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Abstract

Previous covering models for emergency service idensall the calls to be of the same
importance and impose the same waiting time canstrandependently of the service's priority.
This type of constraint is clearly inappropriatemany contexts. For example, in urban medical
emergency services, calls that involve danger todwulife deserve higher priority over calls for
more routine incidents. A realistic model in suctoatext should allow prioritizing the calls for
service.

In this paper a covering model which considersed#ht priority levels is formulated and
solved. The model heritages its formulation froneviwus research on Maximum Coverage
Models and incorporates results from Queuing Theoryparticular Priority Queuing. The
additional complexity incorporated in the modetijiess the use of a heuristic procedure.
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I ntroduction

Questions related to emergency services have lagied by researchers over the last 25 years.
They refer to medical systems, police operatiom®fighting systems, emergency repair
systems, and others. Researchers agree that dwraibf service is in great part defined by the

time that the customer waits.

Emergency services planners must solve the stcafggblem of where to locate emergency
service centers and the tactical problem of allogademand to those centers. The performance
of an emergency center may be judged by the nuwibpersons in queue or by the length of
time that a person must wait after he or she aratethe center. These indicators are strongly
correlated with the number of centers available itld their locations. Not all cases have the
same dependence on time: rush jobs are taken ahe#ukr jobs, and important customers may
be given precedence over others. This is cleadyctse in hospital emergency rooms, where
patients are roughly divided into three categorigisical cases, where prompt treatment is vital
for survival; serious cases; and stable cases,emMneatment can be delayed without adverse

medical consequences.

Reducing waiting lists is a struggle for many heedre organizations, especially given that the
cost of the resources demands a high utilizatioe. /& lengthy patient wait in the healthcare
industry shows more adverse consequences than sh atleer services. This generates stress
and dissatisfaction, increases the cost of mediaad, and can constitute a barrier to effective
treatment. An optimized location for all facilitieend equal allocation of patients to those
facilities is a vital factor in improving time permance. This paper addresses emergency
healthcare management, but the research can dasilgxpanded to other areas such as

distribution centers or repair systems.

Marianov and Serra (1998) introduce the queuingimaixcovering location allocation model,

which locatesp centers and allocates users to these centersiar tr maximize the covered



population. Coverage is defined as (i) when padi@né allocated to a center within a standard
time or distance from home location, and (ii) wipaients are served within tinteof arrival at
the center, with a probability of at least This paper presents a natural expansion ofbigel

that considers different time standards for diffieqgriorities of healthcare services.

Decisions that do not account for different priestmay lead to less effective locations. This
paper considers different priority levels. The fatation of this model derives from previous
research on maximum coverage models and incormorasults from queuing theory, in

particular priority queuing. The additional comptgncorporated in the model justifies the use

of a heuristic procedure. We develop an evaludiased on numerical examples.

1 Related Literature

Location models that incorporate queuing effectgeap in the literature of the early 1980s.
Berman, Larson, and Chiu (1985) present a work ithatonsidered as the “beginning in a
potentially fecund marriage between location anéuipng theories.” They extend Hakimi's
(1964) one-median problem by embedding it in a gangueuing context. The formulation
explicitly includes dependence on service timeayer times, and queuing delays on the
location of the service facility. Their work was part motivated by the pioneer hypercube

queuing model developed by Larson (1974).

Batta, Larson, and Odoni (1988) note that queuirsgiglines frequently used in decision
models (such as first-come first-served, last-cfileserved, and service in random order) are
clearly inappropriate in many contexts. They pdmturban emergency services and police
patrols as examples of when the risk of life or Waence of the crime will factor into the
service order. A formulation for the single sergeeuing location model is providekl griority
queuing location) as well as some solution techesgihat allow calls to be selected from an

arbitrary number of priority classes. The optimaPRL model location usually differs from the



one obtained by grouping calls from all prioritieé¢o a single category and using the single

queue length model.

Batta (1989) considers the problem of locatingraylsi server on a network operating as an
M/G/1 queue, in which queued calls are servicea loyass of queuing disciplines that depend
solely on expected service time information. Thedelois analyzed as an M/G/1 non-
preemptive priority queuing model, with locationpg@dent priorities. Motivated by the
problem of locating fire trucks in a geographicataa which requires multiple trucks to be
located within an acceptable distance standarcthéege coverage, Batta and Mannur (1990)
examine the set covering problem and the maximatring location problem in the context of

multiple units being required by some demands.

For congested service systems, Brandeau and C8B82)present the stochastic queue center
location model, which seeks to minimize the maximexpected response time to any customer.
Expected response time comprises expected waitimg tintil the server becomes free and
expected travel time. A more recent work in the sdime of research was developed by Jamil,
Baveja, and Batta (1999). The stochastic queueecgmbblem considers the objective of
locating a single facility operating as an M/G/lega in steady state so as to minimize a
weighted linear combination of the square of therage response time and the variance of the
response time. Berman and Vasudeva (2000) alssidmmnthe problem of locating a general
number of service units, which return to their holmeations only if no calls are waiting for

service.

Branas and Revelle (2001) developed the traumaires@llocation model for ambulances and
hospitals as a guide for healthcare planners. Thdeimcombines a mixed-integer linear
program with a new heuristic and considers two uss® trauma centers and aeromedical
depots, in a two-level hierarchy. The objectivadsmaximize coverage, which is defined as

when at least one trauma center is sited withinoargd standard time or when an aeromedical



depot/trauma center pair is sited in such a way tha sum of the flying time from the
aeromedical depot toand the flying time from to the trauma center is within the same time

standard.

Ball and Lin (1993) propose a reliability model femergency service vehicle location. Based
on the probability of system failure, they deriv@-a integer programming optimization model
that is solved using a branch-and-bound procedtine. computational results show that the
processing technique is highly effective. Mand&898) formulates a covering type model for
two-tiered emergency medical services that maxisnthe expected number of calls for service
and takes server availability into account throughtwo-dimensional queuing model.
Considering a redeployment problem for a fleetrabalances, Gendreau, Laporte, and Semet

(2001) propose a dynamic model and a parallel salawoch heuristic.

Harewood (2002) offers a multi-objective versiortlsd# maximum availability location problem
in a real application by solving the problem of egemcy ambulance deployment in Barbados.
The first objective seeks to maximize the popufatovered within a given distance standard
and with a given level of reliability, while thecmnd objective chooses locations that minimize
the cost of covering the population. Verter andieap (2002) address the problem of locating
preventive healthcare facilities. They assume tHestance is a major determinant of
participation and that people will go to the cladesility for preventive care. Golderg (2004)
offers a review of the development and currenestditoperations research for deployment and

planning analysis pertaining to emergency sendeekfire departments.

2 Formulation

The formulation of the model presented here closellpws the methodology proposed by
Marianov and Revelle (1994). The authors relax élssumption of dependence of server

availability and model the behavior in each regasran M/M/s-loss queuing system obtaining a



probabilistic formulation of the location set cowegr problem. The reliability constraints are
formally incorporated using queuing theory to motted arrival-departure process within the
location model itself. The authors refer to fixettifities, in contrast with earlier research that
considers a mobile server. Marianov and Serra (1988sent several probabilistic, maximal
covering, and location-allocation models with cosisied waiting times for queue length. In
this section, we propose a model that connects direuing maximal covering location

allocation model with priority queuing theory. Westribe the results from priority queuing

that will be included in the model and explain eatthe equations in this new model.

2.1 Results from queuing theory

Priority queuing has been analyzed in many reseavolks. In this paper, we follow
Kleinrock’s (1975) textbook notatiorin a priority queuing system, we assume that ariagr
customer belongs to priority clakgk=1,2,...,K). The smaller the priority index, the higher the
priority of the class. Let us consider nonpreengtpriorities, i.e. when a customer in the
process is not liable to be ejected from servigkraturned to the queue when a higher priority
customer appears. Customers from prickigrive in a Poisson stream at raté for time unit.

Each customer from this group has his or her seriiioe S selected independently from the

—[k
distributionB,(S) with mean S[ ] . Let us also consider a Head of Line (HOL) dibogwithin

each priority level. The average waiting time foiopty k services is given by the following

expression:
W,
wld = 0 if 1-0,>0 (1)
(1_Uk)(1_ak 1) ‘
= +oo otherwise



where

k

o, => pl with g, =0
i=1

and

[i]

i = A _ Qi

P =—==8"1
Pl

! is the service rate for priority class i.
The interpretation gb here is the fraction of time that the server isyb{as long ag<1).
W, corresponds to the average delay that the taggsetbroer experiences due to another

customer found in service and can be computed asegpllowing formula:
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where (S[i])2 is the second moment of service time distribution.

2.2 Problem definition

The structure of the problem comprises a discrpgre in which customers, representing
demand, are positioned and in which facilities @rebe positioned by a decision maker.
Customers are assumed to be located at the nodbe aoktwork (demand nodes). We assume
that the service call process for each notea Poisson process with rate The problem will
locate a given number of facilities providing thernsce. We assume that a discrete set of

potential facility locations eligible to provide werage to the demand nodes has been identified.
For the purposes of this model, utilization factare defined by the product of the average

service time and the arrival rate as defined bysiinamation of the call rates of all demand

points allocated to a centerjat

pEk] = @A[jk] = @Z fi [k] Xi[jk]



where Xi[j"] is a zero one variable defining allocation of dathgointi to a center aj for
priority k services. fi[k] is the call rate for services of priority cldssat demand poinit For

example, fi[k] = 008 indicates that at demand pointhe number of calls per unit of time for

services of prioritk equals 8 percent of the total population on awerag

2.3 Priority queuing covering location problem

The priority queuing covering location problem (A} assumes static assignments of
customers to service facilities. This is typical the case of fixed server locations, where
customers travel to facilities to obtain serviceg(8erman and Krass, 2002). We offer two
versions of the PQCLP: the first assumes a directerice environment in which a central
authority dictates the assignment of a customeie(x to a center, while the second assumes a
user choice environment in which the assignmemase by each individual customer. In our

case, they will always go to the closest center.

2.3.1 Directed choice environment

This version of the PQCLP will define separate cdtions for the different priorities that may
or may not coincide, i.e., a demand point may hecated to a center afor one priority and to
centerk #j for other priorities. The objective is to maximiee population covered in all
priorities. Different time constraints are imposéor different priorities. The model's

formulation is as follows:
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whereXiEk] = 1 if demand point is allocated to a center jafor priority k's urgencies and zero

in all other cases.Yj = 1 if a center is located atand zero in all other caser[k] is the

]

average waiting time for priority clagsat centelf (see Equation 1). Parametép( represents

the limits imposed on the waiting times for prigrk; p is the number of centers to be sited;
&, is the population at demand pointl is the set of all demand points; aNdis the set of

centers located at a distance smaller or equafriam demand poinit

Constraint (2) states that if populatibis allocated to a centerjafor priority k, then there must
be a center located gt (3) forces each demand point to be allocated tg onk center; (4)
defines the number of centers to be located; andr(§ures that the average waiting time is less
than the given standard. Additionaljynust be within sell; so that a demand point requires a

center located within distancken order to be covered.

2.3.2 User choice environment
The above model can be converted to a user chobgkelnby assuming that customers will
always choose the closest center and by addindptloeving group of constraints to enforce

this assumption:

x>y -y, c, ={ld, <d,} DioI,OON, (7)

I0C;



Originally introduced by Rojeski and ReVelle (1970)the context of the budget constrained
median problem, this equation establishes thasifin open center and no closer center is open,
then demand must be assigned fo If j is open but a closer center is also open, then thi
relation does not constrain assignment in any viay § more detailed discussion of closest

assignment constraints, see Gerrard & Church, 1996)

Heuristic Solution Procedure

A greedy randomized adaptive search procedure (GRAS a metaheuristic that has been
applied to a wide range of operations research iaddstrial optimization problems. These
include problems of scheduling, routing, logic, tp@ming, location, layout, graph theory,
assignment, manufacturing, transportation, telecomoations, automatic drawing, electrical
power systems, and VLSI design (see Resende, 1888)a and Resende (2001) present an
extensive annotated bibliography of GRASP literatdihe following notations are used in this
section:

j index for potential locations

i index for demand nodes

k index for priority level

D; list of potential facility location ordered in awdance with total population

Ssolution set

§comp|ement of the solution set

C set of candidate sites

p number of facilities to locate

n number of demand nodes

inc_k j incoming call rate at potential facility locatipn

inc_j total incoming call rate at potential facility ktoonj

p K j utilization factor at potential facility locatig for priority levelk

D;; list of demand points within the standard distainem potential facility location

10



R total priority levels

w_k_j waiting time for priority levek at potential facility locatiof

f k i frequency of demand for priorityservices at demand notde

GammaSet set containing all possible values for

prob_y probability of choosing a specific value for

ut()) utility value of a specifig value

GRASP is an interactive process with a feasiblaitemi constructed at each independent
iteration. One GRASP iteration consists of two @isasonstruction phase and local search

phase. Figure 1 describes a pseudo code for theSBR#gorithm.

INSERT FIGURE 1 HERE

The procedure for the construction phase, which netlurn an initial solution at each of the
iterations, is denoted @seedy _ Randomized _ Construction(Seed, y) and is a function of the
seed in the random numbers generation and of anpéea gamma defining which solutions are
included in the restricted candidate list (RCL) jebhcontains the best greedy solutions.

The development of this procedure appears in Figure

INSERT FIGURE 2 HERE

The algorithm starts by sorting the candidate nadesxcordance with their populations our
example, every demand point is considered as anfmltéacility location. Another possibility
would be to consider only a subset of the demamatpm the listD; Beginning with the first
candidate on the list, we allocate the closest denpaints to each node until the coverage limit
is reached. This limit can be reached by the atilan coefficient or by the limit imposed on the

waiting time at each priority level.

The total demand assigned to each of the potdpotiationsj is notated as the incoming call

rate. Since there are different waiting time limitgresponding to the different priority levels,

11



there are also different incoming call rates. Tdtal incoming call rate is defined as the sum of
the incoming call rates for all priorities. The @miing call rates are the greedy function of the
algorithm and can be defined as the weight of asupeovered demand points that would

become covered if center locatipwere to be chosen.

We include in the RCL the candidate nodes withl toi@oming call rates greater or equal than
gamma percent of the incoming call rate correspunth the potential facility location with the

higher value. In the GRASP algorithm, parameter mans defined a priori (e.g. for a gamma
value equal to 0.8, we include all of the potenitigations with total incoming call rate greater
than 80 percent of the highest incoming call rad¢)ach of the iterations, we randomly choose
the facility locations within the candidate siteghathe highest incoming call rates. Note that in
a pure greedy heuristic, like the one suggestellidnyanov and Serra (1998), the choice would

always be to locate a center in the node with thkdst sum of incoming call rateg<1).

In the local search phasee de-allocate the demands that were allocateddb eenter and
move the center to all possible unused potentalitiasites, repeating steps 9 through 20 of the
greedy randomized constructignocedure If some locations give a better objective, the

center should remain at that location; otherwike, facility should return to its initial location

(see Figure 3). This procedure continues untilurther improvements can be made.
INSERT FIGURE 3HERE

To avoid fixing parametey in an arbitrary manner, we have implemented atireaprocedure

in which yis updated at each one of the iterations. Rea@RASP, proposed by Prais and
Ribeiro (2000), is a procedure in which the paramist self-adjusted according to the quality of
the solutions previously found. Instead of fiximg tvalue ofy to determine which elements will
be placed in the RCL, R-GRASP randomly selects trasameter value from a discrete

sefly;,...ym}. The probability distribution used in theselection will be updated after the

12



execution of each block of iterations considerimg quality of the solutions obtained by each of

they; (the utility of they). Figure 4 describes the R-GRASP algorithm.

INSERT FIGURE 4 HERE

In a user choice environment, the heuristic algarimust be adapted in the construction and
local search phases to enforce closest assignimemitis new version, a demand point will
always be assigned to the closest center locatibich may lead to infeasible solutions such
that the limits imposed for the average waitingesmwill not be verified. The proposed
algorithm penalizes the objective when an infeasgmlution is obtained. When obtaining a
feasible solution, this set of locations is constdeas a potential center location. Otherwise, this
set is considered only as an initial solution amd as a potential location penalizing the
objective with a large negative valive This corresponds to the following objective prhoe

in figure 5.

INSERT FIGURE 5 HERE

In the local search phasa,demand point is always allocated to the closestnial center
location, and the feasibility of waiting time liraits checked. If the solution is not feasible, then
the objective is penalized wittl. When new locations result in a better objectitie, center is
placed at that location; otherwise, it remainshat initial location. This procedure is repeated

until no further improvements can be made.

4 Computational Experience

4.1 Evaluation of Heuristic

4.1.1 Deviation from the optimal solution
To observe the difference between the results fitmenheuristic and the optimal solution, a

simple experiment is implemented that consistsanflomly generating problem instances and

13



comparing results from the heuristic with thosexfroomplete enumeration. The coordinates of
the demand points and the potential facility sig@e randomly generated from a uniform
distribution between 0 and 6. The populations fachedemand point are generated from a
uniform distribution between 60 and 800. In alleples, only two priorities are considered.
Call rates for first and second priorities are @Pdycent and 1 percent, respectively, of the
populations. A waiting time limit of 5 minutes isposed for first priority and 20 minutes for

second priority.

The objective values obtained using the first rstieriare compared with those obtained through
a complete enumeration procedure in which allooatiof demand points to potential facility
sites are defined by repeating steps 1-5 of theisteualgorithm described in Section 4.1. The
objective values obtained from the second heuraticcompared with those from a complete
enumeration procedure that always allocates a deipaimt to its closest center. For Heuristics
1, we considey=1 (i.e., the pure greedy algorithm). For Heuri&jdhe pure greedy algorithm

does not behave well, and it was necessary to mgie GRASP.

In these examples the number of bloakd dcks) was 4, each with a number of iterationgef)
equal to 50. The average deviations and maximwiatiens are computed for the 50 instances
generated. The main results for the different comiidons of the number of demand points and

the number of centers appear in Table 1.

INSERT TABLE 1 HERE

4.1.2 Computing time
To evaluate the heuristic's behavior, we measuwegssing times for larger problem instances.
Table 2 shows the average computing times for sitedlinstances with 50 and 100 demand

points (in a Pentium(r) 1l processor with 128 MBRAM).
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INSERT TABLE 2HERE

4.2 Illustrative example

For simplicity, we consider only two priorities:itizal and stable. Additionally, we assume that
the first and second moments of service time aee dame for both priorities and are
independent from the demand's location; we alsanassthat customers must travel to the
center to obtain service and that service time wiit vary among locations. In the
computational experience, the 30-node problem mestgMarianov & Serra, 1998) is used. We
authors assume that the servers are physiciarisgdbh demand point is also a potential center

location, and that the distances are Euclidean.

Figure 1 represents each demand point as a squéch area signals the relative population at
that demand point. Demand points are numbered frém30 in decreasing order of population.
For our purposes, demand is separated into the dalllrate for first priority cases (0.005 times
the population) and the daily call rate for secpridrity cases (0.01 times the population). The
instances are adequate for the problem in analy$is. more populated demand points are
grouped in the center; this eliminates the locatidnall centers in the nodes with higher
frequencies. The instances seem to be quite rapegs® of many urban areas, where most of
the population is concentrated in the center witlardety of smaller populated areas around the
center. The results of imposing a waiting timeitliof 5.5 minutes on the first priority and 20

minutes on the second priority appear in Table 3.

INSERT TABLE 3HERE

Table 4 shows the results of considering one pyianith an average time limit of 12.75
minutes. The average service time in this examgplkE0i minutesThe values on Table 4 were

computed using the heuristic procedure proposelllidanov and Serra's (1998Although 9
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centers would cover the entire population, congideonly one priority, Table 3 shows that 1.1
percent of the population would not receive firgbpty service within the time limit. This

percentage increases drastically with a decreasisimumber of centers: with only 5 centers,
14.8 percent of the population would not receivst fpriority service within the time standard.
Location decisions will vary considerably dependorgwhether or not different priorities are

taken into account. For example, in the 10 cerdaseconly 6 coincide in both scenarios.

INSERT TABLE 4 HERE

Figure 6 illustrates the 9 center case; nodes avitenter are represented by non-dashed squares.
Centers are not located in the demand points wighhighest population but are strategically

distributed.
INSERT FIGURE 6 HERE

Considering separate allocation variables for diffié priorities, it is possible for a demand
point to be allocated to more than one centerhAtsame time, some centers may receive many

calls for some priorities and no calls for otheéksenter that offers first priority service will be

located aj if (and only if) (i [J Nj : Xigll # 0. A center that offers second priority service will

be located atif (and only if) L1 I N Xi[jz] # Owhere N, ={i‘dij < d}.

Figure 7 presents the results of the 9 center casb. 6 centers (represented by the double
circle) are needed to cover both priorities if Btees (represented by the single circle) that offer
service only to first priority cases are locateatdNthat these centers are located closer to the
demand points with the highest population and aedad in order to avoid congestion among

first priority services.

INSERT FIGURE 7 HERE
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In this model, the need for service dictates thenlmer of centers and the type of services
offered by each center. This can lead to importasburce savings. Table 5 illustrates the
results obtained by applying Heuristic 2 to thevires example. The waiting time limits are 5.5
minutes for first priority cases and 20 minutes $econd priority cases. Demand points are
always assigned to the closest facility indeperygeinom the priority level; therefore, the

percentage covered on first and second prioritééscae. In this new situation, 8 centers are

needed to cover the entire population.

INSERT TABLE 5HERE

5 Conclusions and Future Research

When waits are common, utilization rates are hayt resources are expensive, considering
more than one priority helps to create a more iefiicgeographic distribution of service centers.
Some centers accumulate more customers of a lowaritgri emergency centers, when
strategically located, can avoid congestion of &iglpriority services. The PQCLP links
population needs with resource allocation. Thesalt® should be applied to a directed choice
environment in which there is some control overahsignment of demand points to the located

centers.

The proposed heuristic procedures provide reshits dre coherent with the rationality of the
model. An extensive evaluation of these procedshesvs that the solutions are quite close to
those obtained by complete enumeration. The haupsbcedure shows important advantages
in terms of computational speed. It allows us twl fsolutions for problems that may otherwise
require a prohibitive amount of computer time. oRty queuing is a useful theory for many

types of services and should be extended to aticatibn-allocation models.
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Table 1

Computational Results- Deviatians

Average Deviation
(% of complete enumeration

objective)
Heuristic 1 Heuristic 2
20 nodes 2 centers 0.07% 0.29%
3 centers 0.41% 0.30%
4 centers 0.46% 1.64%
30 nodes 2 centers 0.03% 0.84%
3 centers 0.39% 0.57%

20

Maximum Deviation
(% of complete enumeration

objective)
Heuristic 1 Heuristic 2
2.48% 11%
5.04% 12%
9.95% 21%
1.71% 10%
4% 14%



Table 2

Computational results- Average computing times.

Number of Number of
Demand points Centers
50 5

10
100 5
10

Average Computing Time

Heuristic 1 Heuristic 2
15.44 67.07
24.17 321.81
143.13 580.95
207.07 1706.92
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Table 3

Heuristic’s results for one server per center avaliriorities.

Number of Objective Locations % pop covered % pop covered

Centers (1% priority) (2" priority)

10 10 940 1;6;8;11;14;18 100% 100%
20;22;24;29

9 10 880 1;6;8;11;18;20; 98.9% 100%
22;24;29

8 10 810 1;6;8;11;20;22; 92.1% 96.9%
24;29

7 10 650 1;6;8;11;20;22; 90.7% 95.4%
29

6 10 350 1;6;8;20;22;29 86.3% 95.4%

5 10 160 1;2;20;22;29 85.2% 95.4%
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Table 4

Heuristic’s results for one server per center amel griority.

Number of Objective Locations
Centers

10 5470 1;3;5;6;7;14
17;18;20;24

9 5470 3:;5:6;7;14;17;
18;20;24

8 5400 3:;5:6;7;14;17;
20;24

7 5320 3:;5:6;7;14;17;
20

6 5 140 3:5;6;7;17;20

5 4 950 5:6;7;17;20

23

% pop covered
100%
100%
98.7%
97.3%

94.0%
90.0%



Table 5
Heuristic's results for one server per center ammdgriorities with closest assignments.

Number of Objective % pop covered % pop covered

Centers (1 priority) (2" priority)
10 10 940 100% 100%
9 10 940 100% 100%
8 10 940 100% 100%
7 10 800 98.7% 98.7%
6 10 780 98.5% 98.5%
5 6 200 56.6% 56.6%
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procedure GRASP (Max_iterations, Seed)

Fork=1to Max_iterations do
S « Greedy_ Randomized _ Construction(Seed, y);
S « Local_Searclf Solution);
Update_Solution(Solution,Best_Solution);

enddo
end GRASP

OOk W NP

Figure1l: GRASP Pseudo Code
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procedur e Greedy Randomized Construction (Seedy)

{sort candidate sites by decreasing order of pdfmuiha

1 D, ~ Sort _Candidate _ Stes( population);
{initialize solution set}

2 s={}

3 S =C;

{while solution is not a complete solution}

4 while H # pdo

{loop over all candidate sites not in the solutiist}

5 For j=1 to @ do
{initialize parameters}
6 inck j:=0;jinc_j:=0;WKk j:=0;0k j:=0;
{restrict demand points list to the standard cimgedistance to site j}
7 D, - {iOD.d; <df
{sort demand points by increasing distance ® j}it
8 D, ~ Sort_Demand_ Point § distance);
{loop over priorities}
9 For k=1 to Rdo
{loop over demand points in set Dij}
10 For i=1to ‘Dij‘ do
{sum frequencies at each demand point if waitinggtlimit is not reached}
11 If (W Kk j <r™andp k j<1)do
12 inc k j:=inc k_j+f ki;
13 actualizew Kk j;
14 actualize p k j;
15 endif
16 enddo
{compute incoming call rate at the potentiahter location}
17 inc_j:=inc_j+inc k j;
18 enddo
{construct the restricted candidate list}
19 c™ :=max{inc_ j};
20 RCL — {j gs,inc_j= yc”‘ax}:
{select randomly one site from the RCL}
21 j* « Random_Select(RCL);
22 s =so{j*}
23 s =s\{j*};
{take the demand points allocated to j* out of tleenand point’s list}
24 For i=1 to ‘Dij*‘ do
25 D:=D\i0D,. )
26 enddo
27 enddo
28 end Greedy Randomized Construction

Figure 2: Construction Phase Pseudo Code
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procedure Local_Search (Solution, Best_Solution)

1

obj_best : = 0bj(9);

{loop over sites in the solution}

foral j [JSdo

s:=s\{j};
{loop over sites not in the solution}
for all j* [J Sdo

enddo
enddo
end Local_Search

evaluateobj(SO{j*});

if obj_best< obj (ST {j *}) do
s:=s0{j*}:
obj_best : =obj(SO1{j * }):

ese
s:=s0{j}:

endif

Figure 3: Local Search Phase Pseudo Code
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procedurereactive GRASP

Hw

2O 0 N oo

12
13

{initialize gammas’ probabilities}
For all yOJgammaSet do

prob_y < Oy 0 gammaSet;

|gammaSet

enddo
For block=1 tonblocks do
{implement GRASP algorithm}
For iter=1to niter do
y — Random_ Select(gammaSet, prob);
S « Greedy Randomized_ Construction( y );
S « Local _Search Solution);
Update_Solution(Solution,Best_Solution)
enddo
{actualize gammas’ probabilities after each blo€kerations}

ut(y) .
rob - Oy 0 gammaSet;
e A T (7 R

aly
enddo
end reactive GRASP

Figure 4: reactiveGRASP Pseudo Code
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procedur e evaluate_objective (S)

1 Allocate each demand point to its closest center location;

2 Evaluate W k j and o k j;

3 0bj(9):=0;

4 If (W_k j <r™andp k j<1)do

5 For k=1 to Rdo

6 For j=1 to pdo

7 For i=1 to ndo

8 If (i isallocated to j) do
9 obj(S):=obj(9) + f_k i;
10 endif;

11 enddo;

12 enddo;

13 enddo;

14 else

15 obj(9:=M;

16 end evaluate_objective;

Figure5: Objective Evaluation Pseudo Code
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Figure6: Locating the 9 centers- a)
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Figure 7: Locating the 9 centers- b)
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