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Abstract

We will call a game a reachable (pure strategy) equilibria game if starting from any
strategy by any player, by a sequence of best-response moves we are able to reach a (pure
strategy) equilibrium. We give a characterization of all ¯nite strategy space duopolies
with reachable equilibria. We describe some applications of the su±cient conditions of
the characterization.
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Consider a game G with 2 players with ¯nite strategic spaces 1; : : : ; n1 and 1; : : : ; n2
respectively. We de¯ne a directed bipartite graph, called the b-r graph, representing the
game as follows: Let G = (N1; N2) be a directed bipartite graph with n1 nodes in N1 and
n2 nodes in N2 and an arc (i; j) if j is a best response to player 1's strategy i. We will
call the arcs of G best response arcs or b-r arcs. Note that every node can have multiple
outgoing b-r arcs, and has at least one such outgoing b-r arc (as we assume each player has
at least one best response to every strategy in the other player's strategy space).

An equilibrium is a pair of arcs of the form (i; j) and (j; i). We will say G is a graph with
reachable equilibria if every node in G has a directed path to an equilibrium pair of arcs.
In the game, this would correspond to being able to reach an equilibrium by a sequence of
best responses starting from any strategy.

1 Main Result

Note that the nodes of N1 and N2 can be labeled 1; : : : ; n1 and 1; : : : ; n2 any way we want.
It does not a®ect whether G has an equilibrium or not in any way. Any such labeling forms
a linear order on the sets N1 and N2 respectively. For a given such labeling we will say
two b-r arcs (i1; i2) and (j1; j2) are said to cross if i1 < j1 and j2 < i2 in the linear order
de¯ned by the labeling. Given a labeling of N1 and N2 we de¯ne a subgraph H of G, called
the lowest b-r arcs graph, given by each player's lowest best response strategy in the linear
ordering of the labeling to each strategy of the other player. For example, if in a particular
labeling of the nodes, player 2's best response to player 1's move of i is jk1 < ¢ ¢ ¢ < jkm ,
then H will contain just the one b-r arc (i; jk1). Note that H represents a particular choice
of best response functions from the best response correspondences represented by G.

Our main result is the following:

Theorem 1 G is a reachable equilibria game if and only if there exists a labeling (i.e.,
linear ordering) of N1 and N2 of the b-r graph G such that the arcs in H, the lowest b-r
graph, are non-crossing.

Before we give a proof of the theorem, we will make a few comments on its implications:

² Theorem 1's interpretation should be that in order to prove existence of equilibria
in a duopoly with ¯nite strategy spaces, in most cases, it would be su±cient to just
try and ¯nd an appropriate linear order and prove that there are no crossing arcs.
Theorem 1 also tells us that we can limit ourselves to considering only the lowest b-r
arcs.

² While Theorem 1 applies only to duopolies, it could also be viewed, in the negative
sense, as a result on oligopolies: i.e., if one cannot ¯nd such linear orderings of the
strategy spaces for the 2-payer version of a given oligopoly game, it is unlikely we will
be able to prove the existence of a reachable equilibria for the given oligopoly game.
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Figure 1: A graph with an equilibrium but no non-crossing ordering of nodes.

² For equilibria that are not reachable, it is unlikely that one would be able to say
something in the style of Theorem 1. Consider the game given by the graph in
Figure 1. The equilibrium is not reachable and there is no non-crossing labeling
possible.

² For continuous but bounded strategy spaces, a su±cient discretization can make the
theorem applicable.

Proof
(if): The su±ciency part is very easy to prove (indeed, existence follows directly from
Tarski's ¯xed point theorem applied to linear ordered sets; but the following elementary
graph-theoretical argument illustrates the concept of reachable equilibria): Consider the
non-crossing labeling and starting from any node of N1, follow a sequence of best-responses
given by the subgraph H. Since the number of nodes is ¯nite, either we end up at an
equilibrium pair of arcs, or we end up doubling back and creating a crossing pair of arcs, a
contradiction.

(only if): The necessity is the surprising part, and also the more di±cult.

Partition the set of nodes of G by the following process. Start o® with an equilibrium
pair (i; j) (call it root equilibrium pair) and consider the set of nodes S1 consisting of all
nodes from which we can reach i or j (basically set of all nodes with directed paths in G to
i or j). Remove all the nodes of S1 and repeat (say k times) till there are no more nodes
left. Since G is a reachable equilibria graph, it should be clear that S1 [ ¢ ¢ ¢ [ Sk forms a
partition of N1; N2. Moreover, note that there is no b-r arc in G that goes from a node in
Sj to a node in Si if i < j.

Now compress the nodes in S1; : : : ; Sk to form a new graph K with nodes f1; : : : ; kg
corresponding to S1; : : : ; Sk. Notice that there cannot be cycles in this graph K by the
following argument: Suppose there was a cycle. Pick the lowest indexed node in the cycle.
It has an incoming arc from a node with a higher number which would contradict the fact
that there is no b-r arc in G that goes from a node in Sj to a node in Si if i < j. So K
is an acyclic graph, and by a basic result in graph theory, the nodes of K have a labeling
such that for every arc (i; j), i < j. We will just assume without loss of generality that
Si; i = 1; : : : ; k are ordered as such. Call this the ordering of the sets of the partition.

Now consider the partition Si; i = 1; : : : ; k. We will show that within each of these
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sets of the partition, we can order the nodes appropriately (ordering within the sets of the
partition). This combined with the above ordering of the sets of the partition will give us
the appropriate linear ordering that we seek.

Consider a set S 2 fS1; : : : ; Skg. Order the elements of S by the following algorithm:
Let T (0) be the subgraph consisting of the root equilibrium pair of S, (i; j). These two
nodes will be the lowest ranked nodes in S \ N1 and S \ N2 respectively.

Consider the steps in the following algorithm. At stage m, T (m) will be a subgraph with
a linear order of nodes in T (m) \N1 and T (m) \N2. Moreover, the set T (m) will be \closed"
in the sense that it will be a reachable equilibria graph, and the lowest arc subgraph of T (m)

has no crossing arcs (indeed, T (m) will have exactly one out going arc per node, so when
we say lowest arc subgraph, it is with respect to S) . Trivially, this is true for T (0).

Given T (m), we construct T (m+1) by the following process: Let f1; : : : ; pmg be the nodes
in T (m) \ N1. For i = 1; : : : ; pm, pick all j =2 T (m+1) and arc (j; i) 2 S and add them to the
set T (m+1). Moreover give them a linear order according to the order in which they were
added to T (m+1). Similarly, for f1; : : : ; qmg, the nodes in T (m) \ N2. That brings us the
end of stage m + 1. Repeat till m = M where all the nodes of set S are included in T (M).

Clearly T (m+1) is a reachable equilibria subgraph if T (m) is, as we can reach the root
equilibrium pair of S from the newly added nodes. It only remains to show that we do not
create any crossing lowest b-r arcs going from stage m to m + 1. Suppose we have added
arc (i1; i2) in building T (m+1), and say it crosses with (j1; j2) 2 T (m+1). First, (i1; i2) is a
lowest b-r arc as if i1 had an arc to a node in 1; : : : ; i2¡1, it would have been added sooner.
Next, if it crossed (j1; j2) 2 T (m+1), it means that the current linear order (the order of
the nodes of T (m+1) just prior to adding (i1; i2)) has i1 > j1, as (j1; j2) existed in T (m+1)

before (i1; i2); and as it is crossing, i2 < j2. But if i2 < j2, (i1; i2) should have been added
to T (m+1) earlier than (j1; j2), a contradiction. Figure 2 shows this construction process.

Repeating this for each set S 2 fS1; : : : ; Skg, we have an ordering for each fS1; : : : ; Skg
and subgraphs fT1 µ S1; : : : ; Tk µ Skg that represent the subgraph of lowest non-crossing
b-r arcs within the subsets of the partition.

Finally, there remains the task of stitching together the orders within the sets of the
partition with the orders of the sets of the partition. For this, just consider the lexicographic
order on node i as [si; ti], where si is the rank of the set in the partition containing node
i, and the ti is the rank of the node within the set of the partition. This lexicographic
ordering creates a linear ordering of the nodes of N1 and N2. We have to show that the
statement of the theorem holds for this lexicographic ordering. We will do this by showing
that H, the lowest b-r subgraph of G in this lexicographic ordering is exactly T1 [ ¢ ¢ ¢ [ Tk.

Arcs of the form (i; j) 2 Sl \ G and (i; j) =2 Tl, clearly are not lowest b-r arcs. Suppose
an arc (i; j) is such that i 2 Sn and j 2 Sl. Let (i; t) be the lowest b-r arc in Tn.

Then in the compressed graph K, there would have been an arc (n; l), implying n < l
in the order of the partitions. Hence, (i; j) cannot be a lowest b-r arc because in the lexi-
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Figure 2: Labeling the nodes starting from an equilibrium pair of arcs. The labeling of the
partition is shown as bold numbers. Within a set of the partition, a \braid" like structure
of arcs results from the labeling process.

cographic ordering, node t would have a lower rank than node j. 2

Theorem 1 does not provide any hint about uniqueness. Indeed, giving useful, non-
trivial, characterizations of uniqueness seems more di±cult than of existence. We do not
have even strong su±cient conditions, although given the simple nature of the graphs, we
are optimistic in this regard.

We give below some rather weak and obvious conditions.

Corollary 1 The game G has an unique equilibrium if there is a unique best-response for
each strategy of the other player, G is connected, and there is a linear order such that the
b-r graph H has non-crossing arcs.

In the above, unique equilibrium means the game has a single pure-strategy equilibrium.
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The game can have multiple equilibria but a unique reachable equilibrium, which we de¯ne
as an equilibrium that is reachable from any strategy by any player by a sequence of best-
response moves.

The following proposition will also be used in our later application:

Proposition 1 Let the set of nodes S1 of G be such that no node in S1 is a best response arc
to any strategy of ¯rm 2, and similarly S2 for ¯rm 2. Suppose G0 = N1 ¡ S1;N2 ¡ S2 have
a labeling such that the arcs of the lowest b-r graph of this labeling, H0, are non-crossing.
Then there exists a labeling of G such that its lowest b-r graph H has non-crossing arcs. a
labeling of G

Proof
Consider a node i in S1. Let j be the best-response node in N2¡S2 corresponding to i. Let
b¡1(j) be the node of ¯rm 1 such that the best response arc in H0 of ¯rm 1's b¡1(j) strategy
has the largest label less than or equal to the label of j. Give node i the label of b¡1(j) plus
one, and add one to all the labels of nodes with labels greater than that of b¡1(j). Repeat
this procedure for all nodes in S1 and S2. The relative position of the nodes of N1 ¡S1 and
N2¡S2 are not changed and the new arcs do not cross with any existing lowest b-r arcs. 2

1.1 Supermodularity

Equilibria in supermodular games is a well-studied topic with a wide variety of applications.
This says that if the payo® functions for both players (note, the statement is with respect
to the pay o® functions and not the best response functions) are supermodular and satis¯es
some properties, then the game has an equilibrium.

Here we repeat the de¯nitions from Vives [10] (see [10] for de¯nitions of lattice etc.). A
game is supermodular if for each player i, the strategy space Ai is a complete lattice, the
payo® function ¼i is upper semicontinuous and supermodular in player i's strategies ai, i.e.,

¼i(inf(x; y)) + ¼i(sup(x; y)) ¸ ¼i(x) + ¼i(y);8x; y 2 Ai; (1)

for a ¯xed set of strategies of all other players a¡i, and displays an increasing di®erences
property in (ai; a¡i). The increasing di®erences property is as follows (again from Vives [10],
but specialized to linearly ordered sets): Let N1 and N2 be two ¯nite sets. The function
¼ : N1 £ N2 ! < has increasing di®erences in its two arguments (i; j) if ¼(i; j1) ¡ ¼(i; j2)
is increasing in i for all j1 ¸ j2. Topkis [9] showed that all supermodular games have an
equilibrium. For the linearly ordered case of course, Equation 1 is redundantly true for all
pay-o® functions, so we need to consider only the increasing di®erences property.

For our discrete, ¯nite strategy space case, supermodularity and the the increasing dif-
ferences property implies non-crossing arcs, but our results do not require supermodularity.
Essentially the increasing di®erences property says (in our graph-theoretical terminology)
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Figure 3: The graph on the left represents the payo®s for player 2 and the one on the right,
those for player 1. Game has an equilibrium, but payo® functions (under any ordering)
do not have the increasing di®erences property (the numbers next to the nodes represent
¼2(¢; b) ¡ ¼2(¢; a) and ¼1(¢; d) ¡ ¼2(¢; c)).

that for a ¯xed ordering if (i1; i2) and (j1; j2) are crossing arcs, then 1 is better o® using
(i1; j2) and (j1; i2) instead, so no best-response arcs cross. This is then shown to be su±cient
for the game to have a pure strategy equilibrium.

Our result is slightly more general (albeit only for ¯nite, linearly ordered structures) in
the sense, we do not specify why the game should not have crossing b-r arcs.

Figure 3 shows an example where the payo® functions do not have the increasing dif-
ferences property (under any linear ordering), yet there is an equilibrium. Our su±ciency
condition however, would imply the existence of an equilibrium, because we consider only
non-crossing of best-response functions. Whether something like this example will come
to pass in a real \interesting" application, we do not know yet, and till we encounter
some actual application, we will hold o® judgment on the degree of generalization this new
framework provides. In any case, we see the converse direction as the more surprising and
interesting result of this research.

2 Applications

Although Theorem 1 does not specify a priori what the linear ordering of the strategies
should be, in many applications the natural ordering suggested by the problem works.
Indeed, this is the case for the applications in Lippman and McCardle [5], Netessine and
Shumsky [6] (see Talluri and van Ryzin [8]) and Cachon [3].

Discrete and ¯nite strategy spaces also come up naturally in applications (and not just
as approximations to continuous models. Indeed the problems in [5], [6] and [3] are more
naturally stated in terms of discrete strategies in units of inventory).

We give below an application from revenue management where a continuous approxi-
mation is not possible, but equilibria can be proved very easily using our graph-theoretic
techniques.

Assume that two airlines sell their inventory for their °ights (one °ight each, called
resource) at multiple prices (a product is a reservation for future usage of one unit of the
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airline capacity; in addition multiple products are created by sale restrictions|such as
cancellation and advance purchase restrictions. Customers self-select their products.).

Firms ¯x the prices for the duration of the sale of their inventories, and only change
allocations to the di®erent products. This is how quantity based revenue management is
practiced in the airline industry (besides hotels, railway and other industries). Such static,
¯xed, prices are preferred when prices have to be advertised, or resources are sold based on
reservations, or it is otherwise costly to change prices.

In our model time is discrete and there are T units of time till the usage of the resource.
The resources of both ¯rms are consumed simultaneously at time T . Bookings happen
during the intervals 0 to T with at most one arrival during each period. A consumer arrives
in a period, observes the available choices of the two ¯rms and then, based on the prices and
attributes of the fare products, either decides to buy one of the products of one of the ¯rms,
or decide not to purchase any of the available products (let 0 represent this no-purchase
alternative). We assume a multinomial logit model (see Ben-Akiva and Lerman [2]), with a
no-purchase alternative, as the consumer's choice rule. In each period there is a probability
¸ of a consumer arrival. If a consumer does not purchase in a period, he disappears; i.e.,
he does not reappear in a later period. So, the consumer is passive and does not play any
strategic game to maximize his utility.

Since the choice rule is multinomial logit, a customer's probability of choosing an avail-
able product j of ¯rm i, when ¯rm i o®ers the set Ai can be represented for convenience
by:

°ij(A
1; A2) =

wijP
j2A1 w1

j +
P
j2A2 w2

j + w0
;

where the weights w1
j and w2

j could possibly be functions of the prices p1j and p2j and other
attributes, and w0 is the weight of the no-purchase alternative.

Firms in turn start o® with capacities of C1 and C2 units of inventory and n1 and
n2 set of products respectively. They ¯x the prices of the products p11; p12; : : : ; p1n1 and
p21; p22; : : : ; p2n2 and keep them ¯xed throughout the booking period. At the beginning of
each period, each ¯rm makes available a subset of its fare products. So note that even
though prices are ¯xed, the ¯rms can e®ectively change the prices by deciding on what
subset they make available simultaneously. All in all, while one can criticize the speci¯city
of the logit functional form, this model captures both customer choice and the dynamics of
a revenue management problem quite accurately. There are two informational assumptions
one can make: ¯rms do not observe each other's remaining capacity; ¯rms observe remaining
capacity. In either case, if a ¯rm sells out all capacity, then it can only o®er a null set, and
its competitor realizes that it has sold out.
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2.1 Observable capacities

In this case, the state space includes competitor's capacities. So the reaction function is
based on one's own remaining capacity, competitor's remaining capacity, and competitor's
current o®er set.

It is shown in Talluri and van Ryzin [7] that the multinomial logit customer choice
model, for the monopoly case, has the nested-by-fares property which means that each ¯rm
needs to consider only complete sets, that is, for ¯rm 1, sets of the form f1; 2; : : : ; k1g,
for k1 = 1; 2; : : : ; n1 and for ¯rm 2, sets of the form f1; 2; : : : ; k2g, for k2 = 1; 2; : : : ; n2.
We will assume here that the strategy spaces are indeed these complete sets. In practice,
most airlines use nested controls and nested o®er sets. We will represent such complete sets
compactly as Ak1 and Ak2 respectively, and the collection of all such sets N1 for ¯rm 1 and
N2 for ¯rm 2. We will say, set Ak1 < Ak2 if k1 < k2 or as the sets are nested, Ak1 ½ Ak2 .
If Ak1 < Ak2, we will denote the set di®erence as Ak2 ¡ Ak1 .

The value function for ¯rm 1 at time t given ¯rm 2 o®ers A2 is given by the following:

V 1
t (x1; x2jA2) = (2)

max
A1µN1

f¸
X

j2A1
°1j (A

1; A2)p1j

+(1 ¡ ¸ + ¸°0(A1; A2))V 1
t+1(x1; x2)

+¸
X

j2A1
°1j (A

1; A2)V 1
t+1(x1 ¡ 1; x2)

+¸
X

j2A2
°2j (A

1; A2)V 1
t+1(x1; x2 ¡ 1)g;

where, Vt+1(¢; ¢) is the equilibrium revenue-to-go from period t + 1 onwards.

There are two things to note about (2): (i) It is de¯ned at time t only if there is an
equilibrium from t till T . (ii) If there are multiple equilibria, we exogenously assume that
¯rm 1 starts o® with a speci¯c strategy (say the strategy labeled 1 and by a sequence of
best responses, both ¯rms will end up at an equilibrium (i.e., the value function is again
uniquely speci¯ed).

The value function for ¯rm 2 is de¯ned similarly. We will let V 1
t (x1; x2jA1; A2) denote

¯rm 1's revenue if it uses A1 to react to ¯rm 2's A2.

While Equation 2 looks complicated, in words, it just says, given ¯rm 2 chooses A2 to
o®er, ¯rm 1's revenue-to-go function is current period's revenue plus the revenue depending
on what state they end up at the end of the period (by no sale, sale for ¯rm 1, or sale for
¯rm 2).

First of all, let us rewrite Equation 2, using the fact that
X

j2A2
°2j (A

1; A2) = 1 ¡ °0(A1; A2) ¡
X

j2A1
°1j (A

1; A2);
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as:

V 1
t (x1; x2jA2) = (3)

max
A1µN1

f¸
X

j2A1
°1j (A

1; A2)[p1j + V 1
t+1(x1 ¡ 1; x2) ¡ V 1

t+1(x1; x2 ¡ 1)]

+(1 ¡ ¸)V 1
t+1(x1; x2)

+¸°0(A1; A2)[V 1
t+1(x1; x2) ¡ V 1

t+1(x1; x2 ¡ 1)]g
+¸V 1

t+1(x1; x2 ¡ 1):

Let ¢ = V 1
t+1(x1; x2 ¡ 1) ¡ V 1

t+1(x1 ¡ 1; x2) and ± = V 1
t+1(x1; x2 ¡ 1) ¡ V 1

t+1(x1; x2). Let
g(¢jx1; x2) represent the term

g(A1jx1; x2) =
X

j2A1
w1
j [p

1
j ¡ ¢] ¡ w0±:

For simplicity we will just write g(A1jx1; x2) as g(A1), whenever there is no room for
confusion. Notice that g(¢) for ¯rm 1 is independent of the strategies of ¯rm 2, and vice
versa for ¯rm 2.

The following are intuitive and not hard to show rigorously:

V 1
t+1(x1; x2) · V 1

t+1(x1; x2 ¡ 1);

V 1
t+1(x1 ¡ 1; x2) · V 1

t+1(x1; x2);

and
V 1
t+1(x1 ¡ 1; x2) · V 1

t+1(x1; x2 ¡ 1):

Note that ¢ ¡ ± = V 1
t+1(x1; x2) ¡ V 1

t+1(x1 ¡ 1; x2) ¸ 0.

As prices pij are decreasing in j, as ¯rm i o®ers larger sets, the function g(Ai) increases
monotonically ¯rst and then decreases monotonically (that is, it is unimodal). The function
g(Ai) can also be negative. It could be the case that g(¢) is negative for all strategies of ¯rm
i. Figure 4 shows the two possibilities for ¯rm i, where ¹Gi is the set that has the maximum
value of g, and if the ¯rm. We will call the case where g( ¹Gi) ¸ 0 as Case I, and Case II
when g( ¹Gi) < 0.

Form an equilibrium bipartite graph with n1 nodes on one side and n2 nodes on the
other side, with each node corresponding to each of the complete sets (Figure 7). The
order of the nodes will be speci¯ed later depending on whether the ¯rms are in Case I or
Case II. For a given ordering any time t, ¯rm 1 o®ers the set k1, ¯rm 2 has one (or more)
best-response sets k2. Represent each such best-response as an arc that originates at node
k1 and terminates at the node that represents ¯rm 2's best response set. Similarly for all
sets of ¯rm 1 and vice versa for the best responses of ¯rm 1 to the o®er sets of ¯rm 2. So we
have a directed bipartite graph where each node has at least one outgoing arc (and possibly
zero, one or multiple incoming arcs).
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Lemma 1 If a ¯rm, say ¯rm 1, is in Case I, a set A1 with g(A1) negative, or g(A1) <
g( ¹G1); A1 > ¹G1, is never the best responses to any strategy choice of the competitor.

Proof
Let A1 be such that g(A1) is negative. Then,

g(A1)P
j2A1 w1

j +
P
j2A2 w2

j + w0
· g( ¹G1)P

j2 ¹G1 w1
j +

P
j2A2 w2

j + w0
;

as the left hand-side is negative and the right-hand side is positive. Note that the fact that
g( ¹G1) is positive is essential for the above identity to hold. By adding the appropriate terms
(not involving A1 or ¹G1),

V 1
t (x1; x2jA1; A2) < V 1

t (x1; x2j ¹G1; A2):

If 0 < g(A1) < g( ¹G1); A1 > ¹G1, just note that

g(A1)P
j2A1 w1

j +
P
j2A2 w2

j + w0
· g( ¹G1)P

j2 ¹G1 w1
j +

P
j2A2 w2

j + w0
:

2

Lemma 2 If a ¯rm, say ¯rm 1, is in Case II, and if A1
l < ¹G1, then node l is not a best

response for any strategy of the other ¯rm.

Proof
Let A2 be a strategy choice of ¯rm 2.

Let A1
l < ¹G1, so g(A1

l ) < g( ¹G1) < 0 (< 0 as we are in Case II where all g(¢) are negative).
As A1

l < ¹G1
X

j2A1l

w1
j +

X

j2A2
w2
j + w0 <

X

j2 ¹G1
w1
j +

X

j2A2
w2
j + w0;

and

g(A1
l )P

j2A1l w
1
j +

P
j2A2 w2

j + w0
<

g(A1
l )P

j2 ¹G1 w1
j +

P
j2A2 w2

j + w0

<
g( ¹G1)P

j2 ¹G1 w1
j +

P
j2A2 w2

j + w0
;

or in other words, A1
l is not the best response function.

2
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{1} {1,2} G

case I

{1} {1,2}

case II

Figure 4: The two cases for the function g(¢). Lemmas 1 and 2 show that best-responses
lie in the regions marked with bold lines.

Lemma 3 When both ¯rms are in case I, or both are in case II, there exists an ordering
of the strategies such that the lowest b-r graph has no crossing arcs.

Proof
By Proposition 1 and Lemmas 1 and 2, we can ignore nodes with g(A) negative in Case I
and nodes with A < ¹Gi in Case II.

Both ¯rms are in case I: Order both the strategy spaces by increasing sizes as A1
1; A1

2; : : : ; A1
n1

and A2
1; A2

2; : : : ; A2
n2 respectively.

By Lemma 1, both g(Ak1 and g(Al1) are positive as they have incoming arcs.

So, if ¯rm 2 o®ers the complete set k2, then ¯rm 1's best response is k1 and if ¯rm 2
o®ers the complete set l2, then ¯rm 1's best response is l1. Because the customer's choice
rule is the multinomial logit, this means that:

g(A1
k1)P

j2Ak1 w1
j +

P
j2Ak2 w2

j + w0
>

g(A1
l1)P

j2Al1 w1
j +

P
j2Ak2 w2

j + w0
: (4)

Similarly, when ¯rm 2 o®ers l2,

g(A1
l1)P

j2Ak1 w1
j +

P
j2Al2 w2

j + w0
¸ g(A1

k1)P
j2Al1 w1

j +
P
j2Al2 w2

j + w0
: (5)

Now note that since k1 > l1, the denominator of the left-hand side of (4) is greater than
that of the right-hand side and that this implies g(A1

k1) ¸ g(A1
l1), as by Lemma 1, g(A1

k1) >
0. Now if x=y > z=w and x ¸ z, y > 0; w > 0, and x > 0, then x=(y + v) > z=(w + v) for
any constant v > 0.

Consider now,
g(A1

k1)P
j2A1k1

w1
j +

P
j2A2l2

w2
j + w0

:

12



As there are no ¯rm 2's terms in the numerator, and since l2 > k2, we have the following
inequality,

g(A1
k1)P

j2A1k1
w1
j +

P
j2A2l2

w2
j + w0

>
g(A1

l1)P
j2A1l1

w1
j +

P
j2A2l2

w2
j + w0

: (6)

By adding appropriate terms on both sides (not involving the strategy choices of either
¯rm), we have proved:

V 1
t (x1; x2jA1

k1 ; A
2
l2) > V 1

t (x1; x2jA1
l1; A

2
l2):

But this contradicts the fact that if ¯rm 2 o®ers l2, the best-response set for ¯rm 1 is l1|it
is in fact k1 > l1.

Both ¯rms are in Case II: Order the strategy space of ¯rm 1 by decreasing sizes as
A1
n1 ; : : : ; ¹G1 and for ¯rm 2 by increasing sizes as ¹G2; : : : ; A2

n2 respectively.

Suppose there exist two crossing arcs in this ordering. So let l1 < k1 and l2 > k2, and
the two lowest crossing b-r arcs for ¯rm 1 be (k2; k1) and (l2; l1).

As ¯rm 1 has the decreasing order, g is monotonically increasing, from A1
n1 till ¹G1,

g(A1
l1) · g(A1

k1) < 0.

As A1
l1 is the best response to A2

l2 ,

g(A1
l1)P

j2A1l1
w1
j +

P
j2A2l2

w2
j + w0

¸ g(A1
k1)P

j2A1k1
w1
j +

P
j2A2l2

w2
j + w0

: (7)

Now if x=y > z=w and x · z < 0, y > 0; w > 0, then x=(y ¡ v) > z=(w ¡ v) for any
constant v > 0. As ¯rm 2's nodes are ordered by increasing nested sets,

X

j2A2l2

w2
j >

X

j2A2k2

w2
j ;

which implies

g(A1
l1)P

j2A1l1
w1
j +

P
j2A2k2

w2
j + w0

¸ g(A1
k1)P

j2A1k1
w1
j +

P
j2A2k2

w2
j + w0

: (8)

But this contradicts the fact that A1
k1 is the best response to A2

k2 .

As similar argument holds for crossing arcs as a response to strategies of ¯rm 1. 2

So, if both ¯rms are in Case I or both are in Case II, by Theorem 1, there is an
equilibrium for the stage. The di±culty is if one ¯rm is in Case I and the other in Case II.
Consider the following example.
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1

2

1

2

Firm 1 Firm 2

w1
1=1

w1
2=1

w2
1=1

w2
2=10

p1
1=200

p1
2=67

p2
1=300

p2
2=108.18

-33.33

-33
.30

-18.18

-18.826

8.33

8.23
7.6

9

7.87

Figure 5: Payo® values for Example 1. Best-responses are in thick lines.

Example: Let ¯rm 1 and ¯rm 2 have the following data.

Firm 1 Firm 2
i = 1 i = 2

¢ 100 100
± 50 10
wi1 1 1
wi2 1 10
w0 10 10
pi1 200 300
pi2 67 108.18

Then the payo® and best-response arcs are as given in Figure 5, and it can be
seen that there is a cycle and no equilibrium, even for the multinomial logit
choice function.

So even though the single-period problem always has an equilibrium (Anderson et al. [1]),
the competitive game over a ¯nite number of periods, may end up having no equilibrium.
Notice that this is not a repeated game|the dynamic program has strong intertemporal
relationships, and the parameters of the game changes over time.

We next give some conditions on the choice model parameters that guarantees existence
of an equilibrium. De¯ne for Ak > Al,

qiAk¡Al =

P
j2Aik¡Ail w

i
jp
i
jP

j2Aik¡Ail w
i
j

;

which represents the weighted average price for the products from k to l.

14



Proposition 2 If suppose the parameters of the choice model satisfy, for i = 1; 2, for any
Aik; A

i
l: X

j2Ail

pijw
i
j > qiAk¡Al(w0 +

X

j2Ail

wij): (9)

Then there exists a pure-strategy Nash equilibrium in the subsets that each ¯rm o®ers at
every time interval t.

Proof
From Lemma 3 it only remains to show the non-crossing property when one ¯rm is in Case
II and the other ¯rm is in Case I.

We will show that if a ¯rm is in Case II, then if the weights and prices satisfy (9), the
only best response for the ¯rm, for any strategy of the other ¯rm, is to o®er set ¹Gi.

Say ¯rm 1 is in Case II. Let A1
k be a best-response to ¯rm 2's strategy A2

k, and A1
k > ¹G1

(by Lemma 2, A1
k ¸ ¹G1) . So,

0 >
g(A1

k)P
j2A1k1

w1
j +

P
j2A2k2

w2
j + w0

>
g( ¹G1)P

j2 ¹G1 w1
j +

P
j2A2k2

w2
j + w0

:

Therefore, P
j2A1k1

w1
j +

P
j2A2k2

w2
j + w0

P
j2 ¹G1 w1

j +
P
j2A2k2

w2
j + w0

<
g(A1

k)
g( ¹G1)

;

which implies,
P
j2A1k1¡

¹G1 w1
j

P
j2 ¹G1 w1

j +
P
j2A2k2

w2
j + w0

<

P
j2A1k1¡

¹G1 w1
j [p

1
j ¡ ¢]

g( ¹G1)
;

or,
X

j2 ¹G1
w1
j +

X

j2A2k2

w2
j + w0 <

P
j2 ¹G1 w1

j [p
1
j ¡ ¢] ¡ w0±

q1Ak¡ ¹G1 ¡ ¢
;

or,

X

j2A2k2

w2
j <

P
j2 ¹G1 w1

j [p
1
j ¡ q1Ak¡ ¹G1] ¡ w0[± + q1Ak¡ ¹G1 ¡ ¢]

q1Ak¡ ¹G1 ¡ ¢

=

P
j2 ¹G1 w1

jp
1
j ¡ q1Ak¡ ¹G1 [

P
j2 ¹G1 w1

j + w0] ¡ w0[± ¡ ¢]

q1Ak¡ ¹G1 ¡ ¢
(10)

Note that ¹Gi, represent the set Ail such that h(Ail) =
P
j2Ail w

i
j [p
i
j ¡ ¢] ¸ 0, but

h(Ail+1) < 0. Note that there is at least one Ail with h(Ail) ¸ 0 as there is at least
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Firm 1
increases
offer set

Firm 2 increases offer
set in competitive

response

Lowers
no-

purchase
probability

High no-
purchase
Probability

Firm 1
decreases
offer set

Firm 2 decreases offer
set in competitive

response

Figure 6: No-purchase probabilities causing a best-response cycle.

one pij ¸ ¢. If h(Ail) ¸ 0 for all o®er sets of ¯rm i, let ¹Gi be just the largest o®er set,
f1; 2; : : : ; nig. So the denominator of (10) is less than zero.

From (9) and the fact that ¢ > ±, the numerator is greater than 0, so the right hand side
is less than zero, while the left hand side is greater than 0. So, A1

k cannot be a best-response
arc.

So, order the nodes of both ¯rm 1 and 2 by increasing order. (The b-r arcs do not cross
(that argument that ¯rm 2's b-r arcs do not cross are the same as in Lemma 3, for the case
where both ¯rms are in Case I). So by Theorem 1, there exists an equilibrium. 2

The condition for Proposition 2 holds for instance, when w0 = 0. That is, if a customer
arrives in a period, he is assumed to make a purchase if one of the ¯rms is o®ering inventory.

In the model of Dudey [4] both ¯rms can observe each other's capacities, and the cus-
tomer in each period will always purchase from one of the two ¯rms (equivalent to w0 = 0).
So the no-purchase option plays a crucial role indeed|its relative magnitude determines
whether we have an equilibrium in the game or not. Figure 6 shows the intuition behind
why modeling the no-purchase option introduces the instability into the game under certain
circumstances.

While Example 1 is somewhat discouraging, it is not indicative of a non-equilibrium in
many interesting cases, such as the following: if say the two ¯rms have equal capacities,
identical products, and customers, then will we see equilibrium in the o®er sets? Example
1 is not applicable and it is possible that one can derive conditions on ¢ and ± to show
the existence of an equilibrium. Indeed Example 1 does not even conclusive for the general
case|it does not show that the ¢ and ± used actually arise in a dynamic game.
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{1,2,...,i} {1,2,...,j}

Firm 1

n1

1

2

M

M

i

n2

1

2

M

M

j

Firm 2

Equilibrium

If Firm 2
chooses {1,2},
Firm 1's best-
response is {1}

Offer
subset

Figure 7: The discrete-choice equilibrium bipartite graph.

2.2 Unobservable capacities

This case holds in the airline case, where a ¯rm can observe the competitor's available
subset but cannot observe its remaining capacity.

We have brie°y discussed the symmetric case earlier, where the ¯rms have identical
capacities, products and consumers are indi®erent to the two ¯rms. In the presence of a
no-purchase alternative, it is not even clear that this game has an equilibrium. However, on
average, we would expect both ¯rms to have identical capacities at any given point of time.
So Proposition 3 applies and we would expect to see an equilibrium. Indeed, if capacities
are not observable, ¯rms may just assume that the rival's capacity is the same as theirs and
solve their dynamic programs|this would lead to an equilibrium strategy for both players,
as both would be in Case I together or in Case II together.

We consider another case where both ¯rm's essentially ignore the competitor's capacity.
The value functions for ¯rm 1 at time t given ¯rm 2 o®ers A2 can then be given by the
following:

V 1
t (xjA2) = (11)

max
A1µ2jn1j

8
<
:¸

X

j2A1
°ij(A

1; A2)(pij ¡ (V 1
t+1(x) ¡ V 1

t+1(x ¡ 1))) + V 1
t+1(x)

9
=
; :

Similarly for ¯rm 2.

Firms react to the o®ered subsets, and do not consider competitor's capacity. This
is a considerable simpli¯cation. It is possible that they may be making some forecasts
on competitor remaining capacity, learn from competitor's actions in a Bayesian/learning
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framework etc. Such complicated modeling is beyond the scope of this paper, as here, we
are just trying to illustrate an application of the no-crossing technique.1

Proposition 3 Let l1 < k1 and l2 > k2. Then the lowest b-r graph cannot have the two b-r
arcs for ¯rm 1 (k2; k1) and (l2; l1). Similarly for ¯rm 2.

Proof
Suppose there exist two such arcs. So, if ¯rm 2 o®ers the complete set k2, then ¯rm 1's
best response is k1 and if ¯rm 2 o®ers the complete set l2, then ¯rm 1's best response is l1.
Because the customer's choice rule is the multinomial logit, this means that:

P
j·k1 w1

jp
1
jP

j·k1 w1
j +

P
j·k2 w2

j + w0
>

P
j·l1 w1

jp
1
jP

j·l1 w1
j +

P
j·k2 w2

j + w0
: (12)

Similarly, when ¯rm 2 o®ers l2,
P
j·l1 w1

jp
1
jP

j·l1 w1
j +

P
j·l2 w2

j + w0
¸

P
j·k1 w1

jp
1
jP

j·k1 w1
j +

P
j·l2 w2

j + w0
: (13)

Now note that since k1 > l1, the denominator of the left-hand side of (12) is greater
than that of the right-hand side and that this implies

P
j·k1 w1

jp
1
j ¸ P

j·l1 w1
jp

1
j . As earlier

if x=y > z=w and x ¸ z, then x=(y + v) > z=(w + v) for any constant v > 0. Since l2 > k2,
P
j·k1 w1

jp
1
jP

j·k1 w1
j +

P
j·l2 w2

j + w0
>

P
j·l1 w1

jp
1
jP

j·l1 w1
j +

P
j·l2 w2

j + w0
: (14)

But this contradicts the fact that if ¯rm 2 o®ers l2, the best-response set for ¯rm 1 is l1|it
is in fact k1 > l1. 2

So, again, by Theorem 1, we have proved the following:

Theorem 2 There exists a Nash equilibrium in the subsets that each ¯rm o®ers at every
time interval t.

We do not exclude multiple equilibria. Assume that ¯rms always choose the highest
labeled equilibria (open the most number of classes). This would be a reasonable assumption
if both ¯rms start o® with their largest sets and converge to an equilibrium based on
observations of the other's moves.

Then one can de¯ne the concept of equilibrium marginal value as ¼i = V it+1(x ¡ 1) ¡
V it+1(x) where both ¯rms o®er their equilibrium sets during periods t+1; : : : ; T . Let A¼i be
the complete sets de¯ned by these equilibrium marginal values (that is composed of all the
products with prices higher than ¼i). Then during period t, there exist equilibrium subsets
of A¼i , so the T -period revenue management game has a (subgame perfect) equilibrium.

1It may come as a surprise that many airlines currently optimize nothing more complicated than Equa-
tion 11; or worse|many just ignore the competition.
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2.3 Dynamic Pricing and Lowest-Open-Fare Choice Model

The results of this Section also extend to a choice model where customers choose the lowest
priced available product in the o®er sets. If there is a single segment (as we assumed here)
of customers, then this is equivalent to ¯rms o®ering a single price in each time period, i.e.,
dynamic pricing. Customers then have three options: no-purchase, purchase at the (lowest)
price o®ered by ¯rm 1 or ¯rm 2.

We need to impose a few conditions on the parameters of the choice model for our
earlier results to go through: the weights are decreasing functions of the price, and wjpj
is unimodal. For instance, the logit model with weights of the form e¡p=¹ used in [1]
(pg., 222) satis¯es this property. ¹ > 0 is a diversity factor that if close to zero, models
customers indi®erent to the product characteristics and who buy based purely on price,
whereas when ¹ is very high, they are quite indi®erent to price and buy each product with
equal probability.

Acknowledgment: Thanks to Sjaak Hurkens for pointing out some errors in an earlier
draft of this paper, and Garrett van Ryzin for discussions on the application.
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