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Abstract:  Biplots are graphical displays of data matrices based on the decomposition of a matrix as the 

product of two matrices.  Elements of these two matrices are used as coordinates for the rows and 

columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of 

the scalar product.  Because the decomposition is not unique, there are several alternative ways to scale 

the row and column points of the biplot, which can cause confusion amongst users, especially when 

software packages are not united in their approach to this issue. In an attempt to unify the scaling of the 

biplot we propose a new scaling of the solution, called the standard biplot, which can be applied to a wide 

variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and 

the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-

value decomposition.  The standard biplot also handles data matrices with widely different levels of 

inherent variance.  Two concepts taken from correspondence analysis are important to this idea: the 

weighting of row and column points, and the contributions made by the points to the solution.  In the 

standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of 

the cases or sample units, which are weighted and usually standardized in some way unless the matrix 

contains values that are comparable in their raw form.  The other set of points, usually the columns, is 

represented in accordance with their contributions to the low-dimensional solution.  As for any biplot, the 

projections of the row points onto vectors defined by the column points approximate the centred and 

(optionally) standardized data.  The method is illustrated with several examples to demonstrate how the 

standard biplot copes in different situations to give a joint map which needs only one common scale on 

the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to 

make the biplot readable.  The proposal also solves the problem in correspondence analysis of low-

frequency categories that are located on the periphery of the map, giving the false impression that they are 

important.    

 

Keywords:  Biplot, contributions, correspondence analysis, discriminant analysis, MANOVA, principal 

component analysis, scaling, singular-value decomposition, weighting. 
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1.  Introduction 

The biplot, a term introduced by Gabriel (1971) in the context of principal component analysis, 

is a graphical display of the rows and columns of a data matrix as points in a low-dimensional 

Euclidean space, usually of dimensionality two or three.  Any matrix T (I×J) can be decomposed 

in an infinite number of ways as the product of two matrices A (I×K) and BT
(K×J): 

  T = A B
T
 .              (1) 

We call T the target matrix, and A and B the left and right matrices, respectively, of the 

decomposition. 

A convenient way of obtaining (1) is to use the singular-value decomposition (SVD) of T: 

  T = U ΓΓΓΓ VT
, where U

T
U =V

T
V = I , ΓΓΓΓ = diag(γ 1≥γ 2≥···≥γ K>0).            (2) 

Then A and B can be defined as: 

  A = U ΓΓΓΓα
       B = V ΓΓΓΓ1-α

 .            (3) 

for any value of α.   The advantage of forming the decomposition using the SVD is the well-

known Eckart-Young theorem which states that the least-squares matrix approximation of the 

target matrix T can be obtained for any given rank K* of the approximating matrix, using the 

first (i.e., largest) K* singular values in the diagonal of ΓΓΓΓ, and the corresponding first K* left and 

right singular vectors in U and V (Eckart and Young 1936). 

Thus a target matrix T can be approximated by its ‘closest’ (least-squares) approximation of 

rank 2, for example:  



 3 

[ ] [ ]T21
2

1
21  

0

0
 vvuu 








γ

γ
            (4) 

and then A and B could be defined, for example with α = 1 in (3), as  
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The rows of A and of B provide two-dimensional coordinates for points representing the rows 

and columns of the target matrix in a planar display, so that the scalar product between the i-th 

row point and the j-th column point approximates the (i, j)-th element sij of the target matrix.  

Since scalar products between two vectors a and b are equal to the length of the perpendicular 

projection of a onto b multiplied by the length of b (or vice versa), it follows that the direction 

vectors representing the columns (for example) can be calibrated so that the approximated values 

of the target matrix can be read off by projecting the row points perpendicularly onto each 

column vector.  In this case we refer to the calibrated column vectors as biplot axes.  For more 

details about biplots, see Gabriel and Odoroff (1990), Greenacre (1993) and Gower and Hand 

(1996).  

In spite of the simplicity of the biplot, its use often causes confusion because of the many ways 

in which A and B can be formed from the SVD.  While the scalar product rule and the 

calibration holds for all biplots, the use of different values of α produces biplots with different 

within-set interpretations of the clouds of row and column points.  The usual choices α=1 and 

α=0 give biplots in which distances are approximated between rows and between columns 

respectively.   Often the two sets of plotted points are on such different scales that they are 

plotted on two different scales (see, for example, the biplot  function in the R package).  To 

alleviate this the choice α=½ is sometimes recommended so that row and column points have 
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similar dispersions in the display, but this choice optimizes neither the distances between rows 

nor the distances between columns.   This last choice, called the symmetric biplot by Greenacre 

(2007) has the least benefit for the user, since data matrices are invariably interpreted 

asymmetrically, with at least one of the sets of distances being important to visualize (see 

Greenacre (2007: Epilogue) for further discussion about this aspect).   So we are interested in 

improving the biplot display for the choices α=1 or α=0, where either the row or column 

distances are optimally displayed.  Our objective is to find a biplot which has the following 

characteristics:  

(a) the row and column configurations should be able to be plotted to the same scale, 

independently of the level of variance in the data matrix; 

(b) supposing that row distances are visualized, then the lengths of the vectors to the 

column points should have some advantage for interpretation; 

(c) the biplot should be applicable across different types of multivariate methods that 

visualize data tables using the SVD, for example correspondence analysis, principal 

component analysis, log-ratio analysis and discriminant analysis. 

The above three properties are satisfied by the proposed standard biplot, which we first define in 

the context of correspondence analysis. 

2.  The standard correspondence analysis biplot 

In the standard biplot the weighting of the points and the contributions made by each point to the 

solution will play crucial roles.  Since these concepts are inherent in correspondence analysis 

(CA), we choose to use CA to illustrate the general idea.  Given a contingency table N, and 

associated correspondence table P = (1/n) N of relative frequencies, where n is the grand total of 
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N, let r and c be the row and column marginal totals of P (called row and column masses in CA 

terminology).  Let Dr and Dc be the diagonal matrices of these masses.  CA has as target matrix 

the standardized residuals of the relative frequencies:  

  2/12/1 )( −− −= cr DrcPDT T             (6) 

which can be written equivalently as:  

2/112/1 )( −− −= crr D1cPDDT T             (7) 

It is this latter form (7) that is useful here, because it shows that CA is the analysis of the row 

profiles (rows of frequencies relative to their totals, in the matrix PD 1−
r ), centred with respect to 

the average profile c
T
, with rows weighted by the masses in r and the distances between row 

profiles defined by chi-square distances using the metric 1−
cD .   After decomposing T by the 

SVD, as in (2): T = U ΓΓΓΓ VT
, where U

T
U = V

T
V = I , the rows and columns are often plotted 

according to the so-called principal coordinates of the rows: UΓDF 2/1−= r  and the standard 

coordinates of the columns: VDY
2/1−= c .  The rationale for this choice of coordinates is as 

follows: the row points defined by F visualize approximate chi-square distances between row 

profiles that are weighted by the row masses; the column points defined by Y are the projections 

of the unit profiles, or vertex points of the simplex space of the profiles; and row points are 

weighted averages of the column vertex points, using the elements of the row profiles as 

weights: PYDF 1−= r .  The joint display of F and Y is a biplot, which from their definitions and 

from (7) is seen to be: 

112/12/1 )( 

−−−− −== crcr D1cPDDVUΓDFY
TTT            (8) 
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Hence scalar products between row and column points in a low-dimensional display (using the 

first columns of F and Y) are approximating the centred profiles relative to their average values: 

(pij /ri – cj)/cj.   This joint plot is also called the (row principal) asymmetric map – see Greenacre 

(1993, 2007).   

The fact that the row profiles and the extreme unit profiles (vertices) lie in the same 

multidimensional space is an attractive property of the asymmetric map, but in practice it is 

problematic when the variance in the data, called inertia in CA, is low.  For example, the 

‘author’ data set, available in the ca package of Nenadić and Greenacre (2007), consists of the 

counts of the 26 letters of the alphabet in 12 samples of text from books by famous English 

authors (the data are reproduced in Greenacre and Lewi (2009)).  The profiles of the books 

across the letters are very similar, as expected, and the inertia is consequently very low.  The 

asymmetric map of this table, reproduced from Greenacre (2007) as Figure 1, shows the 12 

books clustered so tightly at the centre of the map that they cannot be labelled.  This is clearly 

not a good biplot and the scale of one of the sets of points needs to be changed to make the joint 

plot legible.  The directions defined by the column points are the correct ones, but they are too 

long.  Rather than simply reduce their overall scale, the proposed standard biplot reduces their 

length by multiplying each column point (representing a letter in the example) by the square root 

of the mass, cj
½
, associated with the column point.   Thus all letters are pulled in, but low 

frequency letters such as z and q are pulled in a lot more than high frequency letters such as a 

and e.  This is a premultiplication of Y by 2/1

cD  and converts (8) into the following biplot: 

2/112/1 )()( −− −= crc D1cPDYDF
TT             (9) 

The elements being approximated (shown in the target matrix on the right of (9)) are now the 

standardized differences (pij /ri – cj)/cj
½
 between the profile and its average, standardized by 



 7 

dividing by the square root of the average, as in the chi-square metric.  The right matrix YD
2/1

c of 

the biplot in (9), representing the columns, is the original matrix V of right singular vectors. The 

fact that standardized values are being biplotted has suggested the term ‘standard biplot’.  The 

standard CA biplot for the same data is given in Figure 2, and clearly the problem of the 

difference in scales has been cleared up.  But, in addition, the lengths of each vector joining the 

letters to the origin are related to the contributions that the letters make to the principal axes.  

Since it is these letters that are determining the solution, it is correct that they have more 

prominent positions in the joint display.   

To show the connection with the contributions, the parts of inertia due to each column along the 

principal axes are, in scalar form for column j along axis k:  cj yjk
2
, relative to the sum of these 

quantities, which is equal to 1 from the definition of Y: Y
T
DcY = V

T
V = I .  Thus by ‘shrinking’ 

each yjk by cj
½
, the square of the new coordinate is exactly the contribution of the j-th point to the 

inertia along the k-th axis.  

Thus the standard biplot of the ‘author’data in Figure 2 shows that the letters d, h, w and c have 

high contributions to the first axis, and y is especially dominant on the second – the closer letters 

are to the centre the less important they are to the interpretation.  Table 1 lists the contributions 

for each letter to the two axes.   Thus, d, for example, has contributions of 0.1704 to axis 1 and 

0.0593 to axis 2, and the square roots of these values are 0.1704
½
 = 0.413 and 0.0593

½
 = 0.244, 

respectively.   The coordinates of d in Figure 2 are (again from Table 1, the square roots of the 

masses multiplied by the standard CA coordinates) 0.046
½×(–1.9256) = –0.413 and 

0.046
½×1.1354 = 0.244 – this is an empirical check that the squares of the coordinates are the 

contributions.  Notice, however, that the squared lengths of the vectors, equal to the sum of their 
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squared lengths along the axes, are not equal to their contributions to the two-dimensional map, 

since the inertias along the axes are not the same. 

Figure 3 is a dynamic graphic which shows the transition from Figure 1 to Figure 2, as the biplot 

vectors for the letters are gradually shrunk proportional to the square roots of their respective 

masses.  The size of the triangular symbol for each letter is proportional to the mass of the letter, 

so it is the points with smaller triangles that are pulled in the most by the standard biplot scaling.  

During the transition the row (book) points are in fixed positions and the scale of the map is 

adjusted as the letter points shrink differentially towards the centre – the dashed box shown 

throughout the animation actually delimits the area of the final frame of the animation in which 

the standard CA biplot resides.   

The standard CA biplot functions equally well for a table with very low inertia, such as the data 

set ‘author’, as for a table with high inertia.  The data set ‘benthos’ (reported in Greenacre and 

Lewi (2009) and also analyzed in Greenacre (2007: chapter 10)) consists of counts of 92 marine 

species at 13 different locations on the North Sea bed, 11 of which lie close to an oil-drilling 

platform that causes sea-bed pollution, while the other two (R40 and R42) are reference stations 

far away from the pollution source.  These data have high inertia, which is characteristic of 

ecological abundance data of this type.  Thus, the station points are much more spread out in the 

profile space with respect to the extreme vertex points, as shown in the asymmetric CA map of 

Figure 4.   Figure 5 shows the standard CA biplot of the same data and Figure 6 shows the 

dynamic transition from the asymmetric map (Figure 4) to the standard CA biplot (Figure 5).  

Again each species point is shown with a symbol proportional to its overall abundance.  Only the 

top 10 contributing species have been labelled – the remaining 82 unlabelled species are all 

closer to the centre of the map in the CA biplot and contribute only 15% to the solution.  

Showing the species’ vectors in terms of their contributions assists and clarifies the 
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interpretation by concentrating attention on the most influential species.  In Figure 5 it can be 

clearly seen that there is a group of species chiefly responsible for the separation to the right of 

the unpolluted reference stations R40 and R42 (these would be the species most affected and 

reduced by the pollution).  There is mainly one species (Chaetezona setosa) that dominates the 

polluted stations, especially station S15 which is one of the closest to the oil-drilling platform 

and most contaminated.  Station S24 is a special case because there is an unusually high 

occurrence of Myriochele oculata, which is unrelated to the pollution gradient.  

Notice that in Figure 2 the book points show less dispersion than the station points in Figure 5, 

relative to the spread of the ‘variables’ in each biplot (letters in Figure 2, species in Figure 5, 

respectively).  This partly testifies to the lower inertia in the ‘author’ data set, compared to the 

‘benthos’ data set, although the impression of the spread of the rows relative to the columns is 

also governed by how many variables there are.  The more variables there are, the more the 

numerical values of the contributions are reduced as a group (because the contributions sum to 1 

for each axis).   

3.  The standard principal component biplot 

In the case of principal component analysis (PCA), where data are assumed on interval scales, 

there are two distinct situations: variables that need to be standardized, and variables that are all 

on the same scale and that need no standardization.  The first situation is the most common, 

when variables are on different measurement scales.  Table 2 shows the ‘environ’ data set 

consisting of  J =10 variables measured at the same  I = 13 locations as the previous ‘benthos’ 

data set.  The usual PCA approach is to standardize the variables, in which case the total 

variance is equal to 10, the number of variables.  In calculating the variances of each variable 

with a view to standardization, we use I, not I–1, to average the squared deviations from the 

mean.   In other words, we weight each sample by a constant 1/I, which mimics the row 
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weighting idea in CA, except in the CA case there are different weights for each row.  We could, 

however, weight the samples using the CA masses, which is what is done if we used the 

environmental variables as constraints in a canonical correspondence analysis (CCA).   

Distances between samples are Euclidean on the standardized scales and these distances will 

increase as the number of variables in the analysis increases.  Since we wish to limit the 

variation in the samples so that we can eventually plot sample distances and variable 

contributions on the same biplot, a convenient rescaling is to calculate Euclidean distances using 

average squared differences between (standardized) variables, not sum of squared differences.  

For a table X of standardized data, the distance between samples i and i' is: 

∑ = ′−J

j jlij xxJ
1

2)()/1(             (10) 

This again mimics the idea in CA of weighting the columns of the matrix – in PCA all the 

columns now receive an equal weight of 1/J compared to the differential weighting in CA.  The 

total variance will then be averaged as well, equal to 1 rather than 10 in this example.  The SVD 

for PCA then multiplies the data by the square roots of the row and column masses (assuming X 

is already column-centred, so that all variables have mean 0 and variance 1): 

  T
VUΓXX  )/1()/1()/1( == IJJI         (11) 

Hence the sum of the eigenvalues (that is, the sum of squared singular values) is equal to 1, and 

not J (the number of variables) as in the usual definition of PCA.  The biplot coordinates are  

F =  UΓI  (for the rows, where  I is the inverse of the row masses, as in CA) and Y = V (for 

the columns, where there is no rescaling by the masses, as in the standard CA biplot).  Again the 
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squared lengths of the column coordinates are equal to the contributions of the respective 

variables to the respective principal axes.   

Figure 7 shows the standard PCA biplot of the ‘environ’ data set of Table 2.   All the variables 

measuring pollution (THC=Total Hydrocarbon Content, and the metals) point to the left and 

contribute the most to the horizontal axis, which separates the most polluted station S15 on the 

left (one of the closest to the oil rig) from the unpolluted reference stations R40 and R42 on the 

right.  Distance versus depth contribute strongly to the second axis, with the TOM (=Total 

Organic Material) biplot axis positive – both the highly polluted station S15 and the two 

reference stations are high on TOM.  

The reference stations are at shallower depths than the others, but only by a few metres, and this 

difference is accentuated by the standardization.  Also because the variables are highly skew, a 

logarithmic transformation might be considered appropriate – the log-transformed data are then 

not standardized, so that the multiplicative differences are visualized.  Figure 8 shows the 

standard PCA biplot of the log-transformed data, and the role of the variable depth is 

considerably reduced, with most of the variance now concentrated on the first axis which is the 

pollution gradient.  This also shows that the standard PCA biplot functions well for 

unstandardized log-transformed data as well.   The only slightly problematic case would be 

when all the original variables are on the same scale, and standardization is not required, but the 

common scale has a very small or very large range (for example, all data are ratings from 0 to 

100).  Then the scale of the row points will be quite different to that of the column points, which 

can be rectified by some appropriate overall rescaling of the original data, for example to rescale 

the ratings from 0 to 10.   
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It is important to realize that the standard PCA biplot described above is not the same as the 

biplot in which the variables are depicted by their correlations with the principal axes, and thus 

lie within a unit circle in the two-dimensional solution, for example.  This latter biplot associates 

the singular values with the column coordinates, depicting rows (cases) with coordinates in 

 UI  (see the SVD in (11)) and the columns (variables) with coordinates in VΓΓΓΓ.  The squares of 

the correlations are the parts of the (unit) variance of that variable explained by the axes, and can 

be summed for the two axes, hence the drawing of a unit circle which represents a perfect 

explanation of the variable.  The average sum of squared column coordinates on an axis is then 

the part of the total variance on that axis, while the cases are represented by coordinates that 

have average sum of squares equal to 1 on every principal axis.  

4.  Log-ratio analysis 

Log-ratio analysis is the visualization of a table of strictly positive data, log-transformed and 

double-centred, again using the SVD.  The method is popular in the analysis of compositional 

data (Aitchison 1986).  There are two forms, an unweighted form (see Aitchison 1983, Aitchison 

and Greenacre 2002) and a weighted form, the latter also known as ‘spectral mapping’ (Lewi 

1976, Greenacre and Lewi 2009).   The row and column weights commonly used in weighted 

log-ratio analysis are the same as the masses in CA, that is the relative values of the column 

margins of the original table.   Using the same notation as in CA for the row and column masses 

r and c, and log(N) to denote the matrix of log-transformed data, the target matrix and its SVD 

are: 

TTTT VUΩD1cIN1rIDT  
2/12/1 ))(log()( =−−= cr                  (12) 

(just substitute r = (1/I)1 and c = (1/J)1 for the unweighted form).  Assuming rows were 

cases/samples and the columns variables/components, the standard log-ratio biplot would then 
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use the principal coordinates UΩD 2/1−
r  for the rows and V for the columns.  Some care is needed 

here, since the analysis is often performed to detect equilibrium in a subset of components, 

which can be diagnosed by some components lining up in straight lines (see, for example, 

Aitchison and Greenacre 2002).  But the standard biplot normalization, while having the 

advantage of showing which components are important for the interpretation of the biplot, has 

the disadvantage of destroying this property.   A dynamic graphic, which alternates between the 

usual map where the columns are shown in principal or standard coordinates and the standard 

biplot, can be useful to diagnose models in subcompositions as well as see which components 

are determinant in the solution – Figure 9 shows an example of this for the ‘author’ data, starting 

with a LRA solution that allows model diagnosis and ending with the standard biplot that 

represents component contributions. 

5.  The standard discriminant analysis / MANOVA biplot 

Linear discriminant analysis (LDA) and multivariate analysis of variance (MANOVA) rely on a 

common theory, which reduces to a SVD of the matrix of group centroids, weighted by their 

respective group sizes, in a space structured by the Mahalanobis metric – see, for example, 

Mardia, Kent and Bibby (1979).   The resultant principal axes are often called canonical axes in 

this context, and the terminology canonical variate analysis (CVA) is a common synonym as 

well.  This is another case where the standard biplot can be used to represent the centroids by 

their projections onto the optimal plane along with the points for the variables such that their 

squared lengths along a canonical axis are the contributions to the group discrimination along the 

axis.  The idea of a MANOVA biplot originates in the work of Gabriel (1972).   

Suppose that there are G groups of cases (rows) in a cases-by-variables data matrix, and that the 

G vectors of variable averages are contained in the G×J matrix G.   The averages are centred 

with respect to the global averages of the variables across all the cases – these global averages 
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are identical to the centroid of the group averages, where each group is weighted proportionally 

to the number of cases in it.  A J×J covariance matrix Sg is computed within each group – as in 

PCA the averaging of the squares and cross-products in the computation is performed by 

dividing by the number of cases ng in each group, not ng–1.  The estimated common covariance 

matrix S is then computed as Σg(ng/n)Sg .  Weights of  ng/n are assigned to each group average, 

and these weights form the diagonal of the diagonal matrix Dw.   

The weighted PCA of the group averages, in the Mahalanobis metric S
–1
, equivalent to 

LDA/MANOVA/CVA is achieved by the following SVD, imitating the procedure followed for 

CA and PCA: 

 == − Jw /12/12/1
GSDT

T
VUΓ            (13) 

Thus the standard biplot would visualize the rows by the principal coordinates of the group 

centroids in  
2/1 UΓD−

w and the coordinates V of the columns (variables) that depict the 

contributions to the principal axes.  Figure 10 shows the standard biplot in the two-dimensional 

plane of the three centroids of the famous Fisher ‘iris’ data. 

6.  Discussion and conclusions 

The subject of the scaling in biplots, and in particular in CA, has been the subject of much 

discussion and controversy.  The most popular way of reporting the results of CA has been the 

so-called symmetric map, sometimes called the ‘French plot’ or ‘Benzécri plot’.   This solution, 

which allocates the singular values to both the left and right matrices of the singular-value 

decomposition (that is, both rows and columns in principal coordinates) is not a biplot, but 

displays inter-row and inter-column distances optimally, with the aesthetic advantage of 

spreading out the row and column points similarly over the map area.  The asymmetric map, on 
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the other hand, only works well in high-inertia cases, with the scaling problem demonstrated in 

Figure 1 when the inherent inertia is low.   

Amongst all biplot options for a typical cases × variables data set, what we are really interested 

in is the direction made by each ‘variable’ of the data set, so the proposal of this paper is to 

maintain these directions while making the lengths of the biplot vectors both meaningful and 

also on a scale which allows joint representation of the ‘case’ points without the need for two 

sets of scales for the row and column points.  Both these objectives are attained by the standard 

biplot.  The case points are always in their principal coordinate positions, so that distances 

between case points are interpretable.  The variables are indicated by lines coinciding with the 

biplot axes, which could be calibrated so that the projections of the case points on a biplot axis 

approximate the values for that variable, but the lengths of the lines along each principal axis of 

the biplot are related to the contribution made by that variable to the solution.  It is called the 

standard biplot because it generally reconstructs data on a standardized scale and also because 

the sum of squared lengths of these lines on any principal axis is equal to 1. 

Although motivated principally in correspondence analysis because of the problem of 

differential masses of the row and column points, it has also been shown that the standard biplot 

functions well in standardized and unstandardized principal component analysis, log-ratio 

analysis and discriminant analysis.  We believe that the standard biplot can become, as its name 

doubly implies, a standard way of showing the results of methods based on the singular-vaue 

decomposition, and may remove most of the controversy and doubt surrounding the scaling of 

the solutions of these methods. 
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Computing note 

The ca package (Nenadić and Greenacre 2007) in R (R development core team, 2008) was used 

to perform the CA calculations in this article, while all others were computed using matrix 

functions in R function, notably svd.  The standard biplot option for CA already exists in the ca 

package, for example map=”rowgreen”  for the standard (row principal) biplot.  The option  

map=”rowgab”  is the one proposed by Gabriel and Odoroff (1990) where the standard 

coordinates of  ‘variable’ points are multiplied by their masses, not the square roots of the 

masses as in the standard biplot.   
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Table 1: Masses (relative frequencies), contributions (relative to total), and standard 

coordinates of the 26 letters, for the two principal axes of Figures 1 and 2.  The 

coordinates of the letters in the standard biplot of Figure 2 are the square roots of the 

masses multiplied by the standard coordinates.  The squares of these coordinates are 

equal to the contributions. 

Masses
Axis 1 Axis 2 Axis 1 Axis 2

a 0.0798 0.0000 0.0082 0.0176 0.3203

b 0.0157 0.0152 0.0025 0.9845 0.3980

c 0.0228 0.1020 0.0430 2.1150 1.3734

d 0.0460 0.1704 0.0593 -1.9256 1.1354

e 0.1271 0.0010 0.0596 0.0867 0.6848

f 0.0194 0.0317 0.0104 1.2765 0.7330

g 0.0200 0.0209 0.0025 -1.0207 -0.3530

h 0.0649 0.1463 0.0059 -1.5013 0.3024

i 0.0701 0.0050 0.0555 0.2675 -0.8895

j 0.0008 0.0002 0.0007 0.4533 -0.9160

k 0.0092 0.0697 0.0139 -2.7552 -1.2316

l 0.0427 0.0442 0.0012 1.0183 0.1650

m 0.0255 0.0130 0.0500 0.7127 -1.4010

n 0.0690 0.0028 0.0120 -0.2004 0.4173

o 0.0766 0.0009 0.0312 -0.1085 -0.6380

p 0.0152 0.0393 0.0512 1.6108 1.8379

q 0.0007 0.0111 0.0025 4.0798 1.9148

r 0.0519 0.0181 0.0280 0.5914 0.7342

s 0.0607 0.0449 0.0100 0.8602 -0.4056

t 0.0930 0.0009 0.0038 -0.1005 -0.2031

u 0.0298 0.0008 0.0308 0.1633 -1.0171

v 0.0096 0.0500 0.0003 2.2813 -0.1770

w 0.0258 0.1614 0.0021 -2.4992 0.2847

x 0.0012 0.0129 0.0206 3.3405 -4.2154

y 0.0219 0.0000 0.4851 0.0015 -4.7061
z 0.0008 0.0371 0.0099 6.8081 3.5092

Contributions
Standard 

coordinates
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Table 2: Data set ‘environ’ of 10 variables measured at 13 locations in the North Sea. 

Distance is from the oil drilling platform (the source of the pollution).   The two 

reference stations R40 and R42 are 10 kms away and reflect an unpolluted 

environment. 

DEPTH Ba Cd Cu Fe Pb Zn THC TOM DISTANCE
S4 76 1656 0.02 1.3 2022 11.7 16.1 8 0.6 750
S8 74 1373 0.02 1.1 2398 8.9 13.6 9 0.7 1800
S9 76 3680 0.07 3.9 2985 34.4 45.7 103 0.8 800
S12 72 2094 0.04 1.2 2535 21.3 15.1 6 0.7 2500
S13 72 2813 0.04 1.6 2612 17.3 18 27 1 1300
S14 76 4493 0.06 3.3 2515 28.8 26.7 546 1 850
S15 76 6466 0.14 6.2 3421 61.4 72.5 952 1.1 500
S18 72 1661 0.02 1.3 2381 19.8 13.8 10 0.9 2500
S19 72 3580 0.05 2.4 3452 33.7 28.9 32 1 1200
S23 76 2247 0.02 1.5 3457 21.4 14.9 16 0.7 1000
S24 76 2034 0.05 2.7 2311 15.5 16.8 11 0.7 450
R40 67 40 0.01 0 1804 5.9 5.9 3 0.8 10000
R42 67 85 0.01 0.17 1815 6.7 5.9 3 1 10000  
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Figure 1: Correspondence analysis of data set ‘author’, with rows in principal 

coordinates and columns in standard coordinates (row principal asymmetric map), 

showing row profiles bunched up near the origin of the biplot. 
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Figure 2: Standard correspondence analysis biplot of ‘author’ data, showing the 

letters as the same directions as in Figure 1, but multiplied by the square roots of their 

masses: the squared coordinates of each letter on an axis is equal to its contribution to 

that axis.   
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Figure 3: Dynamic transition between the asymmetric CA map (Figure 1) and the 

standard CA biplot (Figure 2) of the data set ‘author’.  Abbreviations for the books 

are used – see Figure 2 for full titles.   Click on the figure to see the animation. 
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Figure 4: Asymmetric CA map of ‘benthos’ data set, with stations in principal 

coordinates, and species in standard coordinates (this is the first frame of the 

animation in Figure 6).  The top 10 contributing species are labelled, accounting for 

85% of the inertia of the two-dimensional solution.  These are all highly abundant 

species while the remaining 82 lower abundance species collectively contribute only 

15% to the solution.  Notice that many of these low-contributing species are outlying 

in this map.  The triangular symbols for the species are proportional to the overall 

species abundance.   Inertias on axes 1 and 2 are 0.2457 (31.4%) and 0.2043 (26.1%) 

respectively.  

 

 

 



 25 

Figure 5: Standard CA biplot of ‘benthos’ data set.  The top 10 contributing species 

are now the most outlying while the remaining 82 lower abundance species that 

collectively contribute very little all lie towards the centre of the biplot.  The station 

points are in the same positions as in Figure 4 and have inertias 0.2457 (31.4%) and 

0.2043 (26.1%) on axes 1 and 2 respectively.   This is the last frame of the animation 

of Figure 6, and its boundaries are given by the dashed box of Figure 4, showing how 

much we have “zoomed in” on the configuration of station points. 
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Figure 6: Dynamic transition between the asymmetric CA map (Figure 4) and the 

standard CA biplot (Figure 5) of the data set ‘benthos’.  Click on the figure to see the 

animation.
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Figure 7: Standard PCA biplot of ‘environ’ data set of Table 2.  Average sum-of-

squares on the axes are 0.7008 and 0.1791 respectively (these are also proportions of 

variance accounted for, since total variance is scaled to be 1.  
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Figure 8: The standard PCA biplot of the log-transformed (and unstandardized) data 

of Table 2.  Total variance (which is again the average of the individual variances) is 

0.8692, and the percentages of variance explained on axes 1 and 2 are 84.5% and 

11.0% respectively. 
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Figure 9: Dynamic transition between the asymmetric LRA map (weighted) and its 

standard biplot version, for the data set ‘author’.  In the first frame one can see the 

lining up of three letters, k, y and x, which indicates an equilibrium model for these 

letters (given in Greenacre and Lewi, 2009), but which cannot be diagnosed in the 

standard biplot.  Click on the figure to see the animation. 
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Figure 10: The standard MANOVA biplot of the three groups in the classic ‘iris’ data 

set.   Total variance of the three group centroids in the Mahalanobis space is 8.119, of 

which 99.1% is accounted for by the first canonical axis.  The variable Sepal Length 

has the lowest contribution to the discriminant space.  

 

 

 

 

 

 

 

 

 

 

 

 


