
Towards Making Network Function Virtualization
a Cloud Computing Service

Windhya Rankothge
Universitat Pompeu Fabra

windhya.rankothge@upf.edu

Jiefei Ma
Imperial College

j.ma@imperial.ac.uk

Franck Le
IBM Research

fle@us.ibm.com

Alessandra Russo
Imperial College

a.russo@imperial.ac.uk

Jorge Lobo
ICREA-Universitat Pompeu Fabra

jorge.lobo@upf.edu

Abstract—By allowing network functions to be virtualized and
run on commodity hardware, NFV enables new properties (e.g.,
elastic scaling), and new service models for Service Providers,
Enterprises, and Telecommunication Service Providers. However,
for NFV to be offered as a service, several research problems
still need to be addressed. In this paper, we focus and propose
a new service chaining algorithm. Existing solutions suffer two
main limitations: First, existing proposals often rely on mixed
Integer Linear Programming to optimize VM allocation and
network management, but our experiments show that such
approach is too slow taking hours to find a solution. Second,
although existing proposals have considered the VM placement
and network configuration jointly, they frequently assume the
network configuration cannot be changed. Instead, we believe
that both computing and network resources should be able to
be updated concurrently for increased flexibility and to satisfy
SLA and Qos requirements. As such, we formulate and propose
a Genetic Algorithm based approach to solve the VM allocation
and network management problem. We built an experimental
NFV platform, and run a set of experiments. The results show
that our proposed GA approach can compute configurations to
to three orders of magnitude faster than traditional solutions.

I. INTRODUCTION

Network Functions Virtualization (NFV) [1] proposes to
virtualize functions such as load balancers, firewalls, intrusion
detection devices and WAN accelerators, traditionally running
on proprietary hardware appliances, and instead have them
operate as virtual software components on commoditized hard-
ware. In addition to reducing costs and time to market, NFV
enables new properties such as elastic scaling: NFV allows
the flexible increase and decrease of resources (e.g., CPU,
memory) allocated to each VM instance, and the number of
VM instances, to satisfy the dynamic and fluctuating service
demands. However, for Virtual Network Function to be offered
as a service (e.g., to virtualize the 3G/4G Mobile Core Network
and IMS), several research problems still need to be solved [2].

In this paper, we focus and propose a new service chaining
algorithm. Researchers have typically relied on mixed Integer
Linear Programming (ILP) to optimize VM allocation and net-
work management [3]. However, we argue that this approach is
too slow to satisfy dynamic traffic demands and requirements
(e.g., flash events). Our own experiments show that to im-
plement 10 network functions optimizing both computing and
network resources, ILP calculations take more than 2 hours.
In addition, although several works have considered both VM
allocation and network management jointly [4] [5], most of
them have assumed that only one of the two components
could be modified: For example, [3] [4] [5] [6] assume that

the computing resources allocation can be updated but not the
network configuration.

Instead, we believe that both computing resources and
network configuration should be able to be updated con-
currently: such approach offers more flexibility, and allows
NFV’s SLA and QoS requirements to be met [7]. We take
advantage of software-defined/OpenFlow infrastructure [8] to
facilitate network management, and maximize network re-
source utilization. As such, in order to quickly optimize both
server and bandwidth resources simultaneously, we developed
a Genetic Programming based approach: Genetic Algorithms
(GA) were developed in the field of artificial intelligence
and are search heuristics inspired by the process of natural
selection, and used to generate useful solutions to optimization
and search problems [9]. GA relies on different techniques
including mutations and crossover of non-optimal solutions to
generate new solutions, and ranks the solutions according to a
fitness function. The population (i.e., the number of solutions
considered) is maintained around the same size since solutions
with the lowest fitness function values are dropped from the
population. Note that ILP objective functions can be the fitness
function in a GA. We modeled the optimization of the VM and
network resource allocation problem with a GA that returns the
best fitted solution after a fixed amount of generations have
been explored.

We built an experimental NFV platform to better under-
stand and study research issues related to NFV. The architec-
ture and the complexity of our experimental NFV platform
are simpler than those defined by existing standardization
bodies (e.g., ETSI, IETF) [1]. This simplification allows us
to focus on specific research aspects and conduct experiments.
In particular, we validated our proposal, and our results show
that although GA may not provide the optimal solution, GA
can decide the computing and network allocations for tens
to hundreds of policies in a 64 server environment on the
order of seconds. Our proposed GA approach can therefore
compute configurations two to three orders of magnitude faster
than traditional solutions. We believe that such time reduction
would be essential for NFV to be offered as a service.

The rest of the paper is organized as follows. Section II
presents our experimental NFV platform. Section III introduces
its management system. Section IV describes the implemen-
tation of GA based network function placement and dynamic
scaling out/in. Section V shows the evaluation of the imple-
mentation.



II. OVERVIEW OF EXPERIMENTAL PLATFORM: NETWORK
FUNCTION CENTER (NFC)

NFV is bringing closer the possibility to truly migrate
enterprise data centers into the cloud. However, for a Cloud
Service Provider to offer such services, many research ques-
tions still need to be addressed: e.g., when and where should
new virtual network functions be instantiated?, How to scale
up/down resources to satisfy traffic demands and guarantee
QoS? How can network configuration be updated on-demand
to guarantee service chaining, especially in the events of virtual
network function creation and deletion?

We are building an experimental platform that we call
Network Function Center (NFC) to study research issues
related to NFV and network function. We want to develop
the NFC using a simple but comprehensive architecture where
different types of studies and experiments can be conducted.
We will start making several simplifying assumptions that we
might later relax if needed. In a NFC, we assume a network
function is implemented on a VM that can be deployed in any
server in the network, contrary to traditional network functions
that are hardware based middle-boxes in fixed places in the
network. In this section, we briefly describe the functionality
we expect from a NFC and the proposed architecture.

A. Functionality

Fig. 1. Network Function Center Snapshot

We assume NFC delivers virtualized network functions to
clients on a subscription basis. To receive services from NFC,
a client needs to provide the following three specifications to
a NFC: (1) types of functions required, (2) interconnectivity
between these functions, and (3) expected traffic load to be
generated by these functions. The abstractions used to solicit
this information from a client will depend on the functions.
The specification could be complex as a high-level description
of a virtualized network where each network’s endpoint is
connected to predefined Virtual Networks [10]; or a simple
specification as a set of network services chains through which
different classes of traffic must go through [11] (e.g., all traf-
fic from 10.0.0.0/24 must traverse IDS-Firewall-Proxy). The
specifications can be (automatically or semi-automatically)
translated into a collection of Directed Acyclic Graphs (DAG)
connecting sources to destinations of data flows in which the
intermediate nodes in a graph path represent network functions

that must be applied to the traffic flow going through the path.
The first and the last node in a path are the source and the
destination of the flow and may or may not be hosted inside
the NFC. Each DAG must be accompanied with capacity infor-
mation for each node (i.e., function capacity requirements) and
information about traffic characteristics that will go through the
different paths (e.g., traffic class, expected throughput). As an
illustration, we assume a NFC that provides network functions
represented as chains of services. As illustrated in Table 1 of
Figure 1, the client request comes to the NFC in the form of

• Policy (chain of required network functions)

• Ingress and egress locations of client’s traffic flow

• Expected volume of the traffic flow

Once the client request is accepted by the NFC, the client’s
traffic is redirected to the NFC to traverse the network func-
tions. The NFC must guarantee that the client’s traffic traverse
all the network functions in the correct order. In addition, the
NFC is expected to increase/decrease the number of network
functions instances and paths for the traffic flow according
to the application’s dynamic needs and agreements with the
client.

B. Architecture

The overall architecture of a NFC consists of two main
components: a physical infrastructure, and a management
system for the infrastructure.

The physical infrastructure comprises a network and a
server infrastructure. The network infrastructure provides con-
nectivity for all communications occurring in the NFC and
between the NFC and its users. The server infrastructure hosts
all network services. Servers in the NFC are used to deploy
the virtual machines (VMs) where network services run. A
network service is implemented as a software on a VM.

Figure 1 represents a snapshot of a NFC. It depicts the
placement of network services to implement the two policy
chains in Table 1. Table 2 shows the physical sequences
of switches and network services the client’s traffic will go
through. Client1 wants his traffic flow coming from 10.1.0.0/24
to any destination to go through the policy chain of Firewall-
IDS-Proxy network services. To grant his request a firewall
service and a IDS service are implemented on two VMs
at Server1 and a Proxy service is implemented on a VM
at Server2. The network architecture depicted in the figure
represents a tree-like architecture typical of datacenters, but
our NFC architecture does not assume any particular network
structure. As network element reconfiguration becomes a more
active part of the management, these standard architectures
may change for the benefit of the management. The architec-
ture Management System is described in more detail in the
next section.

III. NFC MANAGEMENT SYSTEM

The goal of the NFC Management system is to automate ar-
rangement, coordination and management of NFC components
to maximize on-demand client requests whilst guaranteeing
QoS. Figure 2 gives an overview of the initial proposed NFC



Fig. 2. NFC Management System

Management System architecture. The term “NS” in the figure
refers to any requested Network Function.

The NFC Management System requires three high-level
inputs: (1) Client Requirements given as a set of annotated
DAGs, (2) Topology data and Traffic and (3) Resource con-
straints. Each client’s requirement is annotated with the traffic
flow’s ingress and egress locations, flow properties (source
destination IP addresses, source destination ports), expected
volume of traffic traversing each path in the network functions
chain. Topology data and traffic describes the placement of cur-
rent network functions, paths between servers, links between
switches, available capacities of links, switches and servers.
Resource constraints specify (1) server and switch resources
(CPU, memory, TCAM sizes, etc.) and (2) bandwidth capacity
for each link in the topology.

A. Process of NFC Management System

The process NFC Management System is built around five
key modules: (1) Resource Manager, (2) Topology Manager,
(3) Flow Manager, (4) Elasticity Manager and (5) Rules
Generator.

Once a new client request is submitted, Resource Manager
takes decisions on the placement of network functions and
paths for the client’s traffic to follow inside the NFC. The
Resource Manager is also called by the Elasticity Manager.
The Elasticity Manager monitors the resources utilization.
According to parameters such as network traffic, applications’
requirements and agreements with clients, the Elasticity Man-
ager takes decisions on when to increase/decrease the instances
of network functions and paths for the traffic flows. Once
the Elasticity Manager makes its decision, the information is
passed to the Resource Manager which then determines the
possible changes to the placement of the network functions
instances and paths. The Topology Manager, Flow Manager,
and Rules Generator configure the network according to deci-
sions taken by the Resource Manager and Elasticity Manager.

The five key modules are described with more detail in the
following sub-sections.

1) Resource Manager: The Resource Manager module
takes the network’s traffic, topology data, constraints and
client requirements as inputs. For each client requirement, the
Resource Manager decides: (1) the acceptance or rejection of
the client request and (2) if the request is accepted, then for
each network function, it identifies: (a) either a non-used VM
that can be re-used to run the required network function or a
server where a new VM can be created to run the required
network service, and (b) a path for traffic flow between every
two network functions directly connected in the DAG based
on expected volume of traffic specified in client requirement
and the available bandwidth of links in the NFC.

In addition, responding to requests from the Elasticity
Manager to scale resources, the Resource Manager decides
a new set of network functions assignments and paths for
existing client’s traffic flow. In the NFV context, scaling of
network functions include: (1) scaling out/in by changing
number of instances and (2) scaling up/down by changing
memory/CPU capacity/storage of the existing instance [1]. In
our research, we have considered the scaling out/in situation.
So for scaling out, the decision of whether to create a new
service instance in a more suitable location or re-use a dormant
service to save service instance creation time, may depend on
several factors such as the location of the dormant service and
its capabilities. Reassignment of functions and paths allows
cloud service providers to maximize their resources. However,
the transition from one configuration of network functions and
flow assignment to another could create transient congestion
which could degrade applications performances.

The combination of all these factors has to be considered
by the Resource Manager to decide resource allocation. A
popular technique that has been used for VM allocation [3]
and network management [11] is to model resource allocation
as a mixed Integer Linear Programming (ILP) optimization
problem. There is the intrinsic constraint that ILP optimization
is a NP-complete problem, and even when solutions are
obtained for special classes, it might be too slow for continued
adjustments of the system configuration causing inappropriate
hysteresis in the reaction. We advocate the more realistic
approach of looking for a good feasible configuration and do
not expect to find optimal solutions like the ones returned
by ILP. We need to explore approximations techniques. In
our prototype, we have modeled the problem as finding the
best fitted solution according to a Genetic Algorithmic (GA)
modeling [9] of the problem. Details of the implementation
can be found in Section IV.

2) Topology Manager: The Topology Manager module is
responsible for maintaining up to date state of the physical
infrastructure of the NFC. It keeps an inventory of all functions
running or dormant in the system. It knows about all physical
paths between servers and paths used by all the traffic flows.
It also maintains information about current traffic and service
demands. It will be the source of data for any analytic needed
to be done about the NFC. It is also in charge of the instan-
tiation or re-use of the necessary network functions as well
as the provisioning needed according to the instructions given
by the Resource Manager. Creation of network functions may
include deploying a VM in a server, installing the necessary
software and starting the necessary processes required by the
network functions.



3) Flow Manager: The aim of the NFC is to provide
flexibility in regard to network functions placement which can
be placed anywhere in the network. Hence, the sequence of
switches in the physical network that the traffic from a client
has to follow, may have loops (the same traffic flow may
visit the same server for two different functions more than
once). If so, the combination of original source and destination
information of a packet, is not sufficient to identify the network
functions this packet has gone through so far. Making the
situation more complicated, many network functions modify
packet headers. Therefore the original source and destination
information of a packet can be changed during the flow [11].
Hence, it is essential for the Flow Manager module to find
mechanisms to come up with unique identification for the
state of a packet in a flow path. This identification can be
done through tunnelling mechanism [10] or can be added into
headers of packets going through the network service.

4) Elasticity Manager: One of the main objectives of NFC
is to support scaling out/in network functions according to the
network traffic and dynamic needs of applications. Therefore,
the Elasticity Manager monitors the network and servers to
determine when to scale out/in the resource allocation to
meet the traffic demands according to the SLAs and QoS
agreements. Finding the exact network function(s) or path(s)
which are causing the bottleneck is essential because of the
costs involved in running new network functions as well as
the impact reallocating functions and flow paths may cause
in service quality and traffic lost due to switching delays.
Also, it is important to decide the right type an amount of
resources to increase/decrease to achieve the demand and avoid
the potential for some kind of thrashing phenomenon.

5) Rules Generator: The Rules Generator module gener-
ates data plane configuration for the switches to route traffic
through the appropriate sequence of network functions from
their source to destination according to client requirements.
It is this module that directly takes advantage of SDN and
OpenFlow. Because the NFC controls the switches, routing
inside the NFC network is done entirely using OpenFlow
VLAN and MPLS tags adapting the ideas from [11]. This is
done to avoid all the problems that modifications of packet
headers by middle boxes can cause [12]. Rules Generator uses
the identification tag issued by the Flow Manager to infers
mappings between the incoming and outgoing traffic flows of
a network service and to identify the traffic flow that a packet
belongs to. Tags are added at ingress point before the traffic
has been gone through any network function, thus letting the
traffic be identified by the Source and Destination headers and
they are removed at the egress point.

Furthermore, when updating the network configuration as
a result of scaling needs, the Rules Generator follows the
per-flow consistency introduced in [13] to avoid any inconsis-
tencies in transient traffic and reduce traffic lost. The update
mechanism works by stamping every incoming packet with a
version number and modifying every configuration so that it
only processes packets with a set version number. To change
from one configuration to next, it first populates the switches
in the middle of the network with new configurations guarded
by the next version number. Once that is completed, it enables
the new configurations by installing rules at the perimeter of
the network that stamp packets with the next version number.

This method makes network updates faster and cheaper, by
limiting the number of rules or switches affected.

IV. INITIAL IMPLEMENTATION OF RESOURCE MANAGER

As the initial stage of developing NFC Management Sys-
tem, we have focused on the implementation of the Resource
Manager. Also, we have implemented the Flow Manager and
Rules Generator modules as the supporting modules to evaluate
the Resource Manager module. In this section, we describe
with some detail the implementation of the Resource Manager
module.

A. Genetic Programming (GP) Approach

As explained in section III-A1, the Resource Manager
module has two main responsibilities: (1) New function pro-
visioning: upon receipt of a new set of policies, resources are
identified within the given physical network constraints and
already allocated resources for the existing policies and (2)
Scaling out/in: upon the request from the Elasticity Manager
to support scaling out/in the resources, decides a new set of
network functions assignments and paths for existing client’s
traffic flow. These two activities are implemented indepen-
dently but both use Genetic Algorithm (GA) as the mechanism
to allocate resources.

GAs are a part of evolutionary computing and were in-
troduced as a computational analogy of adaptive systems [9].
They are modelled loosely on the principles of the evolution
via natural selection, employing a population of individuals
that undergo selection in the presence of variation, inducing
operators such as mutation and crossover. A fitness function is
used to evaluate individuals, and reproductive success varies
with fitness.

The GAs [9]:

1) Randomly generate an initial population F(0) with n
full solutions f

2) Compute and save the fitness u(f) for each individual
full solution f in the current population F(t)

3) Generate F(t+1) by selecting i full solutions from F(t)
4) Produce offspring by applying genetic operators to

population F(t+1)
5) Repeat step 2 until satisfying solution is obtained.

Following the terms used with GA concepts, a possible
configuration state (represented by servers and paths
assignments) of the NFC is considered as a full solution f ,
if it is an allocation of resources for all the policies in the
system. The population F(t) consists of n full solutions which
represents different possible configuration states for the NFC.
If there are m number of policies in the NFC, then each full
solution contains m number of partial solutions, each partial
solution representing the allocation of resources (i.e., servers
and paths) for each policy.

F1 = w1
1
M .Ts + w2

1
L .Ul + w3(1 − 1

L .Tl) (1)

F2 = w1
1
M .Ts + w2

1
L .Ul + w3(1 − 1

L .Tl) + w4
1
M .Cs + w5

1
L .Cl (2)

TABLE I. FITNESS FUNCTIONS



M Total no. of servers
Ts Total no. of servers used in the configuration solution
L Total no. of links
Tl Total no. of links used in the configuration solution
Ul % of total links capacity used in a configuration solution
Cs Total servers changed from previous state to current state
Cl Total links changed from previous state to current state
w1, w2, w3, w4, w5 Weighting factors

TABLE II. DESCRIPTION OF PARAMETERS USED IN FITNESS
FUNCTIONS

1) Handling new services provisioning: For new services
provisioning, the Resource Manager uses network’s traffic,
topology data, server constraints and client requirements as
inputs. In step 1, the Resource Manager generates the initial
population F(t). It performs a selection for the initial assign-
ment of network functions and paths for each new policy
request, within the given physical network constraints and
previously allocated resources for the existing policies. We
have used Depth First Search (DFS), so that the servers and
paths are selected by searching through the whole search
space and selecting the first solution we come across. The
configuration state (network functions and paths) that the
Resource Manager comes up with DFS for a new policy
request is a partial solution that combined with the partial
solutions of each of the existing policies form a full solution.

After the initial population is generated, the fitness function
1 (F1) given in Table I is used to measure how good a full
solution is (step 2). F1 takes into account: servers capacity,
links capacity, number of links used and number of servers
used with respect to the total physical usage of the network and
network resources available. Weights of parameters (w1, w2

and w3) can be decided according to the preferences, whether
to give more priority to server utilization or links utilization.

As we are trying to maximize the server and network
utilization, fittest solutions are those for which the function
returns the smallest value. So the full solutions that returns
small values are preferred and in step 3 they are selected as
the best solutions for next generation population.

In step 4, the Resource Manager performs mutations and
crossover for randomly selected partial solutions of a full
solution and generate a new full solution. We have considered
two types of genetic operators to produce offspring: (1) mu-
tation and (2) crossover. Crossover and mutation perform two
different roles. Crossover is a convergence operation which
is intended to pull the population towards a local min/max.
On the other hand, Mutation is a divergence operation. It is
intended to occasionally break one or more members of a pop-
ulation out of a local min/max space and potentially discover
a better space. Since the end goal is to bring the population to
convergence, crossover happen more frequently and mutation,
being a divergence operation, happen less frequently.

In our implementation, mutation is achieved via (1) Re-
placement where we try to place the network function in a
different server and (2) Re-wiring where we try to find a
different path between given two network functions. For the
Re-placement mutation, first we select a random full solution
from the population and a random partial solution of the
selected full solution. Then, we select a random network
function in the partial solution and try to find a new server

where it can be placed on. If a new server is available to
place the selected function, then we find paths accordingly
between the network function and its successor by considering
the new placement. For the Re-wiring mutation, similar to Re-
placement mutation, first we select a random full solution from
the population and a random partial solution of the selected
full solution. Then we select a random network function in the
partial solution and try to find a new path to its successor.

For the crossover process in the implementation, first we
select two random full solutions from the population and a
random partial solution from each selected full solution. Then,
we try to check whether the configuration given in first partial
solution can be applied to the second partial solution and vice-
versa. If both ways are possible, then the configurations of
partial solutions will be changed accordingly.

The newly generated full solution is added to the existing
set of full solutions, which is known as the current population.
This process is continued until x number of generations are
explored. In the final generation, the full solution that gives
the best fitness value is selected as the best configuration for
the new policy implementation.

2) Handling scaling out/in: When the Elasticity Manager
decides a network function or a path has to be scaled out/in, the
Resource Manager starts with the current state and performs an
initial selection for the re-assignment of resources (new servers
and paths) of a set of network functions that are scaling. As
previously explained, the initial selection is done using DFS.
The partial solutions relevant to the scaling up are modified
according to the results of the search.

The fitness function 2 (F2) given in Table I is used
to measure how good a full solution is. It uses additional
parameters representing the changes to the current system.
While trying to maximize the server and network utilization,
we want to minimize the changes to the current system because
drastic re-arrangements of the system configuration will cause
unacceptable deterioration of functions during the transition
time. Therefore, according to the requirements, weights of the
parameters (w1, w2, w3, w4 and w5) can prioritize server and
link utilization or minimize server or link changes.

The mutations and crossovers are carried out only to the
partial solutions which were changed because of the scaling
out. As mentioned earlier, the process is continued until x
number of generations are explored and the best full solution
is selected as the configuration for re-assignment of the policy.

V. EVALUATION

In this section we describe results of experiments which
were carried out to test the two main functions of the Resource
Manager: (1) New functions provisioning and (2) Scaling out
of existing functions. Also, we will show a comparison of two
configuration update mechanisms used by the Flow Manager
and the Rules Generator: (1) Rules are updated in all switches
simultaneously and (2) Uses versioning tags to maintain per-
flow consistency.

A. Simulation Setup

Our prototype NFC management system have been devel-
oped in C++ and Python. Conceptually, the Resource Manager,



Topology Manager, Elasticity Manager and Flow Manager can
be seen as controller applications, while the Rule Generator as
an extension to the network operating system.

Our prototype network makes use of Software Defined
Networks (SDN) to allow programmatic control over the traffic
flow and easy reconfiguration of the physical network. We
have implemented the physical structure in Mininet [14], used
“Ryu” [15] as SDN controller, and dumb OpenFlow switches
as network services [8].

In our experiments, we have considered a new func-
tions provisioning to be a set of policies (chains of network
functions). The policies used in experiments are generated
randomly with at least 2 but no more than 7 functions. We have
considered 5 types of network functions where each network
function needs different number of capacity units. The types
of network functions in a policy are also selected randomly.
All experiments were carried out in a machine with an Intel
core i7-4500u processor and 8GB of RAM.

Fig. 3. K-fat tree architecture

We work with four types of environments : (1) 64 servers
with 72 switches, (2) 32 servers with 30 switches, (3) 16
servers with 20 switches, and (4) 8 servers with 8 switches,
under a k fat-tree architecture. Figure 3 shows a 4-ary fat-tree.
A typical k-ary fat-tree network has three layers: a core layer,
an aggregation layer and a Top-of-Rack (ToR) layer. It consists
of (k/2)2 core layer switches and k pods of k switches, half
of them aggregation switches and the other half ToR. Each
switch in pod has k ports. The ToR switches are at the bottom
of the pod, and the aggregation switches in the middle. In one
pod, each ToR switch is connected to every aggregation switch
and (k/2) servers. Each aggregation switch connects to (k/2)2

switches on the core layer.

B. Handling new policy requests

A popular technique that has been used for VM allocation
[3] is to model the resource allocation as ILP optimization
problem. There is the intrinsic constraint that ILP optimization
is a NP-complete problem, and even when solutions are
obtained for special classes, it might be too slow. We carried
out 3 experiments to calculate the time taken to find a solution
to implement 10, 30 and 50 network functions with ILP.
ILP took 2.3, 4.6 and 7.2 hours respectively. Even though
an ILP formalization of the problem gives an exact solution,
ILP calculation is unfeasible for NFC because to find an
optimal configuration, ILP takes a lot of time even for a small
number of network services. Therefore, for NFC prototype, we
have modelled the Resource Manager with the GP approach
which finds the the best fitted solution according to a Genetic

Algorithmic after a fixed amount of generations have been
explored.

Fig. 4. Total time to implement 100 policies with 200,300,400 generations

Fig. 5. GP time vs DFS time to implement 100 policies with 200 generations

When handling new provisioning request, the Resource
Manager processes the policy chains in the request sequen-
tially. For each policy, it starts by performing a DFS for the
assignment of servers and paths for the policy (i.e. a partial
solution) under network and server constraints of already
allocated resources for the existing policies. After the initial
solution for the policy is found, with the use of GP approach,
the Resource Manager performs mutations and crossovers for
randomly selected partial solutions of a full solution and
generate new full solutions.

Figure 4 gives the average total time taken to implement
new functions provisioning requested comprising of 100 poli-
cies chains (this would be about 500 network functions) in 4
types of NFC environments: (1) 8 servers, (2) 16 servers, (3) 32
servers and (4) 64 servers with 200, 300 and 400 generations.
These total times include: (1) time taken for Resource Manager
to perform DFS to come up with an initial partial solution for
each policy and (2) time taken to run the GP over generations
to come up with a better full solution. The growth of the graph
is exponential and it seems to becoming smooth when the
number of servers are increasing. The increase is due to the
large number of choices, specially at the beginning when all
resources are available, in larger NFCs.

In order to understand the effect of the size better we get
the average times for the DFS part and the GP part for 200
generations separately. In Figure 5 shows that it is indeed the
DFS that takes large portion of the time. This can be addressed
by using simple heuristics to find the allocation of a few of the



first policies and only start running DFS when the heuristics
fail to find quick solutions.

Fig. 6. Fitness values when implementing 100 policies

Since we are processing policies in a new provisioning
request sequentially, we needed to check the impact of the
order in the results. Figure 6 shows that order has not much
effect. We have fixed 100 policies and processed them in 100
random orders for environment (2). Only three different fitness
function values were obtained with a mean value of 0.689 a
standard deviation (SD) of 0.008. When 100 random policies
were selected 100 times and processed the mean was 0.686
and the SD 0.022.

C. Handling scaling out requests of existing policies

Fig. 7. Impact of No. of generations for improvement of solution

As explained in section IV, handling scaling out requests of
existing policies, starts with the Resource Manager performing
a DFS for the reassignment of a set of network functions
and the corresponding paths. In a first set of experiments we
wanted to figure out what was the impact of the number of
functions scaling out simultaneously and the initial state of
the system before the scaling out starts. We used two types of
environments for the experimental setup: (1) an environment
where 80% of the server and links capacity are full (tight
environment) and (2) an environment where only 50% of the
server and links capacity are full (loosely tight environment).
We carried out three sets of experiments in each environment.
One in which 30 functions were scaling out simultaneously,
one in which 10 functions were scaling simultaneously and a
third one in which only one function is scaling out. The results
are summarized in Figure 7.

The first observation is that there is little benefit in running
the GP when the number of functions scaling simultaneously
is small. One can avoid running the GP and use directly
the DFS solution. Correspondingly, GP optimization offers
more gains for larger numbers of simultaneous requests. When
implementing 10 policy changes simultaneously, in 37.5% of
experiment runs, the full solution was improved over genera-
tions. When implementing 30 policy changes simultaneously,
the full solution was improved in 65% of the runs.

The second observation is that the tight environments get
more improvements than the loosely tight environments. Over
all the experiments, in fully tight environments, the fitness
function of the full solutions was improved in 52.5% of the
runs by the GP, while in the loosely tight environments, there
were changes only in 37.5%.

The last observation is that in all the cases, most of the
improvement in the fitness function happens early on, and
after 200 generations the improvements decrease significantly.
Hence, we will present the performance numbers based on runs
of 200 generations.

Fig. 8. GP with 200 generations to implement 30 policies changes

In the second set of experiments we collected data from
30 runs of 200 generations when 30 functions were scaling
simultaneously. We measured the time at two points. First,
the time the Resource Manager took to perform DFS to find
to initial solution, and then the time it took to performs the
mutations and crossovers in GP. We run the experiments in the
4 environments: (1) 8 servers, (2) 16 servers, (3) 32 servers and
(4) 64 servers. The results for the GP part is shown in figure
8. We observed that the time taken by the DFS is insignificant
with respect to the time taken by the GP part. For the DFS
part, the speed of growth is decreasing with the increasing of
the number of servers. For the GP part, the growth is linear
with respect to the number of servers.

D. Updating the physical network configurations

As explained in sections III-A5, as part of the scaling
out/in, the Rule Generator has to reconfigure the data plane
dynamically. As the initial step, we have experimented with
two different implementations found in existing works: (1)
Rules are updated in all switches simultaneously, and (2)
versioning tags are used to maintain per-flow consistency [13].
The first implementation introduces an average of 7% packet
loss while second implementation reduce it to average of 1.5%.
As a part of future work on the Rules Generator module, we
are planing to explore more methods of updating the physical
network configurations to reduce the packet loss.



VI. NEXT CHALLENGES

In order to truly integrate network functionality into com-
mercial offerings of Cloud services, we advocate for a more
aggressive integration of the network and server infrastructure.
Advances in SDN and standards such as OpenFlow make this
integration feasible. However, this integration does not come
without new challenges.

The most immediate challenge comes with the network
functions placement, that is the increase in the dimensionality
of the optimization space. In its most basic form, we want
to simultaneously optimize the placement of functions (in the
servers) and traffic load (by finding the appropriate paths in the
network). The larger number and the non-linear dependency
of the variables involved indicate that typical mixed ILP
approaches might not be the appropriate tool to approach
the problem – we don’t want exact solutions, we want fast
solutions. The time typically required for ILP to compute a
solution is unsatisfactory, especially considering that client’s
traffic characteristics may change quickly. Even though we
have used a linear equation as the fitness function for our
implementation, it is not necessary for the fitness function
of a GA to be linear. One can derive a non-linear fitness
function, that can produce better feasible solutions in a given
time constraint and that are robust to progressive changes in the
system, since drastic re-arrangements of the system configura-
tion will cause unacceptable deterioration of functions during
the transition time. We have also assumed a management
system that is mostly agnostic to the semantics of functions,
but it is likely that with knowledge about the functions during
optimization better and faster results can be obtained. We need
to look for approximation algorithms that can cope with non-
linear objective functions and we are planing to explore meta-
heuristics in operation research and hybrid machine learning
methods which are practical improvements based on semantic
knowledge injected to the theoretical models of optimization
and learning.

The second challenge is to determine when to scale out/in
the resource allocation to meet the traffic demands according
to the SLAs and QoS agreements. Finding the exact network
function(s) or path(s) which are causing the bottleneck and
deciding the right number of resources to increase/decrease
to achieve the demand is important.The most basic method
to scale out/in is to monitor system-level metrics (server
and links utilization) and determining whether to scale out/in
based on a threshold. However, threshold-based algorithms do
not capture the complex interaction among multiple resource
parameters (server and links) and the potential diversity of
traffic types. Determining the right set of thresholds for them
to simultaneously achieve the right SLA and QoS for each type
of traffic would be difficult. Often the thresholds are set based
on ad-hoc measurements and past experiences. We are planing
to explore machine learning techniques, in particular reinforce-
ment learning, to learn the behaviour of the applications and
automatically adapt to changes. The learning algorithm can be
augmented with heuristics to improve the responsiveness and
guide the algorithm itself.

Furthermore, when updating the network configuration as
a result of scaling needs, the Rules Generator should avoid any
inconsistencies in transient traffic and reduce traffic lost. We
are planing to explore more methods of updating the physical

network configurations, so that the changes to the current
system will be minimum and unacceptable deterioration of
functions during the transition time will avoided.

VII. RELATED WORK

Traditionally network functions have been implemented
as hardware based middle-boxes. CoMB [16] proposes an
architecture which implements these middle-boxes as software-
based, virtualized entities. [17], [18] present platforms to
manage software-based middle-boxes. With the popularity of
NFV, [19] discusses the possibility of outsourcing enterprise
middle-box processing to the cloud. FeatureAPI [20] intro-
duces a policy language to map policies onto the underlying
cloud network, so that external Feature Providers can easily
provide network functions to enterprises. [21] highlights the
customer expectations when they outsource the network func-
tions. Stratos [6] is the first work that presents a framework for
external Network Functions Providers. Stratos assumes a cloud
service exists and to handle traffic flows and redirections, it
associates each middle-box with a virtual switch that provides
network functionalities. These switches decide where to send
traffic, and if the traffics crosses from one physical server to
another, it uses the traditional routing provided by the cloud
network.

Virtualized data centers are envisioned to provide better
management flexibility, lower cost, scalability, better resources
utilization and energy efficiency [22], [23], [24]. The place-
ment of the NFVs in the physical machines and use of net-
work bandwidth are crucial for the performance of virtualized
data centers. [3] has considered the VM placement problem
in a cloud system only with respect to network resources
utilization. Their approach uses integer linear programming
and takes in the order of minutes to decide the placement of
1024 VMs in the data center of 16 servers. [5] proposes a
Markov approximation technique to jointly address the VM
placement and routing problem. Their approach takes in the
order of seconds to decide the placement of a VM. However,
it decides the location of one VM at a time. Instead, we argue
that to handle dynamic and fluctuating service demands (e.g.,
flash events), a large number of policies and VMs may need to
be handled concurrently. [4] focuses on network interface of
machines as the network resource to optimize with the server
resources. They assume that the network interconnecting the
machines has full bisection bandwidth, so that considerations
of bandwidth of the links are put aside.

VIII. FINAL REMARKS

In this paper we introduced a new service chaining algo-
rithm, based on Genetic Algorithms (GA) which jointly opti-
mize VM allocation and network management. Our approach
offers more flexibility, allowing both computing resources
and network configuration to be updated concurrently. We
discussed architecture and functionalities of the experimental
platform: NFC and the simulation setup of the study. Our
results showed that although GA may not provide the optimal
solution, GA can solve the computing and network allocations
for tens to hundreds of policies in a 64 server environment on
the order of seconds.



ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on.

REFERENCES

[1] ETSI, “Network functions virtualisation white paper 1,” SDN and
OpenFlow World Congress, 2013.

[2] E. NFV, “Network functions virtualisation white paper 3,” SDN and
OpenFlow World Congress, 2014.

[3] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
GIIS’12, 2012.

[4] F. Wuhib, R. Yanggratoke, and R. Stadler, “Allocating compute and
network resources under management objectives in large-scale clouds,”
in Journal of Network and Systems Management, 2013.

[5] J. Jiang, T. Lan, S. Ha, M. Chen, and at el, “Joint vm placement and
routing for data center traffic engineering,” in INFOCOM’12, 2012.

[6] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella, “Stratos:
Virtual middleboxes as first-class entities,” Technical Report TR1771 :
University of Wisconsin-Madison, 2013.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, and L. P. et al, “B4: Ex-
perience with a globally-deployed software defined wan,” in ACM
SIGCOMM’13, 2013.

[8] “Openflow 1.4 specifications,” https://www.opennetworking.org/sdn-
resources/onf-specifications/openflow.

[9] M. Melanie, An Introduction to Genetic Algorithms, 1999.
[10] R. Cohen, K. Barabash, B. Rochwerger, L. Schour, D. Crisan, R. Birke,

C. Minkenberg, M. Gusat, R. Recio, and V. Jain, “An intent-based
approach for network virtualization,” in IM 2013.

[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in ACM SIGCOMM’13.

[12] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
enforcing network-wide policies in the presence of dynamic middlebox
actions,” in HotSDN’13, 2013.

[13] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM’12, 2012.

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in ACM HotNets’10, 2010.

[15] “Ryu sdn controller,” http://osrg.github.io/ryu/.
[16] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and

implementation of a consolidated middlebox architecture,” in NSDI’12.
[17] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward software-

defined middlebox networking,” in HotNets-XI, 2012.
[18] J. Martins, M. Ahmed, C. Raiciu, M. H. Vladimir Olteanu, R. Bifulco,

and F. Huici, “Clickos and the art of network function virtualization,”
in NSDI’14, 2014.

[19] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network
processing as a cloud service,” in ACM SIGCOMM’12, 2012.

[20] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network function-
ality,” in HotSDN’12, 2012.

[21] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network
function outsourcing: requirements, challenges, and roadmap,” in Hot-
Middlebox’13, 2013.

[22] M. Bari, R. Boutaba, R. Esteves, and L. Granville, “Data center network
virtualization : A survey,” in IEEE Communication Surveys, 2014.

[23] N. M. K. Chowdhury and R. Boutaba., “Network virtualization : State
of the art,” in IEEE Communication Magazine, 2009.

[24] A. Fischer, J. Botero, M. Till Beck, and H. de Meer, “Virtual network
embedding : A survey,” in IEEE Communication Surveys, 2013.


