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Abstract 
 
Previous covering models for emergency service consider all the calls to be of the same 
importance and impose the same waiting time constraints independently of the service's priority. 
This type of constraint is clearly inappropriate in many contexts. For example, in urban medical 
emergency services, calls that involve danger to human life deserve higher priority over calls for 
more routine incidents. A realistic model in such a context should allow prioritizing the calls for 
service. 
In this paper a covering model which considers different priority levels is formulated and 
solved. The model heritages its formulation from previous research on Maximum Coverage 
Models and incorporates results from Queuing Theory, in particular Priority Queuing. The 
additional complexity incorporated in the model justifies the use of a heuristic procedure.  
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Introduction 
 
Questions related to emergency services have been studied by researchers over the last 25 years. 

They refer to medical systems, police operations, firefighting systems, emergency repair 

systems, and others. Researchers agree that the outcome of service is in great part defined by the 

time that the customer waits. 

 

Emergency services planners must solve the strategic problem of where to locate emergency 

service centers and the tactical problem of allocating demand to those centers. The performance 

of an emergency center may be judged by the number of persons in queue or by the length of 

time that a person must wait after he or she arrives at the center. These indicators are strongly 

correlated with the number of centers available and with their locations.  Not all cases have the 

same dependence on time: rush jobs are taken ahead of other jobs, and important customers may 

be given precedence over others. This is clearly the case in hospital emergency rooms, where 

patients are roughly divided into three categories: critical cases, where prompt treatment is vital 

for survival; serious cases; and stable cases, where treatment can be delayed without adverse 

medical consequences. 

 

Reducing waiting lists is a struggle for many healthcare organizations, especially given that the 

cost of the resources demands a high utilization rate. A lengthy patient wait in the healthcare 

industry shows more adverse consequences than in most other services. This generates stress 

and dissatisfaction, increases the cost of medical care, and can constitute a barrier to effective 

treatment. An optimized location for all facilities and equal allocation of patients to those 

facilities is a vital factor in improving time performance. This paper addresses emergency 

healthcare management, but the research can easily be expanded to other areas such as 

distribution centers or repair systems. 

 

Marianov and Serra (1998) introduce the queuing maximal covering location allocation model, 

which locates p centers and allocates users to these centers in order to maximize the covered 
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population. Coverage is defined as (i) when patients are allocated to a center within a standard 

time or distance from home location, and (ii) when patients are served within time τ of arrival at 

the center, with a probability of at least α.  This paper presents a natural expansion of this model 

that considers different time standards for different priorities of healthcare services. 

 

Decisions that do not account for different priorities may lead to less effective locations. This 

paper considers different priority levels. The formulation of this model derives from previous 

research on maximum coverage models and incorporates results from queuing theory, in 

particular priority queuing. The additional complexity incorporated in the model justifies the use 

of a heuristic procedure. We develop an evaluation based on numerical examples. 

 

1 Related Literature 

Location models that incorporate queuing effects appear in the literature of the early 1980s. 

Berman, Larson, and Chiu (1985) present a work that is considered as the “beginning in a 

potentially fecund marriage between location and queuing theories.” They extend Hakimi's 

(1964) one-median problem by embedding it in a general queuing context. The formulation 

explicitly includes dependence on service times, travel times, and queuing delays on the 

location of the service facility. Their work was in part motivated by the pioneer hypercube 

queuing model developed by Larson (1974). 

 

Batta, Larson, and Odoni (1988) note that queuing disciplines frequently used in decision 

models (such as first-come first-served, last-come first-served, and service in random order) are 

clearly inappropriate in many contexts. They point to urban emergency services and police 

patrols as examples of when the risk of life or the violence of the crime will factor into the 

service order. A formulation for the single server queuing location model is provided (k priority 

queuing location) as well as some solution techniques that allow calls to be selected from an 

arbitrary number of priority classes. The optimal K-PQL model location usually differs from the 
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one obtained by grouping calls from all priorities into a single category and using the single 

queue length model. 

 

Batta (1989) considers the problem of locating a single server on a network operating as an 

M/G/1 queue, in which queued calls are serviced by a class of queuing disciplines that depend 

solely on expected service time information. The model is analyzed as an M/G/1 non-

preemptive priority queuing model, with location-dependent priorities. Motivated by the 

problem of locating fire trucks in a geographical area, which requires multiple trucks to be 

located within an acceptable distance standard to achieve coverage, Batta and Mannur (1990) 

examine the set covering problem and the maximal covering location problem in the context of 

multiple units being required by some demands.  

 

For congested service systems, Brandeau and Chiu (1992) present the stochastic queue center 

location model, which seeks to minimize the maximum expected response time to any customer. 

Expected response time comprises expected waiting time until the server becomes free and 

expected travel time. A more recent work in the same line of research was developed by Jamil, 

Baveja, and Batta (1999). The stochastic queue center problem considers the objective of 

locating a single facility operating as an M/G/1 queue in steady state so as to minimize a 

weighted linear combination of the square of the average response time and the variance of the 

response time.  Berman and Vasudeva (2000) also consider the problem of locating a general 

number of service units, which return to their home locations only if no calls are waiting for 

service. 

 

Branas and Revelle (2001) developed the trauma resource allocation model for ambulances and 

hospitals as a guide for healthcare planners. The model combines a mixed-integer linear 

program with a new heuristic and considers two resource, trauma centers and aeromedical 

depots, in a two-level hierarchy. The objective is to maximize coverage, which is defined as 

when at least one trauma center is sited within a ground standard time or when an aeromedical 
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depot/trauma center pair is sited in such a way that the sum of the flying time from the 

aeromedical depot to i and the flying time from i to the trauma center is within the same time 

standard. 

 

Ball and Lin (1993) propose a reliability model for emergency service vehicle location. Based 

on the probability of system failure, they derive a 0-1 integer programming optimization model 

that is solved using a branch-and-bound procedure. The computational results show that the 

processing technique is highly effective.  Mandell (1998) formulates a covering type model for 

two-tiered emergency medical services that maximizes the expected number of calls for service 

and takes server availability into account through a two-dimensional queuing model. 

Considering a redeployment problem for a fleet of ambulances, Gendreau, Laporte, and Semet 

(2001) propose a dynamic model and a parallel tabu search heuristic. 

 

Harewood (2002) offers a multi-objective version of the maximum availability location problem 

in a real application by solving the problem of emergency ambulance deployment in Barbados. 

The first objective seeks to maximize the population covered within a given distance standard 

and with a given level of reliability, while the second objective chooses locations that minimize 

the cost of covering the population. Verter and Lapierre (2002) address the problem of locating 

preventive healthcare facilities. They assume that distance is a major determinant of 

participation and that people will go to the closest facility for preventive care.  Golderg (2004) 

offers a review of the development and current state of operations research for deployment and 

planning analysis pertaining to emergency services and fire departments. 

 

2 Formulation 

The formulation of the model presented here closely follows the methodology proposed by 

Marianov and Revelle (1994). The authors relax the assumption of dependence of server 

availability and model the behavior in each region as an M/M/s-loss queuing system obtaining a 
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probabilistic formulation of the location set covering problem. The reliability constraints are 

formally incorporated using queuing theory to model the arrival-departure process within the 

location model itself. The authors refer to fixed facilities, in contrast with earlier research that 

considers a mobile server. Marianov and Serra (1998) present several probabilistic, maximal 

covering, and location-allocation models with constrained waiting times for queue length.  In 

this section, we propose a model that connects the queuing maximal covering location 

allocation model with priority queuing theory. We describe the results from priority queuing 

that will be included in the model and explain each of the equations in this new model. 

 

2.1 Results from queuing theory 

Priority queuing has been analyzed in many research works. In this paper, we follow 

Kleinrock’s (1975) textbook notation.  In a priority queuing system, we assume that an arriving 

customer belongs to priority class k (k=1,2,...,K). The smaller the priority index, the higher the 

priority of the class. Let us consider nonpreemptive priorities, i.e. when a customer in the 

process is not liable to be ejected from service and returned to the queue when a higher priority 

customer appears. Customers from priority k arrive in a Poisson stream at rate λ[k] for time unit. 

Each customer from this group has his or her service time S selected independently from the 

distribution Bk(S) with mean 
[ ]k

S  . Let us also consider a Head of Line (HOL) discipline within 

each priority level. The average waiting time for priority k services is given by the following 

expression: 
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where 

 
and 
 

 
   µ[i]  is the service rate for priority class i.  
 
The interpretation of ρ here is the fraction of time that the server is busy (as long as ρ<1).  
 
W0 corresponds to the average delay that the tagged customer experiences due to another 

customer found in service and can be computed using the following formula:  
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where [ ]( )2iS is the second moment of service time distribution. 

 

2.2 Problem definition 

The structure of the problem comprises a discrete space in which customers, representing 

demand, are positioned and in which facilities are to be positioned by a decision maker. 

Customers are assumed to be located at the nodes of the network (demand nodes). We assume 

that the service call process for each node i is a Poisson process with rate λi. The problem will 

locate a given number of facilities providing the service. We assume that a discrete set of 

potential facility locations eligible to provide coverage to the demand nodes has been identified. 

 

For the purposes of this model, utilization factors are defined by the product of the average 

service time and the arrival rate as defined by the summation of the call rates of all demand 

points allocated to a center at j 

 

[ ] [ ] [ ] [ ] [ ] [ ]
∑==

i

k
ij

k
i

k
j

k
j

k
j

k
j XfSS λρ  

[ ]
[ ]

[ ]
[ ] [ ]ii

i

i
i S λ

µ
λρ ==

[ ] 0 with                        0
1

≡=∑
=

σρσ
k

i

i
k



 8 

where [ ]k
ijX  is a zero one variable defining allocation of demand point i to a center at j for 

priority k services. [ ]k
if is the call rate for services of priority class k at demand point i. For 

example, [ ] 08.0=k
if  indicates that at demand point i, the number of calls per unit of time for 

services of priority k equals 8 percent of the total population on average. 

 

2.3 Priority queuing covering location problem 

The priority queuing covering location problem (PQCLP) assumes static assignments of 

customers to service facilities. This is typical in the case of fixed server locations, where 

customers travel to facilities to obtain service (see Berman and Krass, 2002).  We offer two 

versions of the PQCLP: the first assumes a directed choice environment in which a central 

authority dictates the assignment of a customer (patient) to a center, while the second assumes a 

user choice environment in which the assignment is made by each individual customer. In our 

case, they will always go to the closest center.       

 

2.3.1 Directed choice environment 

This version of the PQCLP will define separate allocations for the different priorities that may 

or may not coincide, i.e., a demand point may be allocated to a center at j for one priority and to 

center k ≠ j for other priorities. The objective is to maximize the population covered in all 

priorities. Different time constraints are imposed for different priorities. The model's 

formulation is as follows: 
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where
[ ]k
ijX = 1 if demand point i is allocated to a center at j for priority k’s urgencies and zero 

in all other cases. jY = 1 if a center is located at j and zero in all other cases. 
[ ]k
jW is the 

average waiting time for priority class k at center j (see Equation 1). Parameter 
[ ]kτ represents 

the limits imposed on the waiting times for priority k; p is the number of centers to be sited; 

ia is the population at demand point i; I is the set of all demand points; and Ni is the set of 

centers located at a distance smaller or equal to d from demand point i. 

 

Constraint (2) states that if population i is allocated to a center at j for priority k, then there must 

be a center located at j; (3) forces each demand point to be allocated to only one center; (4) 

defines the number of centers to be located; and (5) ensures that the average waiting time is less 

than the given standard. Additionally, j must be within set Ni  so that a demand point requires a 

center located within distance d in order to be covered. 

 

2.3.2 User choice environment  

The above model can be converted to a user choice model by assuming that customers will 

always choose the closest center and by adding the following group of constraints to enforce 

this assumption:    
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Originally introduced by Rojeski and ReVelle (1970) in the context of the budget constrained 

median problem, this equation establishes that if j is an open center and no closer center is open, 

then demand i must be assigned to j. If j is open but a closer center is also open, then this 

relation does not constrain assignment in any way (for a more detailed discussion of closest 

assignment constraints, see Gerrard & Church, 1996).  

 

Heuristic Solution Procedure 
  
A greedy randomized adaptive search procedure (GRASP) is a metaheuristic that has been 

applied to a wide range of operations research and industrial optimization problems. These 

include problems of scheduling, routing, logic, partitioning, location, layout, graph theory, 

assignment, manufacturing, transportation, telecommunications, automatic drawing, electrical 

power systems, and VLSI design (see Resende, 1998). Festa and Resende (2001) present an 

extensive annotated bibliography of GRASP literature. The following notations are used in this 

section: 

j index for potential locations 

i index for demand nodes 

k index for priority level 

Dj list of potential facility location ordered in accordance with total population 

S solution set 

S complement of the solution set 

C set of candidate sites 

p number of facilities to locate 

n number of demand nodes 

inc_k_j incoming call rate at potential facility location j 

inc_j total incoming call rate at potential facility location j 

ρ_k_j   utilization factor at potential facility location j for priority level k 

Dij list of demand points within the standard distance from potential facility location j 
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R total priority levels 

w_k_j waiting time for priority level k at potential facility location j 

f_k_i frequency of demand for priority k services at demand node i 

GammaSet set containing all possible values for γ 

prob_γ  probability of choosing a specific value for γ 

ut(γ) utility value of a specific γ value 

GRASP is an interactive process with a feasible solution constructed at each independent 

iteration. One GRASP iteration consists of two phases: construction phase and local search 

phase. Figure 1 describes a pseudo code for the GRASP algorithm. 

 
INSERT FIGURE 1 HERE 

 
 

The procedure for the construction phase, which will return an initial solution at each of the 

iterations, is denoted as ),(__ γSeedonConstructiRandomizedGreedy  and is a function of the 

seed in the random numbers generation and of a parameter gamma defining which solutions are 

included in the restricted candidate list (RCL), which contains the best greedy solutions. 

The development of this procedure appears in Figure 2. 

 
INSERT FIGURE 2 HERE 
 

The algorithm starts by sorting the candidate nodes in accordance with their populations. In our 

example, every demand point is considered as a potential facility location. Another possibility 

would be to consider only a subset of the demand points in the list Dj.  Beginning with the first 

candidate on the list, we allocate the closest demand points to each node until the coverage limit 

is reached. This limit can be reached by the utilization coefficient or by the limit imposed on the 

waiting time at each priority level.  

 

The total demand assigned to each of the potential locations j is notated as the incoming call 

rate. Since there are different waiting time limits corresponding to the different priority levels, 
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there are also different incoming call rates.  The total incoming call rate is defined as the sum of 

the incoming call rates for all priorities. The incoming call rates are the greedy function of the 

algorithm and can be defined as the weight of as yet uncovered demand points that would 

become covered if center location j were to be chosen. 

 

We include in the RCL the candidate nodes with total incoming call rates greater or equal than 

gamma percent of the incoming call rate corresponding to the potential facility location with the 

higher value. In the GRASP algorithm, parameter gamma is defined a priori (e.g. for a gamma 

value equal to 0.8, we include all of the potential locations with total incoming call rate greater 

than 80 percent of the highest incoming call rate). At each of the iterations, we randomly choose 

the facility locations within the candidate sites with the highest incoming call rates. Note that in 

a pure greedy heuristic, like the one suggested by Marianov and Serra (1998), the choice would 

always be to locate a center in the node with the highest sum of incoming call rates (γ =1). 

 

  In the local search phase, we de-allocate the demands that were allocated to each center and 

move the center to all possible unused potential facility sites, repeating steps 9 through 20 of the 

greedy randomized construction procedure. If some locations give a better objective, the 

center should remain at that location; otherwise, the facility should return to its initial location 

(see Figure 3). This procedure continues until no further improvements can be made. 

 
INSERT FIGURE 3 HERE 
 

To avoid fixing parameter γ in an arbitrary manner, we have implemented a reactive procedure 

in which γ is updated at each one of the iterations. Reactive GRASP, proposed by Prais and 

Ribeiro (2000), is a procedure in which the parameter is self-adjusted according to the quality of 

the solutions previously found. Instead of fixing the value of γ to determine which elements will 

be placed in the RCL, R-GRASP randomly selects this parameter value from a discrete 

set{ }m1,...,γγ . The probability distribution used in the γ selection will be updated after the 
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execution of each block of iterations considering the quality of the solutions obtained by each of 

the γi (the utility of the γi).  Figure 4 describes the R-GRASP algorithm.  

 
INSERT FIGURE 4 HERE 

 
 

In a user choice environment, the heuristic algorithm must be adapted in the construction and 

local search phases to enforce closest assignment. In this new version, a demand point will 

always be assigned to the closest center location, which may lead to infeasible solutions such 

that the limits imposed for the average waiting times will not be verified. The proposed 

algorithm penalizes the objective when an infeasible solution is obtained. When obtaining a 

feasible solution, this set of locations is considered as a potential center location. Otherwise, this 

set is considered only as an initial solution and not as a potential location penalizing the 

objective with a large negative value M. This corresponds to the following objective procedure 

in figure 5. 

 
INSERT FIGURE 5 HERE 
 
 

In the local search phase, a demand point is always allocated to the closest potential center 

location, and the feasibility of waiting time limits is checked. If the solution is not feasible, then 

the objective is penalized with M. When new locations result in a better objective, the center is 

placed at that location; otherwise, it remains at the initial location. This procedure is repeated 

until no further improvements can be made. 

 

4 Computational Experience 

4.1 Evaluation of Heuristic 

4.1.1 Deviation from the optimal solution 

To observe the difference between the results from the heuristic and the optimal solution, a 

simple experiment is implemented that consists of randomly generating problem instances and 
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comparing results from the heuristic with those from complete enumeration. The coordinates of 

the demand points and the potential facility sites are randomly generated from a uniform 

distribution between 0 and 6. The populations for each demand point are generated from a 

uniform distribution between 60 and 800.  In all examples, only two priorities are considered. 

Call rates for first and second priorities are 0.5 percent and 1 percent, respectively, of the 

populations. A waiting time limit of 5 minutes is imposed for first priority and 20 minutes for 

second priority.  

 

The objective values obtained using the first heuristic are compared with those obtained through 

a complete enumeration procedure in which allocations of demand points to potential facility 

sites are defined by repeating steps 1-5 of the heuristic algorithm described in Section 4.1. The 

objective values obtained from the second heuristic are compared with those from a complete 

enumeration procedure that always allocates a demand point to its closest center.  For Heuristics 

1, we consider γ=1 (i.e., the pure greedy algorithm). For Heuristic 2, the pure greedy algorithm 

does not behave well, and it was necessary to implement GRASP.   

 

In these examples the number of blocks (nblocks) was 4, each with a number of iterations (niter) 

equal to 50.  The average deviations and maximum deviations are computed for the 50 instances 

generated. The main results for the different combinations of the number of demand points and 

the number of centers appear in Table 1. 

 

INSERT TABLE 1 HERE 

 

4.1.2 Computing time 

To evaluate the heuristic's behavior, we measure processing times for larger problem instances. 

Table 2 shows the average computing times for simulated instances with 50 and 100 demand 

points (in a Pentium(r) III processor with 128 MB of RAM). 
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INSERT TABLE 2 HERE 
 
  
4.2 Illustrative example 

  

For simplicity, we consider only two priorities: critical and stable. Additionally, we assume that 

the first and second moments of service time are the same for both priorities and are 

independent from the demand's location; we also assume that customers must travel to the 

center to obtain service and that service time will not vary among locations.  In the 

computational experience, the 30-node problem instance (Marianov & Serra, 1998) is used. We 

authors assume that the servers are physicians, that each demand point is also a potential center 

location, and that the distances are Euclidean.  

 

Figure 1 represents each demand point as a square which area signals the relative population at 

that demand point. Demand points are numbered from 1 to 30 in decreasing order of population. 

For our purposes, demand is separated into the daily call rate for first priority cases (0.005 times 

the population) and the daily call rate for second priority cases (0.01 times the population).  The 

instances are adequate for the problem in analysis. The more populated demand points are 

grouped in the center; this eliminates the location of all centers in the nodes with higher 

frequencies. The instances seem to be quite representative of many urban areas, where most of 

the population is concentrated in the center with a variety of smaller populated areas around the 

center.  The results of imposing a waiting time limit of 5.5 minutes on the first priority and 20 

minutes on the second priority appear in Table 3. 

 

INSERT TABLE 3 HERE 
 

Table 4 shows the results of considering one priority with an average time limit of 12.75 

minutes. The average service time in this example is 10 minutes. The values on Table 4 were 

computed using the heuristic procedure proposed by Marianov and Serra's (1998).  Although 9 
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centers would cover the entire population, considering only one priority, Table 3 shows that 1.1 

percent of the population would not receive first priority service within the time limit. This 

percentage increases drastically with a decrease in the number of centers: with only 5 centers, 

14.8 percent of the population would not receive first priority service within the time standard. 

Location decisions will vary considerably depending on whether or not different priorities are 

taken into account. For example, in the 10 center case, only 6 coincide in both scenarios. 

 
INSERT TABLE 4 HERE 
 
 

Figure 6 illustrates the 9 center case; nodes with a center are represented by non-dashed squares. 

Centers are not located in the demand points with the highest population but are strategically 

distributed. 

 

INSERT FIGURE 6 HERE 

 

Considering separate allocation variables for different priorities, it is possible for a demand 

point to be allocated to more than one center. At the same time, some centers may receive many 

calls for some priorities and no calls for others. A center that offers first priority service will be 

located at j if (and only if)
[ ] 0: 1 ≠∈∃ ijj XNi . A center that offers second priority service will 

be located at j if (and only if) 
[ ] 0: 2 ≠∈∃ ijj XNi where { }ddiN ijj ≤= .  

 

Figure 7 presents the results of the 9 center case. Only 6 centers (represented by the double 

circle) are needed to cover both priorities if 3 centers (represented by the single circle) that offer 

service only to first priority cases are located. Note that these centers are located closer to the 

demand points with the highest population and are needed in order to avoid congestion among 

first priority services. 

 
INSERT FIGURE 7 HERE 
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In this model, the need for service dictates the number of centers and the type of services 

offered by each center. This can lead to important resource savings.  Table 5 illustrates the 

results obtained by applying Heuristic 2 to the previous example. The waiting time limits are 5.5 

minutes for first priority cases and 20 minutes for second priority cases. Demand points are 

always assigned to the closest facility independently from the priority level; therefore, the 

percentage covered on first and second priorities coincide. In this new situation, 8 centers are 

needed to cover the entire population. 

 
INSERT TABLE 5 HERE 
 

5 Conclusions and Future Research 

When waits are common, utilization rates are high, and resources are expensive, considering 

more than one priority helps to create a more efficient geographic distribution of service centers. 

Some centers accumulate more customers of a low priority; emergency centers, when 

strategically located, can avoid congestion of higher priority services. The PQCLP links 

population needs with resource allocation. These results should be applied to a directed choice 

environment in which there is some control over the assignment of demand points to the located 

centers.  

 

The proposed heuristic procedures provide results that are coherent with the rationality of the 

model. An extensive evaluation of these procedures shows that the solutions are quite close to 

those obtained by complete enumeration. The heuristic procedure shows important advantages 

in terms of computational speed. It allows us to find solutions for problems that may otherwise 

require a prohibitive amount of computer time.  Priority queuing is a useful theory for many 

types of services and should be extended to other location-allocation models. 
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Table 1 
 
Computational Results- Deviations. 
 
  Average  Deviation Maximum Deviation 
  (% of complete enumeration  

objective) 
(% of complete enumeration  

objective) 
  Heuristic 1 Heuristic 2 

 
Heuristic 1 Heuristic 2 

20 nodes 2 centers 0.07% 
 

0.29% 2.48% 11% 
 3 centers 0.41% 0.30% 5.04% 12% 
 4 centers 0.46% 1.64% 9.95% 21% 

30 nodes 2 centers 0.03% 0.84% 1.71% 10% 
 3 centers 0.39% 0.57% 4% 14% 
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Table 2 
 
Computational results- Average computing times. 
 

Number of 
Demand points 

Number of 
Centers 

Average Computing Time 
(seconds) Demand points  Centers Heuristic 1 Heuristic 2 

50 5 15.44 
 

67.07 
  10 24.17 321.81 

100 5 143.13 580.95 
 10 207.07 1706.92 
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Table 3 
 
Heuristic’s results for one server per center and two priorities. 
 
Number of 
Centers 

Objective Locations % pop covered 
(1st priority) 

% pop covered 
(2nd priority) 

10 10 940 1;6;8;11;14;18 
20;22;24;29 

100% 100% 

9 10 880 1;6;8;11;18;20; 
22;24;29 

98.9% 100% 

8 10 810 1;6;8;11;20;22; 
24;29 

92.1% 96.9% 

7 10 650 1;6;8;11;20;22; 
29 

90.7% 95.4% 

6 10 350 1;6;8;20;22;29 86.3% 95.4% 
5 10 160 1;2;20;22;29 85.2% 95.4% 
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Table 4 
 
Heuristic’s results for one server per center and one priority. 
 
Number of 
Centers 

Objective Locations % pop covered 
 

10 5 470 1;3;5;6;7;14 
17;18;20;24 

100% 

9 5 470 3;5;6;7;14;17; 
18;20;24 

100% 

8 5 400 3;5;6;7;14;17; 
20;24 

98.7% 

7 5 320 3;5;6;7;14;17; 
20 

97.3% 

6 5 140 3;5;6;7;17;20 94.0% 
5 4 950 5;6;7;17;20 90.0% 
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Table 5 
Heuristic's results for one server per center and two priorities with closest assignments. 
 
Number of 
Centers 

Objective % pop covered 
(1st priority) 

% pop covered 
(2nd priority) 

10 10 940 100% 100% 
9 10 940 100% 100% 
8 10 940 100% 100% 
7 10 800 98.7% 98.7% 
6 10 780 98.5% 98.5% 
5 6 200 56.6% 56.6% 
 



 25

procedure GRASP (Max_iterations, Seed) 
 
1 For k=1 to Max_iterations do 
2  );,(__ γSeedonConstructiRandomizedGreedyS ←  

3  );Solution(Search_LocalS ←  

4  Update_Solution(Solution,Best_Solution); 
5 enddo 
6 end GRASP 
 

 
Figure 1: GRASP Pseudo Code 
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procedure Greedy Randomized Construction (Seed,γ) 

 
{sort candidate sites by decreasing order of population}  
1 );population(Sites_Candidate_SortD j ←  

{initialize solution set} 
2 }{ ;S: =  

3 ;C:S =  
{while solution is not a complete solution} 
4 while pS ≠ do 

 {loop over all candidate sites not in the solution list} 
5  For j=1 to S  do 

  {initialize parameters} 
6 inc_k_ j : = 0; inc_ j : = 0; W_k_ j : = 0; ρ_k_ j : = 0; 
  {restrict demand points list to the standard covering distance to site j} 
7   { }dd,DiD ijij ≤∈←  

  {sort demand points by increasing distance to site j} 
8   );cetandis(sintPo_Demand_SortDij ←  

  {loop over priorities} 
9   For k=1 to R do 
   {loop over demand points in set Dij} 

10    For i=1 to ijD  do 

   {sum frequencies at each demand point if waiting time limit is not reached}   
11    If (W_k_j <τ [k]and ρ_k_j<1) do   
12     inc_k_ j : = inc_k_ j+ f_k_i ; 
13     actualize w_k_j; 
14     actualize ρ_k_j; 
15    endif 
16    enddo 
   {compute  incoming call  rate at the potential center location} 
17   inc_ j : = inc_ j+ inc_k_j ; 
18  enddo 
 {construct the restricted candidate list} 
19  { };j_incmax :c max =  

20  { }maxc j_inc,SjRCL γ≥∈← ; 

 {select randomly one site from the RCL} 
21  ( )RCLSelect_Random*j ← ; 

22  }{ ;*jSS: ∪=  

23  }{ ;*jS:S \=  

 {take the demand points allocated to j* out of the demand point’s list}  
24  For i=1 to 

*ijD  do 

25   D := D\ }{ ;Di *ij∈  

26  enddo 
27 enddo 
28 end Greedy Randomized Construction 
 

 
Figure 2: Construction Phase Pseudo Code 



 27

procedure Local_Search (Solution, Best_Solution) 
 
1 obj_best : = obj(S); 
 {loop over sites in the solution} 

2 for all Sj ∈ do 

3  { }jSS \ := ; 

 {loop over sites not in the solution} 

4  for all Sj ∈* do 

5   evaluate { }( )*jSobj ∪ ; 

6   if obj_best< { }( )*jSobj ∪  do 

7    { }* : jSS ∪= : 

8    obj_best : = obj { }( )*jS ∪ ; 

9   else 
10    { }jSS ∪= : : 

11   endif 
12  enddo 
13 enddo 
14 end Local_Search 

 
 

Figure 3: Local Search Phase Pseudo Code 
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procedure reactive_GRASP  
 
 {initialize gammas’ probabilities} 
1 For all γ∈gammaSet do 

2  ;gammaSet,
gammaSet

1
_prob ∈∀← γγ  

3 enddo 
4 For block=1 to nblocks do 
 {implement GRASP algorithm} 
5  For iter=1 to niter do 
6   ( )prob,gammaSetSelect_Random←γ ; 

7   );(onConstructi_Randomized_GreedyS γ←   

8   );Solution(Search_LocalS ←  

9   Update_Solution(Solution,Best_Solution) 
10  enddo 
 {actualize gammas’ probabilities after each block of iterations} 

11  ( )
( ) ;gammaSet,

ut

ut
_prob

all

∈∀
∑

← γ
γ

γγ
γ

 

12 enddo 
13 end reactive GRASP 

 
Figure 4: reactive GRASP Pseudo Code 
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procedure evaluate_objective (S) 
 
1 Allocate each demand point to its closest center location;  
2 Evaluate W_k_j and ρ_k_j; 
3 obj(S):=0; 
4 If (W_k_j <τ [k]and ρ_k_j<1) do   
5  For k=1 to R do 
6   For j=1 to p do 
7    For i=1 to n do 
8     If (i is allocated to j) do 
9      obj(S):=obj(S) + f_k_i; 
10     endif; 
11    enddo; 
12   enddo; 
13  enddo; 
14 else 
15  obj(S):=M; 
16 end evaluate_objective; 
 

 
Figure 5: Objective Evaluation Pseudo Code 
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Figure 6: Locating the 9 centers- a) 
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Figure 7: Locating the 9 centers- b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


