optimum: subsidies are in order. (The one-stage game model calls for

higher subsidies than the two-stage model.) Note that for intermediate values of the

ratio c=�4 the one-stage game predicts underinvestment and calls for subsidies, while the

two-stage game model predicts overinvestment and advocates taxes. (Curve C 0
2.)

MPV2

MPV1

MSV

10
t

C 0
1

C 0
2 C 0

3

Figure 2: Comparing marginal cost and marginal values.

-

6

Note that �2 appears both in MSV (t) and in MPV (t) as a factor. Higher initial
uncertainty ampli�es the di�erence between the social and the private value, while it

lowers and 
attens C 0(t). This means that for high initial uncertainty overinvestment

will occur and that the introduction of the right tax could make up for a substantial
welfare improvement. In this case the two di�erent models of information acquisition

would advocate very di�erent tax levels and it is therefore important to use the relevant
model. When initial uncertainty is very small, on the other hand, a small subsidy would

be needed. The welfare improvement would not be very substantial in this case, and also

the two di�erent models of information acquisition would not yield very di�erent policy
recommendations.

14



The above results show how the di�erent parameters determine whether over- or

underinvestment occurs. They also show that the two-stage model either advocates too

low subsidies, too high taxes or a tax instead of a subsidy. In some circumstances the

degree of over- or underinvestment is very small, in which case it does not really matter

which model of information acquisition is used. This happens when � ! 0, �2 ! 0 or

n ! 1. For � ! 1, � ! 1 or c ! 1 it is optimal not to acquire information and

no policy measure is needed. In all other cases introducing the right policy measure can

account for a substantial welfare improvement. In those cases it is important to use the

right model, especially when initial uncertainty is large.

5 Heterogeneous Duopoly

For the case of heterogenous duopoly the general model of section 3 reduces to the

model of Hwang (1993). We will show that the one-stage game admits an explicit
solution whereas the two-stage game can only be solved implicitly. Moreover, we will
show that the comparative statics results obtained by Hwang do not always coincide

with the results we obtain for the one-stage game.
Let n = 2 and write �2 = �. Let t = (ti; tj) be a pair of information precisions. The

equilibrium strategies of the continuation game �2(t) can be computed using (4) and (5).
These computations show that

xi(si) = bei + �aei [t]ti(si � �);

where

�aei [t] =
(2(�j + �)� �tj)

4(�i + �)(�j + �)� �2titj
(12)

bei =
2(�j + �)(�� ci)� �(�� cj)

4(�i + �)(�j + �)� �2
:

Di�erentiating (12) yields

@�aei
@ti

=
(2(�j + �)� �tj)�

2tj

(4(�i + �)(�j + �)� �2titj)2
(13)

Substituting (13) into (6) and assuming interior solutions one �nds that the information

precisions of the two-stage game t�i (i = 1; 2) satisfy �i(t
�) = C 0(t�i ) (i = 1; 2) where

�i(t) = �2(�i + �)
�2j

 3
( + 2t1t2�

2); (14)

where

�j = 2(�j + �)� �tj and  = 4(�i + �)(�j + �)� �2titj:

As was the case for homogeneous �rms, it is impossible to get explicit solutions for t�k
(k = 1; 2). It is even impossible to compute the reaction function explicitly. Using the
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implicit function theorem one can prove that the reaction functions must be monotone

decreasing. (See Hwang (1993).) Note that for t�i < 1

(1� t�j)
2

(1� t�i )
2
=
C 0(t�i )

C 0(t�j)
=

(�i + �)(2(�j + �)� �t�j)
2

(�j + �)(2(�i + �)� �t�i )
2
: (15)

After taking square roots and de�ning �k =
p
�k + �, (15) can be rewritten as t�j = Ej(t

�
i )

where

Ej(ti) :=
2�i�j(�i � �j) + ti�j(2�i�j � �)

�i(2�i�j � �) + ti�(�i � �j)
(16)

is de�ned for all ti 2 [0; 1]. We call the curve de�ned by (16) the equilibrium curve.

The solution of the one-stage game is obtained by substituting (12) into (7). Some

manipulations yield that the (interior) equilibrium precisions �ti (i = 1; 2) satisfy ��i(�t) =

C 0(�ti) (i = 1; 2) where

��i(t) = �2(�i + �)
�2j

 2
: (17)

Note that
(1� �tj)

2

(1� �ti)2
=
C 0(�ti)

C 0(�tj)
=

(�i + �)(2(�j + �)� ��tj)
2

(�j + �)(2(�i + �)� ��ti)2
: (18)

Hence �tj = Ej(�ti). The solutions of the two di�erent games of information acquisition

lie on the same equilibrium curve. It is easily seen that for t1t2 > 0 �i(t) > ��i(t) and
that, therefore, t�i > �ti for i = 1; 2 whenever the solutions are interior.

From (17) we obtain

�2
q
�i + �(2(�i + �)� �tj)(1 � ti) =

p
c(4(�i + �)(�j + �)� �2titj);

which can be rewritten as

tj(ti
p
c�2 � ��2�i(1� ti)) = 4�2i �

2
j

p
c� 2�2�i�

2
j (1� ti):

Since we are interested in the case where ti; tj � 1 we have �tj = Rj(�ti) where

Rj(ti) :=
4�2i �

2
j

p
c� 2�2�i�

2
j (1 � ti)

ti
p
c�2 � ��2�i(1� ti)

(19)

is de�ned for ti 2 [0; �2�i=(�
p
c+ �2�i)). We will refer to Rj as �rm j's pseudo reaction

curve. It is of course not really a reaction curve because a strategy for each �rm is a pair

(t; x(�)) where t is the precision of information and where x(�) is a mapping that assigns

to each signal a quantity. Still, the equilibrium values �ti and �tj are found by computing

the intersection point of the pseudo reaction curves, or alternatively, by computing the
intersection point of Rj and Ej .

Note that Rj is downward sloping and has a vertical asymptote, while Ej is upward
sloping. Without loss of generality we may assume that �i � �j which implies that

Ej(0) � 0. The necessary and su�cient condition for the existence of a unique and

interior solution is therefore Rj(0) > Ej(0). Hence,
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Lemma 4 Suppose �i � �j . The su�cient and necessary condition for the existence of

a unique interior equilibrium is

p
c <

�2(2�2j � �)

2�j(2�i�j � �)
:

Proof: Straightforward calculations. 2

Assuming that an interior solution exists, we can explicitly compute it by computing

the intersection of the equilibrium curve and the pseudo reaction curve. We obtain

Lemma 5 Suppose the equilibrium levels of information acquisition are strictly positive.

Then

�ti =
�2�i(2�

2
j � �)� 2�i�j(2�i�j � �)

p
c

�2�i(2�2j � �) + �(2�i�j � �)
p
c

:

Proof: Straightforward calculations. 2

We will use the equilibrium curve and the pseudo reaction curves to obtain some
comparative statics results, and will compare them to those obtained by Hwang (1993)

for the two-stage game.

Lemma 6 Let �i > �j .
(i) Ej(ti) is increasing and concave and has slope smaller than 1
(ii) Ej(ti) is independent of c and �

2.
(iii) Rj(ti) is decreasing.
(iv) Rj(ti) shifts downward when c or �i increase and when �j or �

2 decrease.

(v) Ri(tj) shifts downward when �i decreases and when �j increases.
(vi) Rj(ti) shifts downward when � increases.
(vii) The equilibrium curve Ej(t) shifts downward when � increases.

Proof: See Appendix.

Lemma 6 allows us to draw the following conclusions:

1. From the fact that Ej is concave, Ej(0) � 0, and Ej(1) = 1 it follows that �tj � �ti
where equality holds if and only if �i = �j . That is, the �rm with the lower slope
of the marginal cost function will acquire more information.

2. As the pseudo reaction curve shifts upwards when �2 increases and downwards
when c increases while the equilibrium curve is una�ected by these parameters,

an increase in initial uncertainty �2 or a decrease in information gathering cost c

leads both �rms to gather more information. Since Ej is concave and E
0
j(0) � 1

we have E0
j(ti) � 1 with equality only in the case of identical �rms. We may now

conclude that �rm i (recall �i � �j) increases information acquisition more than
�rm j when initial uncertainty increases or information gathering cost decreases,

both in absolute terms and in relative terms. This situation is illustrated in Fig.

3.
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Figure 3: e�ect of increase in �2 or decrease in c
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3. As �i increases, Rj shifts downward and Ri upward. Since Ri is 
atter than Rj
6,

�ti decreases and �tj increases which is illustrated in Fig. 4.

6This follows from the su�cient and necessary condition for the existence of a unique interior equi-
librium (Lemma 4).
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Figure 4: An increase in �i shifts Ri up and Rj down.
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4. Similarly, an increase in �j leads to an increase in �ti and a decrease in �tj.

5. How is the information acquisition a�ected when � increases? Rj shifts downward
when � increases. The equilibrium curve Ej(t) shifts downward when � increases
(for t 2 [0; 1] and when �i > �j). It follows that an increase in � results in a

decrease in tj. From the direction of movements of the curves alone, however, the

e�ect on ti cannot be determined. It will depend on the relative movements of the

curves. Fig. 5 illustrates the two possible e�ects.
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In order to determine the e�ect on ti we need to use the exact expression for �ti
presented in Lemma 5. It turns out that we can �nd parameter values that show that

the e�ect of an increase in � on ti is indeed ambiguous7. This is in sharp contrast
with the comparative statics results of Hwang's two-stage model, where an increase in
� unambiguously leads to a decrease in ti. Thus besides yielding di�erent levels of
information acquisitions, which in contrast to Hwang can be calculated explicitly, the
one-stage model di�ers from the two-stage model in the case of heterogeneous duopoly

in the way �rms adjust to a change in �. This di�erence underlines the importance of
the way in which information acquisition is modeled.

6 Conclusions

In an oligopoly market with uncertain demand �rms acquire information in order to
estimate (residual) demand. When information acquisition is modeled as a two-stage
game, as has been customary, there is an additional but unrealistic bene�t to obtaining

information. If one �rm is known to have good information, other �rms will act less

aggressively towards their own private information and this makes their behavior easier to

predict. In these two-stage models �rms therefore overinvest in market research relative

to the case of secret information acquisition. It was shown, that this overinvestment

7For example keeping �2 = 1,
p
c = 0:001979, �i = 15796:4, �j = 0:001 and changing � from 1 to

3000 will lead to an increase of ti from 0.01 to 0.112, while increasing � further to 9000 will cause a
drop in ti to 0.102.
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vanishes when the number of �rms becomes very large. This implies that in a very

competitive market the second (third) best e�cient level of information is acquired.

In smaller markets �rms may under- or overinvest with respect to the e�cient level

of information acquisition. Policy implications depend always quantitatively on which

model of information acquisition is considered. In some instances the policies advocated

by the two models are even qualitatively di�erent (tax versus subsidy). Using the "right"

model is therefore important.

In this paper it was argued that the one-stage game is the more relevant model since

�rms are not able to observe the information acquisition decisions of their opponents. The

two-stage game would be appropriate if �rms could credibly commit to (a lower bound

on) the precision of information and would deliberately chose to do so. However, Lemma

2 showed that �rms are better o� not announcing (a lower bound on) the precision of

their information.

This paper reconsidered the models of Ponssard (1979), Li et al. (1987), Vives (1988)

and Hwang (1993) in detail. There are some other models of information acquisition
that have not been discussed yet. Ockenfels (1989) considers a model very similar to the
one of Ponssard (1979). The only di�erence is that in Ockenfels' model quantity choices

are discrete (in fact binary). It is clear that his model exhibits the same problem as
Ponssard (1979).

Chang and Lee (1992) discuss a model of di�erentiated duopoly which did not �t nicely
in the model presented in section 3, although the present model could be extended to
include di�erentiated products as well. Again information acquisition is modeled as a

two-stage game. It can be easily veri�ed by computing the best reply against an a�ne
strategy, as was done in section 3, that also in their model �rms overinvest in research
relative to the case of secret information acquisition.

Hwang (1995) considers a model of information acquisition that is designed to com-
pare monopoly, duopoly, and competitive markets. There are only two players in the

model. The second stage game is modeled using conjectural variations. By varying
the conjectural variations the model can represent monopoly, duopoly or a competitive
market. However, in the �rst stage there are no conjectural variations. Hence, the in
u-
ence of raising the precision of information are more or less the same as in the ordinary
duopoly game. This means that �rms overinvest in research in Hwang's (1995) model

even in the case of a competitive market. The peculiarity of this model is further illus-
trated by Lemma 4 in Hwang (1995). It says that the level of information precision that

maximizes joint pro�t is smaller than the equilibrium precision. The Lemma is mathe-

matically correct, but does not make any sense in the case the model is to represent a
monopoly.

Further models of information acquisition have been studied for auctions. Milgrom

(1981) considers a two-stage version whereas Matthews (1984) considers the one-stage

version. Unfortunately Matthews (1984) was unable to get an explicit solution. Further
research has to be conducted for the case of auctions. One should note, though, that

the main interest in the literature on information acquisition in auctions is when the
number of bidders becomes very large. The question addressed is whether the winning

bid will converge (with probability one) to the true value of the object. Because of

the similarity with competitive markets one might conjecture that it does not matter
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whether information is acquired secretly or not. However, this needs to be examined

carefully.

7 Appendix

7.1 Existence of equilibrium

Proof of Lemma 1.

Let A denote the n � n matrix with entries Aii = 2(�i + �n) (i = 1; :::; n) and

Aij = �ntj (i 6= j). Existence and uniqueness of solutions for equations (4) and (5)

is equivalent to showing that A is non-singular. Subtracting the j-th row from the

j + 1-st row (j = n � 1; :::; 1) yields a matrix B with the same determinant as A which

has zeros everywhere, except in the �rst row and in the entries (i; j) where i = j > 1

(Bjj = 2(�j + �n) � �ntj)or i = j + 1 > 1 (Bj+1;j = �ntj � 2(�j + �n)). Subtracting
Bk+1;k=Bk+1;k+1 times the (k + 1)-st column from the k-th column (for k = n� 1; :::; 1)
yields a matrix C with the same determinant as B with zeros everywhere, except in

the �rst row and the diagonal. The determinant of C is thus egual to the product of
its diagonal elements, which is not equal to zero since Cii = Bii > 0 for i > 1 and
C11 = A11 � �nt2(�nt1 � 2(�1 + �n))=(2(�2 + �n)� �nt2) > 0, where the last inequality
follows from the fact that t1t2 � 1 and �1; �2; �n > 0. 2

7.2 Equilibrium payo�s

Proof of Lemma 2.

Recall that �t (resp. t�) denote the equilibrium level of information acquisition in the
one-stage game (resp. two-stage game), and that �t < t�. Let �ae[t] = 1=(2(�+ �n) + (n�
1)t�n) and b

e = �=(2�+(n+1)�n), such that x(s) = be�+�ae[t]t(s��) is the equilibrium
strategy of each �rm in the second stage game �(t; :::; t). Using (3) we know that the
equilibrium payo� in this second stage game equals

�(t) = (� + �n)((b
e)2 + (�ae[t])2t�2:

The equilibrium payo�s for the one- and two-stage game are therefore �(�t) � C(�t) and

�(t�)� C(t�). Now

�0(t)� C 0(t) = �2(� + �n)
2(� + �n)� (n� 1)�nt

(2(� + �n) + (n� 1)�nt)3
�C 0(t)

< MPV1(t)�C 0(t) (20)

where MPV1(t) is the marginal private value of information acquitision in the one-

stage game de�ned by 4. The right-hand side of (20) is negative for t > �t. Hence,

�(�t)� C(�t) > �(t�)� C(t�). 2
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7.3 The third best level of information

We assume that the solution is symmetric. For given precision of information t for

each �rm, each �rm j will use strategy xj(sj) = a(sj � �) + b� where a and b are the

equilibrium strategies as computed in Section 4, i.e.

b = 1=(2� + (n+ 1)�n);

and

a = t=(2(� + �n) + (n � 1)�nt):

Total welfare, gross of information costs, equals for given precision t and �xed � and

�xed signals sj

TW (t; �; s1; :::sn) =
�2

2�n
� 1

2�n

0
@� � �n

X
j

xj(sj)

1
A

2

� �
X
j

xj(sj)
2:

Expected total welfare, given � equals

E(TW j�) =
�2

2�n
� 1

2�n
f[E((� � �n

X
a(sj � �) + b�)j�)]2 +

+V ar((� � �n
X

a(sj � �) + b�)j�)g+
��

X
[E(a(sj � �) + b�j�)2 + V ar(a(sj � �) + b�j�)] =

=
�2

2�n
� 1

2�n
[� � �nn(a(�� �) + b�)]2 +

� 1

2�n
�2
nna

2v � �n(a(� � �) + b�)2 � �na2v:

Taking the expectation over � gives unconditional expected welfare

ETW (t) =
�2 + �2

2�n
� 1

2�n
(�� �nn(a(�� �) + b�))2 +

� 1

2�n
(1 � �nna)

2�2 +

�1

2
�nna

2v � �na2�2 � �n(b�)2 � �na2v:

At the optimal level of information acquisition, te3, we have ETW 0(te3) = nC 0(te3).

De�ne the (per capita) marginal social value of information as

MSV (t) = ETW 0(t)=n:

Now it is straightforward to check that

MSV (t) = a0�2 � n�naa
0�2 � �naa

0v � �na
2v0=2

�2�aa0�2 � 2�aa0v � �a2v0

= �22�
2 + 3�2

n + 5�n� + �(n� 1)t�n + (n� 1)t�2
n=2

(2(� + �n) + (n� 1)t�n)3
:
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7.4 Welfare analysis

Proof of Lemma 3.

(i) It is easily veri�ed that MSV (t) > MPV1(t) if and only if

��n + �2
n � (n� 1)t

�2
n

2
> 0:

In particular, MSV (0) > MPV1(0). Furthermore, the two curves intersect at t̂1 =

2(n�=� + 1)=(n� 1). t̂1 � 1 if and only if n(1� 2�=�) � 3. Obviously, when 2�=� � 1,

no n exists for which the inequality holds. On the other hand, if 2�=� < 1, the inequality

holds for large enough n.

(ii) It is easily veri�ed that MSV (t) > MPV2(t) if and only if

(n� 1)[t�n(�+ �n) + t2�n(2� +
3

2
�n)]� (� + �n)[(2(�+ �n)� t�n] < 0:

In particular, MSV (0) > MPV2(0). Furthermore, the two curves intersect only once
in the hal
ine [0;1), namely in t̂2, the positive root of the equation mentioned in the
statement of the Lemma.

t̂2 =
(n�=� + 1)(�n+

q
n2 + 8(n� 1)(2n�=� + 3=2))

2(n � 1)(2n�=� + 3=2)

This intersection point lies in the interval [0; 1] only if the left-hand side of the above
inequality, evaluated at t = 1, is positive, i.e. if

(n � 1)(6n�=� + 5) � 2(n�=� + 1)(2n�=� + 1):

This is equivalent to

n2(6�=� � 4(�=�)2) + n(5 � 12�=�) � 7 � 0:

Obviously, when �=� � 3=2, there exists no n > 0 for which the above inequality holds.

If �=� < 3=2, for large enough n the inequality is satis�ed. 2

Lemma 7

(i) Suppose that �, � and n are such that t̂1 < 1, i.e. the marginal social value curve
intersects the marginal private value curve in the interval (0,1). Then there exists some

treshold x1 (which depends on �, � and n) such that overinvestment occurs if and only
if �4=c > x1.

(ii) Suppose that �, � and n are such that t̂2 < 1, i.e. the marginal social value curve

intersects the marginal private value curve in the interval (0,1). Then there exists some
treshold x2 (which depends on �, � and n) such that overinvestment occurs if and only

if �4=c > x2.
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Proof: (i) Suppose that MSV and MPV1 intersect in t̂1 < 1. Overinvestment occurs

when �t > t̂1 or, equivalently, when MPV1(t̂1) > C 0(t̂1). Hence, overinvestment occurs if

and only if
�4

c
>

MPV1(t̂1)

�2(1 � t̂1)2
:

The right-hand side depends only on n, �, and �. Call it x1. Now overinvestment occurs

if and only if �4=c > x1.

The proof of (ii) goes along the same lines. 2

7.5 Comparative statics

Proof of Lemma 6

(i)

E0
j(ti) =

�i�j
�
�2 + 2�2i (�

2
j � �) + 2�2j (�

2
i � �)

�
(�i(2�i�j � �) + ti�(�i � �j))2

> 0: (21)

From (21) it easily follows that E00
j (ti) < 0 and, hence, E0

j(ti) � E0
j(0) < 1.

(ii) Trivial.
(iii)

R0
j(ti) =

�2�i�2j�
p
c [2�i�

p
c+ �2(2�2i � �)]

[ti�2
p
c� ��2�i(1 � ti)]2

< 0:

(iv)
@Rj(ti)

@
p
c

=
�2(1� ti)��i�

2
j (2�

2
i � ti�)

[ti�2
p
c� ��2�i(1 � ti)]2

< 0:

@Rj(ti)

@�i
=

2��2j
p
c [4�iti�

p
c � 2�2i �

2(1� ti)� �2(1� ti)ti�]

[ti�2
p
c� ��2�i(1 � ti)]2

< 0:

The inequality follows from �2(1�ti) � 2�i
p
c (on the relevant range, i.e. where Rj(ti) �

0).

To see that Rj(ti) increases with increases in �j note that Rj(ti) can be written as
the product of �2j and a factor that does not depend on �j .

Finally,

@Rj(ti)

@�2
=

2(1� ti)��i�
2
j

p
c (2�2i � ti�)

[ti�2
p
c� ��2�i(1 � ti)]2

> 0:

(v) As (iv).
(vi) Rj(t) is the product of two positive factors (at least on the relevant range) which

are both decreasing in �. Namely,

Rj(t) =
2�2j
�
� �2�i(1� t)� 2�2i

p
c

�2�i(1� t)� t�
p
c

and
@

@�

 
2�2j
�

!
=
�2�j
�2

< 0
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while

@

@�

 
�2�i(1 � t)� 2�2i

p
c

�2�i(1 � t)� t�
p
c

!
=

��2(1� t)2�i
p
c� �2(1 � t)t�

p
c=(2�i)� 2(�2i � �)tc

(�2�i(1 � t)� t�
p
c)2

< 0:

(vii) Note that (@=@�) (�k) = 1=(2�k). It can be veri�ed that

sign

 
@Ej(t)

@�

!
=

sign

(
(�i � �j)

"
�j

�i
(�i � �j)t� +

�2i
�j
(2�i�j � �) +

�i

�j
(�i � �j)t�+

��i(2�i�j � �) + t(2�i�j � �)2
�i + �j

2�i�j
+ t2

�

2�j
(2�i�j � �) +

t2��j(
�j

�i
+
�i

�j
� 1)� 2�i�j(�i � �j)t� t2�j(2�i�j � �) +

t2
�

2�i
(2�i�j � �)� 2�2i �j(

�j

�i
+
�i

�j
� 1)

#)

We may now multiply the term between the square brackets by 2�i�j and write it as
a quadratic expression in t. Note that Ej(1) � 1 so that the expression between brackets
equals zero for t = 1. Using that �i > �j we �nd that

@Ej(t)

@�
< 0

if and only if
(t� 1)(At+B) < 0

where,
A = 4�2i �j� + 2�3j� � �i�

2 � �j�
2 � 4�2i �

3
j + 2�i�

2
j�

and
B = 2�3i� � 2�2i �j� + 4�2i �

3
j :

The statement (vii) follows now from the observation that B > 0 and that if A < 0 then

�B=A > 1. 2
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