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Abstract

We consider a linear price setting duopoly game with di®erentiated products

and determine endogenously which of the players will lead and which will follow.

While the follower role is most attractive for each ¯rm, we show that waiting is more

risky for the low cost ¯rm so that, consequently, risk dominance considerations, as

in Harsanyi and Selten (1988), allow the conclusion that only the high cost ¯rm

will choose to wait. Hence, the low cost ¯rm will emerge as the endogenous price

leader.
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1 Introduction

Standard game theoretic models of oligopoly situations impose the order of the moves

exogenously, an assumption that was already criticized in Von Stackelberg (1934), well

before game theory invaded the ¯eld of industrial organization. Von Stackelberg pointed

out that players have preferences over which role (leader or follower) to play in the game

and he argued that a stable equilibrium would result only if the actual role assignment

would be consistent with these preferences. As Von Stackelberg argued, in many situa-

tions both duopolists prefer the same role so that a stable situation does not appear to

exist.

In the case of quantity competition, the typical situation is that the position of leader

is most preferred and that the follower's position is least desirable, with simultaneous

moves resulting in intermediate payo®s. Hence, in this situation a ¯ght - a Stackelberg

war - might arise as to which of the players will assume the leadership role. In an

earlier paper (Van Damme and Hurkens (1999)) we addressed the question of which

player will succeed in obtaining this most privileged position. We focused on the case

of homogeneous products with linear demand and constant marginal cost, with one ¯rm

being a more e±cient producer than the other. Using an endogeneous timing game

introduced in Hamilton and Slutsky (1990), we showed that committing to move early

is more risky for the high cost ¯rm, hence, that risk dominance considerations (Harsanyi

and Selten (1988)) imply that the e±cient ¯rm will take up the leadership position.

In the present paper we address the same question in the context of price competition

in a duopoly with di®erentiated substitutable products, linear and symmetric demand,

and constant marginal cost. Again we assume that one ¯rm is more e±cient than the

other and has lower marginal cost. The question asked is which ordering of the moves

will arise when this order is determined strategically by the players? Will also in this

case the more e±cient ¯rm emerge as the leader in the game?

Price competition, however, is fundamentally di®erent from quantity competition in

that the leadership role is not the most preferred one. While it is indeed true that, under
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general conditions, a price duopolist prefers to move ¯rst to moving simultaneously, a

player can bene¯t even more if he can move last. (See Boyer and Moreaux (1987),

Dowrick (1986) and Gal-Or (1985)). The basic intuition can be easily seen when ¯rms

are identical. First of all one notices that the price of the leader pL is larger than the

Nash equilibrium price pN since the leader's total pro¯t, taking into account the rival's

optimal reaction, is increasing in his price at the Nash equilibrium. Since the follower's

reaction curve is °atter than the 45 degree line, the follower's price pF is smaller than

pL. Consequently, ¼F (pL; pF ) > ¼F (pL; pL) = ¼L(pL; pL) > ¼L(pL; pF ) > ¼L(pN ; pN ).

(The ¯rst inequality follows since pF is on the follower's reaction curve, the second since

the leader pro¯ts from a higher price of the follower, and the last since the leader could

have chosen pN instead of pL.) Hence, if ¯rms are identical, each ¯rm prefers following

above leading, while any sequential order is preferred above moving simultaneously. By

continuity, these preferences remain when di®erences between the ¯rms are not too large1.

As in our earlier paper, we use a model from Hamilton and Slutsky (1990) to determine

which player will get which role. The model allows ¯rms to choose a price either early

or late. Choices within a period are simultaneous, but if one ¯rm moves early and the

other moves late, the latter is informed about the former's price before making its choice.

Since following confers advantages, each player is tempted to move late, but the situation

in which both move late is not an equilibrium: this would result in the Nash payo®s and

then each player would have an incentive to move early. It follows that the game has

two pure equilibria corresponding to the two possible sequential orderings of the moves

and that the players have opposite preferences about these equilibria. In our view, the

question of who will take up the most preferred role amounts to solving the problem of

which player is willing to take the largest risk in waiting and we formally answer this

question by using the risk-dominance concept from Harsanyi and Selten (1988). The

conclusion is that waiting is more risky for the low cost ¯rm, hence, the e±cient ¯rm

1Preferences of players may, however, be perfectly aligned when there are capacity constraints, since

limited capacity reduces the follower's incentive to undercut the leader's price. Deneckere and Kovencock

(1992), Furth and Kovenock (1992) and Canoy (1996) show, in a variety of circumstances, that both

¯rms prefer the large ¯rm to lead in this case, provided that capacities are su±ciently asymmetric.



3

will emerge as the price leader and the less e±cient ¯rm will take up the more favorable

follower role. Relating this result to our earlier paper, we see that the identity of the

leader is independent of whether prices or quantities are the strategic variables.

Before providing some intuition for our main result, we ¯rst note that one can conceive

of alternative ways of selecting among the two Stackelberg equilibria. One way would be

to look at which player would bene¯t most by moving late. Denoting player i's payo®

as a leader (resp. follower) by Li (resp. Fi), one can argue that, if

Fi ¡ Li > Fj ¡ Lj;

then the equilibrium in which i becomes the follower is most focal since that player

has most to gain from following and, hence, that players will coordinate on this one.

Alternatively, one might argue that the equilibrium in which total pro¯ts are highest is

most focal, hence, that i will follow if and only if

Fi + Lj > Fj + Li:

Clearly, this latter inequality is equivalent to the ¯rst, so that both approaches would

predict the same leadership pattern. Both these approaches are essentially based on an

idea of collective rationality, since it is assumed that players are able to solve the coor-

dination problem. Our approach is purely individualistic since each ¯rm only takes into

account it's own expected pro¯t and this is why we prefer this approach. Nevertheless,

it is good to point out that in this particular instance our approach produces the same

outcome: the above inequalities are satis¯ed when i is the high cost ¯rm. Hence, all

three approaches lead to the conclusion that the more e±cient ¯rm will lead.

We are now ready to provide the basic intuition for our main result. As each ¯rm's

most preferred position is to move last, it is natural to assume that each player initially

expects the other to hold out. Players cannot maintain these expectations, however, as

both players holding out is not a Nash equilibrium: given that the opponent holds out,

each player prefers to move ¯rst. Hence, each player is forced to adjust his expectations

and he will represent his uncertainty by a mixed strategy that assigns some weight to

the opponent committing to a (possibly random) price and that puts the complementary
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weight on the opponent waiting. As the high cost ¯rm gains more from waiting, it is

more insisting on this position. To put it di®erently, as long as the low cost ¯rm ¯nds it

attractive to wait, the high cost ¯rm ¯nds this attractive as well. Hence, given that one

¯rm has to give in, this will be the low cost ¯rm. The high cost ¯rm will thus obtain

the most preferred position.

Our paper thus provides a game theoretic justi¯cation for price leadership by the

e±cient or dominant ¯rm. The traditional industrial organization literature has empha-

sized price leadership in general and leadership by the dominant ¯rm in particular. It

argues that leadership allows ¯rms to better coordinate their prices and that it results

in higher prices and lower consumer surplus, thus raising possible antitrust concerns.

However, that literature is not so clear on which ¯rm will take up the leadership role.

For example, Markham (1951) in his seminal paper concluded on the one hand that \...

price `leadership' in a dominant ¯rm market is not simply a modus operandi designed to

circumvent price competition among rival sellers but is instead an inevitable consequence

of the industry's structure," while on the other hand he stated that \... in a large number

of industries which do not contain a partial monopolist, the price leader is frequently but

not always the largest ¯rm." Similarly, Scherer and Ross (1990) list as distinguishing

characteristics of (barometric) price leadership \... occasional changes in the identity of

the price leader (who is likely in any case to be one of the largest sellers)." We believe

that the risk considerations that we stress in our paper might shed some light on these

issues of price leadership in practice.

The remainder of this paper is organized as follows. The underlying duopoly game as

well as the action commitment game from Hamilton and Slutsky (1990) are described in

Section 2, where also the relevant notation is introduced. Section 3 describes the speci¯cs

of the risk dominance concept (Harsanyi and Selten (1988)) as it applies to this context.

The main results are derived in Section 4. Section 5 shows that a shortcut, based on risk-

dominance in the restricted game where each player can only choose between committing

to his leader price and waiting, would have given the wrong result and argues that this

is because the restricted game does not provide a faithful description of the actual risks

involved. Section 6 o®ers a brief conclusion.
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2 The Model

The underlying linear price setting duopoly game is as follows. There are two ¯rms, 1

and 2. Firm i produces product i at a constant marginal cost ci ¸ 0. The goods are

imperfect substitutes and the demand for good i is given by

Di(pi; pj) = max f1¡ pi + apj; 0g ;

where 0 < a < 1. Firms choose prices simultaneously and the pro¯t of ¯rm i is given by

ui(pi; pj) = (pi ¡ ci)Di(pi; pj). We assume that 1 > c1 > c2 > 0, hence ¯rm 2 is more

e±cient than ¯rm 1. The best reply of player j against the price pi of player i is unique

and is given by

bj(pi) =
1 + api + cj

2
: (2.1)

The unique maximizer of the function pi 7! ui(pi; bj(pi)) is denoted by p
L
i (¯rm i's

leader price). We also write pFj for the price that j will choose as a price follower,

pFj = bj(p
L
i ), and Li = ui(p

L
i ; p

F
j ) and Fi = ui(p

F
i ; p

L
j ). We write (p

N
1 ; p

N
2 ) for the unique

Nash equilibrium of the game and denote player i's payo® in this equilibrium by Ni. For

later reference we note that

pLi =
2 + a+ acj + (2¡ a2)ci

2(2¡ a2) (2:2a)

pFi =
4 + 2a¡ a2 + (4¡ a2)ci + (2a¡ a3)cj

4(2¡ a2) (2:2b)

pNi =
2 + a+ acj + 2ci

4¡ a2 (2:2c)

and

Li =
(2 + a+ acj + (a2 ¡ 2)ci)2

8(2¡ a2) (2:3a)

Fi =
(4 + 2a¡ a2 + (2a¡ a3)cj + (3a2 ¡ 4)ci)2

16(2¡ a2)2 (2:3b)

Ni =
(2 + a+ acj + (a2 ¡ 2)ci)2

(4¡ a2)2 (2:3c)
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One easily veri¯es that pL1 > p
L
2 and p

F
1 > p

F
2 . It also readily follows that

pLi > p
F
i > p

N
i (i = 1; 2)

Fi > Li > Ni: (i = 1; 2)

Hence, each player has an incentive to commit himself (compared to the simultane-

ous play equilibrium) but prefers to follow. Straightforward computations show that

F1 ¡ L1 > F2 ¡ L2, hence the high cost ¯rm bene¯ts more from being the follower than

the low cost ¯rm. Obviously, the above inequality is equivalent to L2 + F1 > L1 + F2,

hence total pro¯ts are larger when the e±cient ¯rm leads. The question we address in

this paper is whether the players will succeed in reaching that \e±cient" ordering of the

moves.

To investigate which player will dare to wait when both players have the opportunity

to do so, we make use of the two-period action commitment game that was proposed in

Hamilton and Slutsky (1990). The rules are as follows. There are two periods and each

player has to choose a price in exactly one of these periods. Within a period, choices

are simultaneous, but, if a player does not choose to move in period 1, then in period 2

this player is informed about which action his opponent chose in period 1. This game

has proper subgames at t = 2 and our assumptions imply that all of these have unique

equilibria. We will analyze the reduced game, g2, that results when these subgames

are replaced by their equilibrium values. Formally, the strategy set of player i in g2 is

IR+ [ fwig and the payo® function is given by

ui(pi; pj) = (pi ¡ ci)(1¡ pi + apj) (2.4)

ui(pi; wj) = (pi ¡ ci)(1¡ pi + a(1 + api + cj)=2) (2.5)

ui(wi; pj) = (1 + apj ¡ ci)2=4 (2.6)

ui(wi; wj) = Ni (2.7)

Note that ui is strictly concave in pi. It is easily seen that g2 has three Nash equilibria

in pure strategies: Either each player i commits to his Nash price pNi in the ¯rst period,
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or one player i commits to his leader price pLi and the other player waits till the second

period. Mixed strategies represent uncertainty about whether a player will commit

himself and to which price. They will play an important role below. Let mj be a mixed

strategy of player j in the game g2. Because of the linear-quadratic speci¯cation of the

game, there are only three \characteristics" of mj that are relevant to player i, viz. wj

the probability that player j waits, ¹j the average price to which j commits himself given

that he commits himself, and ºj, the variance of this price. Speci¯cally, it easily follows

from (2.4)-(2.7) that the expected payo® of player i against a mixed strategy mj with

characteristics (wj; ¹j; ºj) is given by

ui(pi;mj) = (1¡ wj)(pi ¡ ci)(1¡ pi + a¹j)

+wj(pi ¡ ci)(1¡ pi + a(1 + api + cj)=2) (2.8)

ui(wi;mj) = (1¡ wj)[a2ºj=4 + (1 + a¹j ¡ ci)2=4]

+wj [(2 + a+ acj + (a
2 ¡ 2)ci)=(4¡ a2)]2 (2.9)

Note that the payo® function as given by (2.8) is strictly concave in pi, hence, player i

has a unique optimal commitment price against any mixed strategy mj of player j. It

follows that, if mi is a mixed equilibrium strategy, then mi can prescribe to mix over the

periods, but not over the prices involved, hence, mi is of the form mi = (wi; pi; 0). We

now show that the game does not admit equilibria in which both players randomize2.

Assume that (m1;m2) with mi = (wi; pi; 0) and 0 < wi < 1 is a mixed equilibrium of g2.

Because of the concavity of the payo® function and 0 < wi < 1, pi is in the interior of

the interval spanned by bi(pj) and p
L
i for each i. Hence

if bi(pj) < p
L
i ; then bi(pj) < pi < p

L
i (2.10)

if bi(pj) > p
L
i ; then p

L
i < pi < bi(pj) (2.11)

2This observation was ¯rst made in Pastine and Pastine (1999). We provide a slightly di®erent proof.

We note that there are (asymmetric) equilibria in which one player randomizes. These mixed equilibria

will not be considered in this paper, the reason being that we want to stick as closely as possible to the

general solution procedure outlined in Harsanyi and Selten (1988), a procedure that gives precedence

to pure equilibria whenever possible.
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Furthermore, a necessary condition for (m1;m2) to be an equilibrium is that no player

i can bene¯t by committing to bi(pj) for sure. This commitment results in the same payo®

as waiting does when the other player commits himself, hence, it should do no better

when the opponent waits

ui(bi(pj); wj) � ui(wi; wj) = Ni (all i) (2.12)

Let [p¡i ; p
+
i ] be the maximal interval on which ui(pi; wj) ¸ Ni. Then p

¡
i = p

N
i and

p+i > p
L
i . This condition thus implies that bi(pj) � pNi or bi(pj) > p

L
i for all i. The ¯rst of

these conditions is equivalent to pj � pNj : Assume p2 � pN2 . Then p1 � pN1 as otherwise

p2 could not be a best response. Hence (by (2.10)), p2 > b2(p1) and p1 > b1(p2). The

conditions pi � pNi and pi > bi(pj) (for i; j = 1; 2, i 6= j) lead to a contradiction. Hence,
assume b1(p2) > pL1 . Then by (2.11) p

N
1 < p

L
1 < p1 < b1(p2). Since b2(p1) > p

N
2 we must

have b2(p1) > p
L
2 , hence p

N
2 < p

L
2 < p2 < b2(p1). But now the conditions pi < bi(pj) and

pi > p
N
i (i; j = 1; 2, i 6= j), lead to a contradiction.

In the remainder of this paper, mixed equilibria will not be considered (see footnote

2), but mixed strategies will play an important role. The tracing procedure that is used

below to ¯nd a unique solution of the game pictures players in the situation where they

are uncertain about which equilibrium will be played, and they respresent their uncer-

tainty by a mixed strategy. Note that (2.8) and (2.9) show that uncertainty concerning

the price to which j will commit himself makes it more attractive for player i to wait:

ºj contributes positively to (2.9) and it does not play a role in (2.8). On the other hand,

increasing wj clearly increases the incentive for player i to commit himself. Finally, in-

creasing ¹j increases the incentive for player i to commit himself, because of the positive

e®ect on i's demand.

3 Risk Dominance and the Tracing Procedure

The concept of risk dominance captures the intuitive idea that, when players do not know

which of two equilibria should be played, they will measure the risk involved in playing

each of these equilibria and they will coordinate expectations on the less risky one, i.e.
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on the risk dominant equilibrium of the pair. The formal de¯nition of risk dominance

involves the bicentric prior and the tracing procedure. The bicentric prior describes the

players' initial assessment about the situation. As this initial assessment need not be

an equilibrium of the game, it cannot constitute the players' ¯nal view on the situation.

The tracing procedure is a process that, starting from given prior beliefs of the players,

gradually adjusts the players' plans and expectations until they are in equilibrium. It

models the thought process of players who, by deductive personal re°ection, try to ¯g-

ure out what to play in the situation where the initial uncertainty is represented by the

given prior. Below we describe the mechanisms of the tracing procedure as well as how,

according to Harsanyi and Selten (1988), the initial prior should be constructed.

3.1 Bicentric Prior

Let g = (S1; S2; u1; u2) be a 2-person game and let s and s
0 be two equilibria of this game.

We need to specify the players' initial beliefs when they are uncertain about which of

these two equilibria should be played. Harsanyi and Selten (1988) argue as follows.

Player j, being Bayesian, will assign a subjective probability zj to i playing si and he

will assign the complementary probability z0j = 1¡ zj to i playing s0i. With these beliefs,
player j will play the best response against the strategy zjsi + z0js

0
i that he expects i to

play and we denote the resulting strategy of j with bj(zj).3 Player j, knowing his prior

zj, knows which action he will play. Player i, however, does not know zj exactly and

hence cannot predict exactly what j will do. Applying the principle of insu±cient reason,

Harsanyi and Selten (1988) argue that i will consider zj to be uniformly distributed on

[0; 1]. Writing Zj for a uniformly distributed random variable on [0; 1], player i will,

therefore, believe that he is facing the mixed strategy

mj = bj(Zj) (3.1)

3In general player j may have multiple best replies in which case he should play all of them with

equal probability. However, in our setting with strictly quasi-concave pro¯t functions this happens with

zero probability, so we may ignore multiple best replies.
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and this mixed strategy mj of player j is player i's prior belief about j's behavior in the

situation at hand. Similarly, mi = bi(Zi), where Z1 and Z2 are independent, is the prior

belief of player j, and the mixed strategy pair m = (m1;m2) is called the bicentric prior

associated with the pair (s; s0).

3.2 Tracing Procedure

From a mathematical point of view the tracing procedure is a mapping that maps initial

beliefs into the set of equilibria of the game. In order to determine the risk dominant

equilibrium we will have to apply this mapping only to the bicentric prior described

above. However, in this subsection we will de¯ne the tracing procedure for any initial

beliefs.

Let mi be a mixed strategy of player i in g (i = 1; 2). The strategy mi represents

the initial uncertainty of player j about i's behavior. For t 2 [0; 1] we de¯ne the game
gt;m = (S1; S2; u

t;m
1 ; ut;m2 ) in which the payo® functions are given by

ut;mi (si; sj) = (1¡ t)ui(si;mj) + tui(si; sj): (3.2)

Hence, for t = 1, this game gt;m coincides with the original game g, while for t = 0 we

have a trivial game in which each player's payo® depends only on his own action and his

own prior beliefs.4 Write ¡m for the graph of the equilibrium correspondence, i.e.

¡m = f(t; s) : t 2 [0; 1]; s is an equilibrium of gt;mg:

It can be shown that, if g is a generic ¯nite game, then, for almost any prior m, this

4Loosely speaking the parameter t might be thought of as time. With this interpretation, player i

assigns weight 1¡ t to his prior beliefs at time t, while he gives weight t to the reasoning process at this

point in time, at time t = 1, when the players' actions are in equilibrium, the player fully trusts the

outcome of the reasoning process.
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graph ¡m contains a unique distinguished curve that connects the unique equilibrium

s0;m of g0;m with an equilibrium s1;m of g1;m. (See Schanuel et al. (1991) for details.)

The equilibrium s1;m is called the linear trace of m. If players' initial beliefs are given

by m and if players' reasoning process corresponds to that as modeled by the tracing

procedure, then players' expectations will converge on the equilibrium s1;m of g. Below,

we will apply the tracing procedure to the in¯nite game g2 that was described in the

previous section. For such games, no generalizations of the Schanuel et al. (1991) results

have been established yet, but as we will see in the following section, there indeed exists

a unique distinguished curve in the special case analyzed here. Hence, the non-¯niteness

of the game g2 will create no special problems.

3.3 Risk Dominance

Risk dominance is de¯ned as follows. Consider two equilibria, s and s0 of g. Use the

construction described in subsection 3.1 to determine the bicentric prior, m, associated

with the pair (s; s0). Then apply the tracing procedure of subsection 3.2 to m, i.e.

compute the linear trace of this prior, s1;m. We now say that s risk dominates s0 if

s1;m = s. Similarly, s0 risk dominates s if s1;m = s0. In case the outcome of the tracing

procedure is an equilibrium di®erent from s or s0, then neither of the equilibria risk

dominates the other. Below we show that the latter situation will not occur in our

2-stage action commitment game, provided that the costs of the ¯rms are di®erent.

4 Commitment and Risk Dominance

In this section, we prove our main results. Let g2 be the endogenous commitment game

from Section 2. Write Si for the pure equilibrium in which player i commits to his leader

price in period 1, Si = (pLi ; wj), and write B for the equilibrium in which each player

commits to his Bertrand price in period 1, B = (pN1 ; p
N
2 ). We show that both price leader

equilibria risk dominate the Bertrand equilibrium and that S2 risk dominates S1 when

c2 < c1. The ¯rst result is quite intuitive: Committing to p
N
i is a weakly dominated

strategy and playing a weakly dominated strategy is risky. The proof of this result is



12

correspondingly easy.

Proposition 1 In g2, the price leader equilibrium Si risk dominates the Nash equilib-

rium B (i = 1; 2).

Proof. Without loss of generality, we just prove that S1 risk dominates B. We ¯rst

compute the bicentric prior that is relevant for this risk comparison, starting with the

prior beliefs of player 1.

Let player 2 believe that 1 plays z2S11 + (1¡ z2)B1 = z2pL1 + (1¡ z2)pN1 . Obviously,
if z2 2 (0; 1), then the unique best response of player 2 is to wait, b2(z2) = w2. Hence,
the prior belief of player 1 is that player 2 will wait with probability 1, m2 = w2.

Next, let player 1 believe that 2 plays z1S12+(1¡z1)B2 = z1w2+(1¡z1)pN2 . Obviously,
waiting yields player 1 the Nash payo® N1 as in (2.3c), irrespective of the value of z1.

When z1 > 0 then committing to a price that is (slightly) above p
N
1 yields a strictly higher

payo®, hence, the best response is to commit to a certain price p1(z1), b1(z1) = p1(z1).

The reader easily veri¯es that p1(z1) increases with z1 and that p1(1) = pL1 . Consequently,

if m1 is the prior belief of player 2 then for the characteristics (w1; ¹1; º1) of m1 we have:

w1 = 0; ¹1 > p
N
1 ; º1 > 0.

Now, let us turn to the tracing procedure. The starting point corresponds to the best

replies against the prior. Obviously, the unique best response against m2 is for player 1

to commit to pL1 , while player 2's unique best response against m1 is to wait. Hence, the

unique equilibrium at t = 0 is S1. Since S1 is an equilibrium of the original game, it is

an equilibrium for any t 2 [0; 1]. Consequently, the distinguished curve in the graph ¡m

is the curve f(t; S1) : t 2 [0; 1]g and S1 risk dominates B. 2

We now turn to the risk comparison of the two price leader equilibria. Again we start

by computing the bicentric prior based on S1 and S2. We show that each player's prior

belief is that the other player will commit to a random price. Let player j believe that i

commits to pLi with probability z and that i waits with probability 1¡ z. Waiting yields

uj(wj; zp
L
i + (1¡ z)wi) = zFj + (1¡ z)Nj:



13

It is easily seen that committing to the follower price pFj results in higher pro¯ts, namely

the mapping p 7! uj(p; bi(p)) is concave and attains its maximum at pLj , and since

pFj 2 (pNj ; pLj ), we have

uj(p
F
j ; bi(p

F
j )) > uj(p

N
j ; bi(p

N
j )) = Nj;

so that

uj(p
F
j ; zp

L
i + (1¡ z)wi) > uj(wj ; zpLi + (1¡ z)wi):

Hence, it already follows that each player will believe that the opponent will commit

himself to some price. To determine this price, note that committing to price pj yields

uj(pj; zp
L
i + (1¡ z)wi) = (pj ¡ cj)[1¡ pj + a(zpLi + (1¡ z)(1 + apj + ci)=2)]:

Given z, the optimal commitment price pj(z) of player j must satisfy the ¯rst order

condition @uj(pj; zpLi + (1¡ z)wi)=@pj = 0, and is, hence, given by

pj(z) =
(1¡ z)(2¡ a2)pLj + 2zpFj

2¡ a2(1¡ z) : (4.1)

Consequently, both players expect the other player to commit with probability one.

Furthermore, note that p1(z) > p2(z) for all z 2 [0; 1], since pL1 > pL2 and pF1 > pF2 . This
means that ¯rm 1 expects ¯rm 2 to commit to a low price, while ¯rm 2 expects ¯rm 1

to commit to a high price. From

p0j(z) =
2(2¡ a2)(pFj ¡ pLj )
(2¡ a2(1¡ z))2 ;

one easily veri¯es that p02(z) < p01(z) < 0 since pF2 ¡ pL2 < pF1 ¡ pL1 < 0. Hence, ¯rm

2's price is expected to vary more than ¯rm 1's price. (See Appendix A1 for a formal

proof.) We summarize these results in Lemma 1.

Lemma 1 Player i's bicentric prior mj is that j will commit to a random price pj(z)

with expectation ¹j and variance ºj, where ¹j 2
³
pFj ; p

L
j

´
and ºj > 0. Moreover, we have

¹1 > ¹2 and º1 < º2.

Now, let us turn to the tracing procedure. The starting point (the initial equilibrium)
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corresponds to the best reply against the prior. Since both players expect the other to

commit with probability one and are uncertain about the exact price the opponent will

commit to, the unique best reply for both players is to wait. As t increases player i

attaches more and more weight (namely t) to the event that player j will wait. At some

critical point ¹ti it must become pro¯table to commit and take the leader role. We will

show that the low cost ¯rm will switch before the high cost ¯rm will, i.e. that ¹t1 > ¹t2.

The intuition is given by Lemma 1 and the equations (2.8) and (2.9): Since player 1

(the high cost ¯rm) commits to a higher and less variable price, it is relatively more

attractive for ¯rm 2 to commit to a price. We elaborate below and relegate the formal

proof to the Appendix.

Recall from Section 2 that the expected payo® of player i depends only on his action

and the three important characteristics of the opponent's (mixed) strategy, viz. the

probability that the other player waits, the average price to which the other player

commits himself (given that he commits himself), and the variance of that price. During

the tracing procedure expectations about the opponent's strategy change (see section

3.2), but as long as no player switches away from waiting, only the probability that the

other waits will be adjusted. The average commitment price and the variation of this

price do not change. Hence, the expectation of player i at time t, given that no one has

switched yet, is given by the mixed strategy mt
j = (1¡t)mj+twj. Identifying this mixed

strategy with its important characteristics we will write mt
j = (t; ¹j ; ºj). The expected

payo® for player i from committing and waiting is given in (2.8) and (2.9), respectively.

For mt = (t; ¹; º) de¯ne the gain from committing for i as

gi(m
t) = max

pi
ui(pi;m

t) ¡ ui(wi;mt):

We will show that ¯rm 2 always has a higher incentive to commit himself than ¯rm 1,

i.e. that g2(mt
1) > g1(m

t
2) for all t. Since the gain of committing is negative at t = 0 and

positive at t = 1, this implies that ¯rm 2 will switch before ¯rm 1 does.

The formal proof is divided into three steps and is given in the Appendix. We now

provide intuition for each step. In the ¯rst step we show that the gain from committing
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is increasing in the opponent's price. From equations (2.4) and (2.6) it follows in a

straightforward manner that

@ui(pi; pj)

@pj
= a(pi ¡ ci)

and
@ui(wi; pj)

@pj
= a(bi(pj)¡ ci);

i.e. the marginal e®ect on i's pro¯t of an increase in j's price is equal to the price-cost

margin multiplied with the marginal increase in demand. Since j will never commit to

a price above pLj , bi(pj) < pFi . On the other hand, if ¯rm i commits himself he will

(optimally) commit to a price above pFi . The e®ect of an increase in pj is thus larger

when i commits himself than when he waits.

Secondly, the gain from committing is decreasing in the variability of the price of the

opponent. This is very intuitive. We know from Lemma 1 that º1 < º2 so that ¯rm 1

is more uncertain about the price ¯rm 2 will commit himself to. Clearly, this gives him

more reason to wait and less to commit.

Finally, we show that the low cost ¯rm has more incentive to commit than a high

cost ¯rm even if they have exactly the same expectation about the commitment price of

the opponent. This follows from the fact that the high cost ¯rm gains more from being

the follower than the low cost ¯rm, i.e. that F1 ¡ L1 > F2 ¡ L2. The above steps can

now be combined to show that, with ¹k and ºk as in Lemma 1 we get

g2(t; ¹1; º1) > g2(t; ¹2; º1) > g2(t; ¹2; º2) > g1(t; ¹2; º2): (4.2)

The formal proof is in Appendix A2. The above inequalities imply that at any point in

the tracing procedure player 2 gains more from committing than ¯rm 1, and, therefore,

it must be player 2 who will decide to switch ¯rst, i.e. ¹t1 > ¹t2. Thus, both players

wait till ¹t2 at which point player 2 is exactly indi®erent between waiting and committing

optimally (to ~p2(¹t2)). The graph of the equilibrium correspondence exhibits a \vertical"

segment at t2. Any pair of strategies in which ¯rm 1 waits and ¯rm 2 mixes between

waiting (with probability w) and committing to ~p2(¹t2) (with probability 1 ¡ w) is an

equilibrium of g¹t2;m : Firm 2 is indi®erent and any mixture is therefore a best reply.
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Firm 1 strictly prefers to wait when w = 1 (since g1(m
¹t2
2 ) < g2(m

¹t2
1 ) = 0) and also when

w = 0 (since then ¯rm 2 commits for sure to a random price). Because of linearity (in

w) ¯rm 1 prefers to wait for any w 2 [0; 1]. From ¹t2 onward, player 2 commits with

probability 1 (but changes the commitment price continuously) and player 2 waits with

probability 1. Therefore, the tracing procedure ends up in an equilibrium where player

2 commits and player 1 waits, i.e. at S2. This concludes the proof of

Proposition 2 The price leader equilibrium S2 in which the low cost ¯rm leads risk

dominates the one in which the high cost ¯rm leads.

By combining the Propositions 1 and 2 we, therefore, obtain our main result:

Theorem 1 The price leader equilibrium in which the e±cient ¯rm leads and the inef-

¯cient ¯rm follows is the risk dominant equilibrium of the endogenous price commitment

game.

Note that, if the costs of ¯rm 1 are not much higher than the costs of ¯rm 2, then

F1 > L2, i.e. the high cost ¯rm makes higher pro¯ts (as a price follower) in the risk

dominant equilibrium than the e±cient ¯rm (as a price leader). This seems curious

and counterintuitive at ¯rst sight since it could give incentives to the low cost ¯rm to

increase its cost (if he would be able to do that in a credible way). However, given the

cost structure, waiting is less risky for a high cost ¯rm than for a low cost ¯rm, and the

ine±cient ¯rm pro¯ts from its \weak" position.

5 Risk Dominance in the Reduced Game

It is well known that risk dominance allows a very simple characterization for 2 £ 2

games with two Nash equilibria: the risk dominant equilibrium is that one for which

the product of the deviation losses is largest. Consequently, if risk dominance could

always be decided on the basis of the reduced game spanned by the two equilibria under

consideration (and if the resulting relation would be transitive), then the solution could
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be found by straightforward computations. Unfortunately, this happy state of a®airs does

not prevail in general. The two concepts do not always generate the same solution and

it is well-known that the Nash product of the deviation losses may be a bad description

of the underlying risk situation in general. (See, Carlsson and Van Damme (1993) for

a simple example.) We now show that this is also true for the game analyzed in this

paper. In fact, the reduced game analysis produces exactly the opposite result from that

obtained by applying the tracing procedure.

The reduced game where each player is restricted to either committing himself to his

leader's price or to wait is given by Table 1

pL2 w2

pL1 D1; D2 L1; F2

w1 F1; L2 N1; N2

Table 1: Reduced version of the price commitment game.

where Li, Ni and Fi are as in (2.3) and where Di = ui(p
L
i ; p

L
j ) denotes player i's payo®

in the case of price leader warfare.5 It is easily veri¯ed that

Li ¡Ni =
a4(2 + a+ acj + (a

2 ¡ 2)ci)2
8(2¡ a2)(4¡ a2)2 (5.1)

Fj ¡Dj =
a4(1 + aci ¡ cj)2
16(a2 ¡ 2)2 (5.2)

It follows that the product of deviation losses at S1 is larger than at S2 if and only if

(c1 ¡ c2)(2 + 2a+ (c1 + c2)(a2 ¡ 1)) > 0 (5.3)

which clearly holds since c1 > c2. Risk considerations based on reduced game analysis

unambiguously point into the direction of the price leader equilibrium where the high

cost ¯rm leads. We see that the result based on the reduced game is the opposite of our

result established in the previous section, which was based on the full commitment game.

5The term \warfare" is somewhat misplaced here since the corresponding payo®s are higher than the

payo®s of the usual price leader, i.e. Di > Li.
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Two issues arise here: First, the relevance of the 2£2 game, and second, the character-
ization of risk dominance in 2£ 2 games. The result that the risk dominant equilibrium
is the one at which the product of deviation losses is largest was proved by Harsanyi

and Selten (1988, Lemma 5.4.4). To enable the reader a proper evaluation of our work

it is convenient to reproduce their argument here. Consider the generic 2£ 2 game from
Table 2,

L R

T a11; b11 a12; b12

B a21; b21 a22; b22

Table 2: A generic 2£ 2 game.

where a11 > a21, b11 > b12, a22 > a12, and b22 > b21 so that both (T; L) and (B;R) are

pure strict Nash equilibria. Denote by ¹zj the probability with which player j chooses

his ¯rst strategy in the mixed equilibrium. Then it is easily seen that the prior belief

of player j (as outlined in Section 3) assigns probability 1 ¡ ¹zj to i playing his ¯rst

strategy. Assume that ¹z1 + ¹z2 < 1. Then each player's best reply against his prior is his

¯rst strategy, hence the tracing procedure for determining the risk dominant equilibrium

starts at (T,L) and stays there: (T,L) risk dominates (B,R). Similarly, (B,R) is risk

dominant if ¹z1 + ¹z2 > 1. Now it is easily veri¯ed that ¹z1 + ¹z2 < 1 if and only if

(a11 ¡ a21)(b11 ¡ b12) > (b22 ¡ b21)(a22 ¡ a12);

i.e. if the product of deviation losses at (T; L) is larger than the product of deviation

losses at (B;R).

In order to illustrate why the reduced game analysis and the full game analysis give

di®erent solutions, let us reconsider the bicentric prior in both approaches in a numerical

example with extreme values of the parameters. In particular, suppose a = 1, c1 = 1,

and c2 = 0. Substituting these values into (2.2a) and (2.2b) yields p
L
1 = p

F
1 = p

L
2 = 2 and

pF2 = 3=2. This implies that D1 = F1 so that in the reduced game of Table 1, committing

to pL1 is a weakly dominant strategy for player 1. Clearly, this means that waiting is
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extremely risky for ¯rm 1 and he will, therefore, be the leader in the risk dominant

equilibrium. (More formally, the product of deviation losses at S2 is zero while it is

positive at S1.)

Now reconsider the full commitment game analyzed in Section 4. If player 1 believes

that 2 will commit to pL2 with probability z and will wait with probability 1¡ z, his best
reply is to commit to p1(z) = 2 for all z. Hence, player 2's prior is that player 1 will

commit for sure to the price 2. On the other hand, player 1's prior is that player 2 will

commit to some random price between 3/2 and 2. The best replies against the bicentric

prior are, therefore, that player 1 waits and that player 2 commits to pF2 = 3=2. During

the tracing procedure the beliefs that 1 will wait and that 2 will commit to a random

price are reinforced, and the linear trace must be S2.

For general parameters the di®erences between the two approaches are not as clear-

cut as with the extreme numbers used above, but the di®erences are still remarkable.

In particular, in the full game analysis both ¯rms believe that the other will commit for

sure and, therefore, their initial best replies are to wait. In the reduced game both ¯rms

attach positive weight to the event that the other will wait. However, the high cost ¯rm

attaches a high probability to the event that the low cost ¯rm will wait, whereas the low

cost ¯rm only assigns low probability to the event that the high cost ¯rm will wait. The

best replies are, therefore, for the ine±cient ¯rm to commit and for the e±cient ¯rm to

wait. See Table 3 below.

Prior beliefs about Initial equilibrium strategies of

player 1 player 2 player 1 player 2

Full Game commit commit wait wait

Reduced Game likely to commit likely to wait commit wait

Table 3: Comparing the two approaches.
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We see that the two approaches di®er in two respects: they produce di®erent priors and

the best replies against the priors are di®erent. The arti¯cial reduction of the game

restricts players in their choices and forces them to do things they do not really want

to do. In particular, it forces players to wait, if that is better than committing to the

leader price, while we have seen that committing to the follower price always generates a

higher payo® than waiting. Harsanyi and Selten (1988) emphasize that the computations

should take into account all strategies that are best replies against some mixture between

the two equilibrium strategies, and not only the two equilibrium strategies. To further

illustrate why the 2£ 2 game describes the risk considerations very badly we will now
consider the 3£ 3 game of Table 4

pL2 pF2 w2

pL1 D1; D2 L1; F2 L1; F2

pF1 F1; L2 X1; X2 Y1; Z2

w1 F1; L2 Z1; Y2 N1; N2

Table 4: Another reduced version of the price commitment game.

where Li, Ni, Fi and Di are as in Table 1 and Xi = ui(p
F
i ; p

F
j ), Yi = ui(p

F
i ; bj(p

F
j )),

and Zi = ui(bi(p
F
j ); p

F
j ). In this game players are restricted to commit to the leader

price, to commit to the follower price or to wait. Of course, in this game players are

still quite restricted in their choices (as compared to the full game) but we will see that

just allowing players to use one very natural strategy, namely committing to the follower

price, already upsets the result of the 2£ 2 game.

Since Ni < Yi, the reader easily veri¯es that the prior attaches positive weight only to

pLi and p
F
i . In fact, using the quadratic payo® structure of the game it can be established

that both players attach exactly the same weight to the event that the opponent will

commit to the leader price. Clearly, for both players the best reply against the initial

prior is to wait, as in the analysis of the full game and as opposed to what happens in

the 2£2 game. In order to compute the risk dominant equilibrium we have to determine
again who will switch ¯rst as players attach more weight to the event that the other

player will wait. It turns out that, if we would not allow the players to switch to the
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follower price (as in the 2£ 2 game), player 1 would switch ¯rst and become the price
leader. However, in the 3 £ 3 game players want to switch away from their waiting

strategy to the safer follower price at a much earlier point in time. Each player will

switch from waiting to his follower price when he becomes exactly indi®erent between

these strategies. Since these strategies yield the same payo® in case the other commits

to his leader price, the time at which players want to switch is determined by the payo®s

in the 2 £ 2 game at the bottom right corner of the game of Table 4. Straightforward

computations yield that in fact player 2 will switch ¯rst. Hence, in the game of Table

4 the equilibrium in which the low cost ¯rm is the price leader and the high cost ¯rm

follows is risk dominant, as in the full game.6

To summarize, there are three objections against the shortcut analysis of the 2 £ 2

game. First, the reduced game does not take into account all strategies that are best

replies for some initial subjective beliefs. Second, this implies that the bicentric prior

computed in that game is not the right one. In the full game ¯rms are always uncertain

about the commitment price of the opponent and, therefore, prefer to wait. Finally,

even if we would construct the bicentric prior based on the full game, but again use the

2£ 2 game to determine who will switch ¯rst and become the price leader, we will get
the wrong result. If ¯rms can only commit to the leader price, the high cost ¯rm would

switch ¯rst. However, ¯rms would switch earlier if they could use a safer strategy, like

committing to the follower price. Given that opportunity, the low cost ¯rm will switch

¯rst and become the price leader.

6 Conclusion

In this paper we studied the strategic choice of whether to lead or to follow in a duopoly

price competition game with symmetrically horizontally di®erentiated products and

6For example, for parameters a = 0:5, c1 = 0:75 and c2 = 0:25 we ¯nd that player 1 would switch

to his follower price at t = 0:12 and to his leader price at t = 0:41. For player 2 these values are,

respectively, t = 0:01 and t = 0:48.
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where the ¯rms di®er in their marginal costs. We analysed a model in which ¯rms

can decide to move early or late. The model has two pure equilibria corresponding to

the two possible role assignments and by using the risk dominance criterion we were able

to select among these. Speci¯cally, as waiting is more risky for the e±cient ¯rm than

for the ¯rm with the higher cost, the former will act as a price leader and the latter

will occupy the more preferred role. Note that this does not necessarily imply that the

largest ¯rm will lead. The e±cient ¯rm has the largest market share if and only if he

charges the lowest price and whether this holds depends on the extent to which the costs

di®er. If the cost di®erence is small the e±cient leader will have the higher price (hence

the smaller market share) and if the di®erence is large it will have the lowest price (and

the larger market share). So our results are in line with the empirical observation that

the price leader is often, but not always, the larger ¯rm.7

As compared to the alternative candidate solution, where the least e±cient ¯rm leads,

the total pro¯ts in the risk dominant equilibrium are higher (since L2 + F1 > L1 + F2),

the division of the pro¯ts is more equal ( jL1 ¡ F2j < jL2 ¡ F1j ) and consumer surplus
is lower. To see why, consider ¯rst the case where pL1 > p

F
1 > p

L
2 > p

F
2 . Since p

L
2 ¡ pF2 >

pL1 ¡ pF1 one sees that when we go from S2 to S1, the price decrease of good 2 is larger

than the price increase of good 1. Since consumers buy more of good 2 than of good 1,

this means that the bundle consumed under S2 can be bought under S1 for less money,

which of course implies that consumers are better o® when ¯rm 1 is the leader. The

argument for the other case where pL1 > pL2 > p
F
1 > p

F
2 is similar. First note that the

goods are completely symmetric so that consumers are indi®erent between the situation

of S2 and the situation in which ¯rm 1 charges p
L
2 and ¯rm 2 charges p

F
1 . If we compare

the latter situation with S1 we see that, since pF1 ¡ pF2 > pL1 ¡ pL2 , the price decrease of
good 2 is larger than the price increase of good 1 so that again consumers prefer ¯rm 1

to lead.

The conclusion that the e±cient ¯rm will move ¯rst appears to be robust. In our com-

7If the ine±cient ¯rm were to lead, it would certainly have the smaller market share because it sets

the highest price, pL
1 > pF

2 .
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panion paper (Van Damme and Hurkens (1999)) we derive it for the case of quantity com-

petition, Deneckere and Kovenock (1992) obtained it for the case of capacity-constrained

price competition and homogeneous goods, and Cabrales et al. (2000) derived the re-

sult for the case of vertical product di®erentiation, where ¯rms ¯rst choose qualities

and next compete in prices. This latter paper also makes use of the concept of risk

dominance, but it does not derive the result analytically; instead the authors resort to

numerical computations and simulations. To our knowledge, the present paper, together

with its companion on quantity competition, are the ¯rst applications of the (linear)

tracing procedure to games where the strategy spaces are not ¯nite. We have seen that,

although there may be some computational complexities, no new conceptual di±culties

are encountered. Of course, more important than this methodological aspect is the ap-

parant robustness result itself, which might provide the theoretical underpinning for the

observed phenomenon in practise that frequently the dominant ¯rm indeed acts as the

leader (Scherer and Ross (1990)).

Note that we did not provide the solution of the endogenous timing game for the

case where both ¯rms have the same marginal costs. The reader might conjecture that

in that case the Bertrand equilibrium would be selected, i.e. that ¯rms would move

simultaneously, and indeed that is correct. Clearly, if the ¯rms are completely symmetric,

none of the price leader equilibria can risk dominate the other as the solution of a

symmetric game has to be symmetric. Similarly, none of the asymmetric mixed strategy

equilibria cannot be the solution and since there are no symmetric mixed equilibria (as

shown in Sect. 2), the solution has to be the Bertrand equilibrium. However, providing

a formal direct proof is di±cult. Harsanyi and Selten (1988) show that in the symmetric

case the solution of the game is the linear trace of the barycentric prior 1
2
pLi +

1
2
wi;

provided the linear tracing procedure is well-de¯ned. In Appendix A3 however, we show

that the linear trace of this prior cannot be the Bertrand equilibrium. The intuition

that we do not end up at the Bertrand equilibrium is simple: if the tracing path would

converge there then each player would have an incentive to wait (because each ¯rm would

expect the other to commit to a random price) and that cannot be an equilibrium. It

follows that the linear tracing procedure cannot be well-de¯ned in this case and that the
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logarithmic tracing procedure has to be used.

We conclude by noting that the main result of this paper does not depend on the

assumption that there are only two points in time when the prices can potentially be

chosen. Assume that the market opens at time t = 0, but that ¯rms could ¯x their

price at any time point t = 0;¡1;¡2; :::;¡T , with players being committed to a price
once it has been chosen and with players being fully informed about the past history.8

The solution may be determined by backwards induction, i.e. by applying the subgame

consistency principle from Harsanyi and Selten (1988). It is common knowledge that,

once the game reaches time t = ¡1 with no commitments being made, the e±cient ¯rm
will commit to pL2 while the high cost ¯rm will wait. Knowing this, at t < ¡1, both
players ¯nd it in their interest to wait. The predicted outcome, hence, is not sensitive

to the number of commitment periods: both ¯rms will make their price announcements

only shortly before the market opens, with the e±cient ¯rm making the announcement

slightly earlier.
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Appendix

A1

Let Z » Un(0; 1), Zi = pi(Z) and ºi = Var(Zi). We need to prove º1 < º2. We will only

use that p02(z) < p
0
1(z) < 0.

º1 ¡ º2 =
Z 1

0
p1(z)

2dz ¡ [
Z 1

0
p1(z)dz]

2 ¡
Z 1

0
p2(z)

2dz + [
Z 1

0
p2(z)dz]

2

=
Z 1

0
[p1(z)

2 ¡ p2(z)2]dz ¡ (¹21 ¡ ¹22)

=
Z 1

0
[(p1(z)¡ p2(z))(p1(z) + p2(z))]dz ¡ (¹1 ¡ ¹2)(¹1 + ¹2)

=
Z 1

0
[p1(z)¡ p2(z)][p1(z) + p2(z)¡ ¹1 ¡ ¹2]dz

=
�
(p1(z)¡ p2(z))(

Z z

0
[p1(t) + p2(t)¡ ¹1 ¡ ¹2]dt)

¸1

0

¡
Z 1

0
[p01(z)¡ p02(z)][

Z z

0
(p1(t) + p2(t)¡ ¹1 ¡ ¹2)dt]dz

= 0¡
Z 1

0
[p01(z)¡ p02(z)][

Z z

0
(p1(t) + p2(t)¡ ¹1 ¡ ¹2)dt]dz

The ¯rst factor within the integral is positive. It su±ces to show that the second factor

is also nonnegative. Well, the second factor is equal to zero for z = 0 and for z = 1. The
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result follows once we have shown that the second factor is a concave function of z. The

¯rst derivative of the second factor (with respect to z) is

¡¹1 + p1(z)¡ ¹2 + p2(z)

and the second derivative is

p01(z) + p
0
2(z) < 0:

2

A2

We prove the three inequalities in (4.2).

(i) g2(t; ¹1; º1) > g2(t; ¹2; º1).

Proof. Given expectations mt = (t; ¹; º), the optimal commitment price, ~pi(t) can

be easily computed. The computations are almost identical to the derivation of pj(z) in

(4.1), and one ¯nds

~pi(t) =
2(1¡ t)bi(¹) + t(2¡ a2)pLi

2¡ a2t : (A.1)

If ¹ < pLj then bi(¹) < p
F
i < p

L
i and it follows that ~pi(t) ¸ bi(¹). Using the theorem of

the maximum, one now easily veri¯es that

@gi(m
t)

@¹
= a(1¡ t)(~pi(t)¡ bi(¹)) ¸ 0: (A.2)

Since pL1 > ¹1 > ¹2 we have that ~p2(t) ¸ b2(¹1) ¸ b2(¹2). It follows from (A.2) that

g2(t; ¹1; º1) > g2(t; ¹2; º1):

2

(ii) g2(t; ¹2; º1) > g2(t; ¹2; º2).

Proof. Again using the theorem of the maximum, one ¯nds

@gi(mt)

@º
= ¡(1¡ t)a2=4 < 0: (A.3)
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Since º1 < º2, it follows from (A.3) that

g2(t; ¹2; º1) > g2(t; ¹2; º2):

2

(iii) g2(t; ¹2; º2) > g1(t; ¹2; º2).

Proof.

@gi(t; ¹; º)

@ci
= ¡(1¡ t)(1¡ ~pi(t) + a¹)¡ t(1¡ ~pi(t) + a(1 + a~pi(t) + cj)=2)

+(1¡ t)(1 + a¹¡ ci)=2¡ t@Ni
@ci

= ~pi(t)¡ bi(¹) + t
(
a¹¡ 1 + ci ¡ a(1 + a~pi(t) + cj)

2
¡ @Ni
@ci

)

Taking the derivative of the right-hand side with respect to t yields

d

dt

Ã
@gi
@ci

!
= (1¡ a2t=2)~p0(t) + a¹¡ 1 + ci ¡ a(1 + a~pi(t) + cj)

2
¡ @Ni
@ci

=
a(¡16 + 8a2 ¡ 2a3 ¡ 2a4 + 2a3ci ¡ a5ci ¡ a4cj)

4(4¡ a2)2 < 0

Hence,
@gi
@ci
(t; ¹; º) � @gi

@ci
(0; ¹; º) = 0:

@gi(t; ¹; º)

@cj
= t(~pi(t)¡ ci)a=2¡ t@Ni

@cj

= t(~pi(t)¡ ci)a=2¡ 2at(p
N
i ¡ ci)
4¡ a2

=
at

2(4¡ a2)
n
(4¡ a2)(~pi(t)¡ ci)¡ 4(pNi ¡ ci)

o

>
at

2(4¡ a2)
n
(4¡ a2)((bi(¹)¡ ci)¡ 4(pNi ¡ ci)

o

=
at

2(4¡ a2)(a
2ci + 4(bi(¹)¡ pNi )) > 0

The gain of committing for player i is decreasing in ci and increasing in cj. Hence,

g2(m2jc1; c2) ¸ g2(m2jc2; c1) = g1(m2jc1; c2) = g1(m2):

2
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A3

We show that when ¯rms have identical costs the linear trace of the barycentric prior is

not the pure equilibrium in which ¯rms commit themselves to the Bertrand equilibrium.

Let m = 1
2
pL + 1

2
w be the barycentric prior. Suppose that for t su±ciently close to

1 the equilibrium of gt;m is x(t) = (1 ¡ w(t))p(t) + w(t)w, i.e. each ¯rm waits with

probability w(t) and commits with probability (1 ¡ w(t)) to p(t). Hence, at t players'
expectations are given by mt = (1¡ t)m+ tx(t). Consider the derivative with respect to
t of the gain function g(mt). Because of the envelope theorem the e®ect of the (optimal)

commitment price cancels out and we obtain

d

dt
g(mt) =

@g(mt)

@t
+
@g(mt)

@w
w0(t)

= (p(t)¡ c)a
(
¡1
2
pL ¡ 1

2

1 + ap(t) + c

2
+ (1¡ w(t))p(t) + w(t)1 + ap(t) + c

2

+tw0(t)(
1 + ap(t) + c

2
¡ p(t))

)

+
1

2
F +

1

2
(
1 + ap(t)¡ c

2
)2 ¡ (1¡ w(t))(1 + ap(t)¡ c

2
)2 ¡ w(t)N

¡tw0(t)(N ¡ (1 + ap(t)¡ c
2

)2)

If at t = 1 we would have w(1) = 0 and p(1) = pN then

Ã
d

dt
g(mt)

!

jt=1
= (pN ¡ c)a(¡1

2
pL ¡ 1

2
pN + pN) +

1

2
F +

1

2
N ¡N

=
1

2
(a(pN ¡ c)(pN ¡ pL) + F ¡N )

=
1

4
a(pL ¡ pN)(pF ¡ pN ) > 0

Since at t = 1 the gain to commit is zero, this means that ¯rms will strictly prefer to wait

at t < 1. Hence, the outcome of the linear tracing procedure cannot be the Bertrand

equilibrium. 2


