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The p57Kip2 cyclin-dependent kinase inhibitor (CDKi) has

been implicated in embryogenesis, stem-cell senescence

and pathologies, but little is known of its role in cell cycle

control. Here, we show that p57Kip2 is targeted by the p38

stress-activated protein kinase (SAPK). Phosphorylation of

p57Kip2 at T143 by p38 enhances its association with and

inhibition of Cdk2, which results in cell-cycle delay upon

stress. Genetic inactivation of the SAPK or the CDKi

abolishes cell-cycle delay upon osmostress and results in

decreased cell viability. Oxidative stress and ionomycin

also induce p38-mediated phosphorylation of p57 and cells

lacking p38 or p57 display reduced viability to these

stresses. Therefore, cell survival to various stresses

depends on p57 phosphorylation by p38 that inhibits

CDK activity. Together, these findings provide a novel

molecular mechanism by which cells can delay cell cycle

progression to maximize cell survival upon stress.
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Introduction

Mammalian cell cycle progression throughout the G1 phase is

controlled by signalling pathways that regulate the activities

of G1 cyclin-dependent kinases (CDKs) Cdk4/6-CyclinD and

Cdk2-CyclinE/A, which are responsible for modulating the

expression, activity and stability of many cell-cycle regulatory

proteins (Malumbres and Barbacid, 2005). CDK activity is

regulated by two unrelated families, INK and Cip/Kip, of

CDK inhibitors (CDKis) (Vidal and Koff, 2000; Besson et al,

2008). The Cip/Kip family includes p21Cip1, p27Kip1 and the

p57Kip2 proteins (Vidal and Koff, 2000). Although all Cip/Kip

family members share a high homology in the N-terminal CDKi

domain and the C-term region, p57 harbours a large central

domain enriched in proline residues, which may confer unique

functions not shared by p21 or p27 (Lee et al, 1995; Pateras

et al, 2009). Notably, p57 is the only CDKi which play an

essential role in mouse embryogenesis and p57� /� mice

display several developmental defects and a phenotype that

resembles the Beckwith–Wiedeman syndrome (Yan et al, 1997;

Zhang et al, 1997). Loss of p57 contributes to the occurrence of

soft tissue carcinomas, Wilm’s tumours and, in certain cells, a

decrease in its expression has been related to increased

invasiveness and metastasis, which suggests a role of p57 as

a putative tumour suppressor (Matsuoka et al, 1995; Orlow

et al, 1996; Pateras et al, 2009; Borriello et al, 2011). In addition,

it has been shown that p57 mediates cell-cycle progression

through diverse mechanisms such as the inhibition of G1 CDKs,

particularly Cdk2 (Hashimoto et al, 1998). Remarkably, p57 has

recently been shown to maintain haematopoietic stem cells

(HSCs) quiescence by retaining CyclinD into the cytoplasm

(Matsumoto et al, 2011; Zou et al, 2011). However, the

regulation of p57 as well as its biological role in cell-cycle

control is not well defined yet, possibly due to its essentiality

and the lack of proper tools for its detection and study.

Stress-activated protein kinases (SAPKs) play a key role in

controlling different cell-cycle checkpoints (Ambrosino and

Nebreda, 2001; Bulavin and Fornace, 2004). Mammalian p38

SAPK has been implicated in cell cycle arrest induced by

several stimuli at both G2/M and G1/S phases, at least in part,

through the stabilization of p21Cip1 mRNA or p27Kip1 protein

(Bulavin et al, 2001; Dmitrieva et al, 2002; Bulavin and

Fornace, 2004; Pedraza-Alva et al, 2006; Reinhardt et al,

2007; Cuadrado et al, 2009; Lafarga et al, 2009). In budding

yeast, the p38-related SAPK Hog1 controls cell cycle at

different phases such as S, G2/M (Clotet et al, 2006; Yaakov

et al, 2009) and G1 (Escoté et al, 2004; Adrover et al, 2011). In

G1, Hog1 directly phosphorylates and controls the activity of

the CDKi Sic1, which is related to the members of the

mammalian Cip/Kip family, and prevents entry into S phase

until proper cellular adaptation to osmostress is achieved

(Escoté et al, 2004).

The functional and structural conservation of Hog1 and

p38 (Galcheva-Gargova et al, 1994; Han et al, 1994; de Nadal

et al, 2002) prompted us to test whether p38 was able to

phosphorylate and regulate the activity of the mammalian

Cip/Kip family of CDKis. Here, we report that stress-activated

p38 phosphorylates and regulates the activity of the p57

CDKi. Phosphorylated p57 delays cell cycle and this delay is

critical for cell survival in response to stress. This defines a
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novel role for the p57 CDKi as an integrator of stress signals

to regulate cell-cycle progression.

Results

p38 SAPK phosphorylates the p57Kip2 CDKi in vitro

To analyse whether p38 SAPK was able to regulate some

members of the Cip/Kip family of CDKis, we initially ex-

pressed in bacteria GST-fused p21Cip1, p27Kip1 and the p57Kip2

proteins. Purified proteins were subjected to an in vitro

phosphorylation assay with activated p38. In-vitro activated

p38 SAPK was able to phosphorylate the CDKis p21Cip1

and p57Kip2 but not p27Kip1 (Figure 1A). Since p21 was

already known to be a p38 target (Kim et al, 2002; Todd

et al, 2004) we focussed our efforts to further characterize

p57 as a novel putative substrate for the p38 SAPK.

The phosphorylation of p57 in vitro by p38 was fully

prevented by the p38 inhibitor SB203580. ATF2, a known

p38 substrate, was used as positive control (Figure 1B). The

p57 protein contains five putative S/TP MAPK consensus sites.

Thus, we generated two p57 truncated variants; the N-term

containing three S/TP sites and the C-term containing two S/

TP sites. In vitro kinase assays showed that the N-terminal p57

fragment was phosphorylated to the same extent as the full-

length protein whereas the C-term fragment was not phos-

phorylated at all (Figure 1C). The three S/TP sites found at the

p57 N-term fragment were then mutated in full-length p57 to

either glycine or alanine and assayed in vitro. Mutation at T143

completely abolished in-vitro phosphorylation of p57 by p38

whereas mutation of p57 at T139 or T167 did not alter

phosphorylation of p57 by p38 (Figure 1D).

To further confirm that p57 was a direct substrate for p38,

we expressed Flag-tagged wild-type p57 and mutant p57T143A

in HeLa cells. Flag immunoprecipitates were assayed in vitro

with active p38 SAPK in the absence or the presence of

SB203580. Wild-type p57 but not p57T143A was specifically

phosphorylated by active p38 (Figure 1E). Therefore, p38

directly phosphorylates p57 at T143 in vitro.

p38 SAPK interacts with the p57Kip2 CDKi

Most SAPKs interact with their corresponding substrates in cells.

Thus, we tested whether p38 was able to interact with p57 by

performing immunoprecipitation experiments in extracts from

HeLa cells expressing Flag-tagged p57 and HA-tagged p38.

Binding of HA–p38 was observed when Flag–p57 was precipi-

tated from cell extracts (Figure 2A). Correspondingly, Flag–p57

was also able to co-immunoprecipitate when HA–p38 was

precipitated using anti-HA antibodies (Figure 2A). Notably, we

were also able to co-immunoprecipitate Flag-tagged p57 with

endogenous p38 SAPK (Figure 2B). By using specific antibodies

against endogenous p57 and p38 proteins, we were able to

confirm the interaction of the two proteins in HeLa cells

(Figure 2C). This interaction was also confirmed in wild-type

MEF cells and it was abolished in p38� /� or p57� /� cells

(Figure 2D). These results show that the CDKi p57 and the p38

SAPK do interact in vivo and form a stable complex.

The p38 SAPK phosphorylates the p57Kip2 CDKi in vivo

Due to the fact that T143 is a novel p38 target site not

described to date, to detect p38 SAPK-mediated p57 phos-

phorylation in vivo, we took advantage of a generic anti-

phospho S/T antibody that was able to specifically recognize

p57 phosphorylation at T143. Thus, E. coli purified GST–p57

and GST–p57T143A proteins were incubated in vitro with cold

ATP in the absence or presence of activated p38 and analysed

by western blot. Only wild type p57, but not p57T143A was

recognized by the anti-phospho S/Tantibody (Supplementary

Figure S1A). We next transfected HeLa cells with wild-type

Flag-tagged p57 or Flag-tagged p57T143A in the presence of

HA-tagged p38 and myc-tagged MKK6DD (a constitutively

active form of the MKK6 MAPKK). The analysis of Flag

immunoprecipitates revealed that wild-type p57 was strongly

phosphorylated when p38 SAPK was activated by MKK6DD.

In contrast, the p57T143A mutant was not phosphorylated by

p38 (Figure 3A). Importantly, incubation of the cells with the

p38 SAPK inhibitor SB203580 precluded p57 phosphorylation

indicating that in vivo p57 phosphorylation required p38

activation (Figure 3B). To rule out that p57 phosphorylation

was due to p38 and MKK6DD overexpression, we then

assessed p57 phosphorylation upon osmostress. HeLa cells

expressing Flag–p57 or Flag–p57T143A were subjected to

osmostress and we found that only p57 but not p57T143A

was phosphorylated (Figure 3C). The importance of finding a

novel in-vivo p38 substrate prompted us to generate specific

antibodies targeting phosphorylated p57 at T143. Thus, a

phosphopeptide surrounding the p57 T143 site was used to

immunize rabbits and the collected anti-sera was affinity

purified. The antibody specifically recognized the phospho-

peptide but not the non-phosphorylated peptide. Next, we

phosphorylated in vitro purified wild-type GST–p57 and

GST–p57T143A in the presence of p38 and MKK6DD with

cold ATP. The purified anti-pp57 antibody was able to speci-

fically recognize p57 phosphorylation at T143A (Supplement-

ary Figure S1B). Then, we expressed wild-type Flag-tagged

p57 in HeLa cells in the absence or the presence of the

p38 SAPK inhibitor Birb 0796. Cells were osmostressed

and analysed by western blot. The anti-pp57 antibody was

able to specifically recognize p57 phosphorylation in vivo

upon p38 SAPK activation (Supplementary Figure S1C).

Correspondingly, phosphorylation of Flag–p57 upon osmos-

tress was also abolished in p38� /� cells (Supplementary

Figure S1D). We next assessed in vivo phosphorylation p57

by immunofluorescence using the specific phospho-p57 anti-

body. Wild-type and p38� /� MEFs were subjected to osmos-

tress and found that whereas no phosphorylation of p57 was

detected in the absence of stress, strong nuclear fluorescence

was detected upon osmostress. The increase on p57 phos-

phorylation upon osmostress was not observed in p38� /�

cells (Figure 3D). Altogether, these results show that p57 is

phosphorylated at T143 in vivo by the p38 SAPK.

p57 phosphorylation at T143 by p38 regulates p57

activity towards Cdk2 in vitro

We then analysed whether p57 phosphorylation by p38 was

modulating p57 activity. It has been shown that protein

phosphorylation can alter the stability or localization of

Cip/Kip CDKis (Tsvetkov et al, 1999; Ishida et al, 2002; Kim

et al, 2002; Liang et al, 2002; Shin et al, 2002; Kotake et al,

2005; Kossatz et al, 2006). Thus, we initially monitored

endogenous p57 half live in HeLa cells treated with NaCl or

anisomycin (a known activator of p38). Protein synthesis was

stopped by the addition of cycloheximide 30 min prior to

stressing the cells. p57 protein levels were followed over time

by western blot. Neither osmostress nor anisomycin altered
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p57 half live (Supplementary Figure S2A), albeit this was

under the control of the proteosome as previously reported

(Supplementary Figure S2B; Kamura et al, 2003). To further

confirm that p57 protein half life was not affected by cell

stress, we expressed wild type Flag-tagged p57 in HeLa cells.

As observed with endogenous p57, Flag-tagged p57 protein

half life was neither affected by osmostress nor anisomycin

(Supplementary Figure S2C). We then monitored whether

p57 localization was altered upon osmostress by following

the localization of a p57-DsRed construct. p57 was found to
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be localized mainly in the nucleus and it did not change its

localization upon stress (Supplementary Figure S3B). Similar

results were obtained when endogenous p57 was followed in

cell fractionation (Supplementary Figure S3A). Of note,

CyclinD was also mainly nuclear (Supplementary Figure

S3A). The localization of p38 did not change significantly

under the conditions tested but there was a significant

amount of active p38 present in the nuclei of the cells (Supple-

mentary Figure S3A and B). Altogether, phosphorylation of p57

by p38 neither affects its stability nor its localization.

p57 preferentially binds to Cdk2 (Hashimoto et al, 1998) and

thus, we asked whether T143 phosphorylation altered the

ability of p57 to interact with and inhibit Cdk2. Wild type

GST–p57 and mutant GST–p57T143A purified from bacteria were

phosphorylated in vitro by activated p38 SAPK and binding to

Cdk2 was assessed. Binding of p57 to Cdk2 increased almost

four-fold when phosphorylated by p38. Remarkably, binding of

the p57T143A mutant to Cdk2 was not affected after incubation

with p38 (Figure 4A). Therefore, phosphorylation of p57 by p38

increased the association of p57 with Cdk2.

An increase in the affinity of p57 towards CDK2 could

result in a decrease on Cdk2 activity. Thus, we tested whether

phosphorylation of p57 could inhibit more efficiently Cdk2

activity. We incubated increasing amounts of purified GST–

p57 (wild-type and the p57T143A mutant) previously incu-

bated or not with active p38 and then, analysed Cdk2/

CyclinA activity in vitro. Increasing amounts of GST–p57

inhibited gradually the activity of Cdk2 as it was observed

by incubation of Cdk2 with p27. Remarkably, the inhibition

of Cdk2 activity was more pronounced when p57 was phos-

phorylated by p38 (Figure 4B). Correspondingly, the ability of

p57T143A to inhibit Cdk2 did not increase by preincubation
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with p38 (Figure 4B). Thus, phosphorylated p57 at T143

inhibits more efficiently Cdk2–CyclinA activity than non-

phosphorylated p57.

Osmostress regulates Cdk2 activity in vivo through p57

phosphorylation at T143

If phosphorylation of p57 by p38 increases its ability to

inhibit Cdk2, then osmostress should be expected to cause

a decrease in Cdk2 activity in vivo. To assess Cdk2 activity,

wild-type, p38� /� and p57� /� MEFs were challenged with

100 mM NaCl for 4 h and cell lysates were then immunopre-

cipitated with anti-Cdk2 antibodies. Endogenous Cdk2 activ-

ity was assayed in the presence of radiolabelled 32P-g-ATP

and Histone H1 as substrate. Cdk2 activity from wild-type

MEFs was reduced to o20% upon osmostress (Figure 4C).

This effect was dependent on p38 SAPK and p57 since it was

not observed in p38� /� or p57� /� MEF cells (Figure 4C).

Therefore, Cdk2 activity was inhibited in response to osmo-

stress depending on p38 and p57.

To analyse whether phosphorylation of p57 by p38 was

promoting the decrease in Cdk2 activity, we infected p57� /�

MEF cells with lentiviruses expressing wild-type or the

p57T143A mutant. Both proteins were expressed to a similar

extend in p57� /� MEF cells (Supplementary Figure S4).

Osmostress provoked a reduction on endogenous Cdk2 activ-

ity in cells carrying wild type p57 but not in cells carrying the

p57T143A mutant (Figure 4D). Therefore, p57 phosphorylation

at T143 is essential to regulate Cdk2 activity in vivo.

Osmostress regulates G1 progression in a p38- and

p57-dependent manner

Since phosphorylation of p57 by p38 induced a reduction on

Cdk2 activity, we analysed whether p57 was important to

mediate a cell-cycle delay in G1 upon osmostress. Wild-type,

p38� /� and p57� /� knockout MEFs cultures were subjected

to osmostress (100mM NaCl and 200mM) and cell-cycle pro-

gression was followed by FACS. Nocodazole was added 1 h after

osmostress to trap the cells at G2/M. In response to osmostress,
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wild-type cells clearly delayed the transition to G2/M (Figure 5A

and B). In contrast, p38� /� and p57� /� cells were not able to

delay cell-cycle progression to the same extent upon osmostress

(Figure 5A and B; Supplementary Figure S9). Both cells express

p18, p21 and p27 CDKis and it is worth noting that p21 is

upregulated in the absence of p57 (Supplementary Figure S5A).

Of note, p21 protein levels in p57� /� cells were not affected

upon osmostress and were downregulated upon the reintroduc-

tion of p57 (Supplementary Figure S5B and C). Taken together,

our data indicate that both p38 and p57 are required for cell-

cycle delay in response to osmostress.

To address the involvement of p57 phosphorylation at T143

on cell-cycle progression, we then infected p57� /� MEFs

with viruses expressing wild-type p57 or p57T143A and sub-

jected them to stress (100 mM NaCl). p57� /� cells expres-

sing wild-type p57 arrested at G1 upon osmostress as well as

wild-type cells (Figure 6A and B versus 5A and B). In

contrast, albeit cells arrested a little longer than p57� /�

cells, expression of p57T143A was not able to proper delay cell-

cycle progression upon stress (Figure 6A and B). Therefore,

phosphorylation of p57 at T143 by p38 is critical to impose a

G1 delay upon osmostress.

The p38 SAPK and p57 CDKi promote cell survival upon

osmostress

We reasoned that delaying cell-cycle progression in G1 could

be necessary to guarantee cell adaptation and survival to

osmostress. To assess the biological relevance of this cell-

cycle delay induced by p57 phosphorylation, we monitored

cell viability by propidium iodide (PI) staining by FACS in

response to osmostress. We subjected wild-type, p38� /� and

p57� /� cells to increasing amounts of NaCl and found that

cell viability was compromised at increasing NaCl concentra-

tions. Notably, both p38� /� and p57� /� cells displayed a

strong reduction on their ability to survive to osmostress

when compared with wild type (Figure 7A and B). Similar

results were obtained when cell viability was assessed using

an MTT assay (Supplementary Figure S6). MK2 and Cdt1

have been defined as targets for p38 SAPK involved in

cell cycle (Manke et al, 2005; Reinhardt et al, 2007;

Chandrasekaran et al, 2011). To assess the relevance of

those proteins in response to osmostress, MK2 and Cdt1

were downregulated by the use of a chemical inhibitor

(MK2 inhibitor III) or an siRNA against Cdt1. The

downregulation of either MK2 or Cdt1 did not alter

significantly cell survival in response to osmostress in wild-

type or p57� /� and p38� /� cells (Supplementary Figures

S10 and S11). Therefore, both p38 and p57 are critical for cell

survival in response to osmostress.

We then studied the relevance of p57 phosphorylation by

p38 to promote cell survival upon osmostress and found that

knockout cells expressing wild-type p57 were able to survive

similarly to wild-type cells, whereas cells expressing p57T143A

displayed a survival rate as low as the observed in p57� /�
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knockout cells (Figure 7C). Therefore, phosphorylation

of p57 by p38 is essential to promote cell survival upon

osmostress.

Survival to oxidative stress or ionomycin also depends

on p38 and p57

In addition to osmostress, p38 is activated by other stimuli

such as oxidative stress, ionomycin and UV (Huot et al, 1997;

Bulavin et al, 2001; Elzi et al, 2001). Thus, we wondered

whether p38 and p57 were also essential to promote cell

survival upon these stresses. Initially, we assessed whether

oxidative stress or ionomycin was able to induce p38-

mediated p57 phosphorylation. Cells expressing Flag–p57

were subjected to H2O2 (600mM H2O2) or ionomycin (7.5mM)

for 1 h and phosphorylation of p38 and p57 (at Thr143) was

assessed by western blot by using specific antibodies.

Phosphorylation of Hsp27 was assessed as a control of p38

activation. Exposure of cells to these stresses induced

phosphorylation of p57 that was prevented by incubation

with a p38 inhibitor (Birb 0796) (Figure 7D). Similar results

were obtained when endogenous p57 phosphorylation was

assessed by immunofluorescence using the phospho-p57 anti-

body. Moreover, p57 phosphorylation upon stress was abol-

ished in p38� /� cells (Figure 3D). Remarkably, cell viability

was strongly compromised in p38� /� and p57� /� MEFs in

the presence of H2O2 and ionomycin (Figure 7E and F;

Supplementary Figure S6). Of note, the decrease on cell

viability is accompanied with an increase on apoptosis

as assessed by DNA nuclear condensation (Supplementary

Figure S7). Furthermore, whereas p57� /� cells expressing

wild-type p57 were able to survive similarly to wild type

upon stress, cells expressing p57T143A displayed a survival

rate as low as the observed in p57� /� cells (Figure 7E and

F; Supplementary Figure S6). p27 has been shown to act

downstream of p38 in response to drug induced DNA damage

(Cuadrado et al, 2009) and it could be redundant with p57 in

HSCs (Matsumoto et al, 2011; Zou et al, 2011). Thus, we then

addressed p27� /� sensitivity to different kind of stresses. In

contrast to p57� /� cells, cells deficient in p27 displayed a

survival rate similar to wild type pointing out towards the

critical role of p57 in cell survival upon stress (Supplementary

Figure S8).

H2O2 and ionomycin are known to arrest cells in G1 (Chua

et al, 2009; Scotto et al, 1999), in contrast, exposure to UV

A

– ––+ + + NaCl

0

5

7

11

Hours

4n2n 4n2n 4n2n

WT p38–/– p57–/–

0 4 8 12 16
0

25

50

75

%
 G

1c
el

ls

B WT

Hours

0 4 8 12 16
0

25

50

75

p38–/–

0 4 8 12 16
0

25

50

75

p57–/–

HoursHours

NaCl

Control

Figure 5 Osmostress mediates a G1 cell-cycle delay in a p38 SAPK- and p57-dependent manner. (A) Wild-type, p38� /� and p57� /� MEFs
were stressed with 100 mM NaCl. One hour later, nocodazole was added to trap the cells at the G2/M transition. Cell-cycle progression was
monitored by FACS by collecting samples every 2 h. Representative DNA profiles are shown. (B) The percentage of wild-type, p38� /� and
p57� /� MEFs in G1 from three independent experiments is shown. Solid circles represent osmostressed MEF cells. Open circles are non-
stressed control MEF cells.

p57 CDKi and p38 promote cell survival upon stress
M Joaquin et al

2958 The EMBO Journal VOL 31 | NO 13 | 2012 &2012 European Molecular Biology Organization



promotes S and G2/M delays. UV induced phosphorylation of

both p38 and p57 (Figure 7G); however, it only reduced cell

viability and induced nuclei condensation in p38� /� cells

but not in p57� /� cells (Figure 7H; Supplementary Figures

S6 and S7). Taken together, these findings show that phos-

phorylation of p57 by p38 is critical for cell survival to

different type of stresses that impact in G1.

Discussion

Integration of environmental cues to cell-cycle control is

critical to understand how cells respond and adapt to stress.

SAPKs mediate signal transduction to stress and control

several aspects of cell physiology from transcription to cell-

cycle regulation (de Nadal et al, 2011). Previous reports have

implicated mammalian p38 SAPK in the control of cell-cycle

progression (Ambrosino and Nebreda, 2001). However, little

was known on the regulation of G1 by p38 and the possible

relevance of this process in the response to stress. Here, we

provide evidence that the p57 CDKi is a novel target of p38

SAPK that mediates cell-cycle control in response to

extracellular insults. Our results indicate that phosphorylation

of p57 on Thr143 by p38 SAPK mediates cell-cycle arrest at G1

in response to stress and promotes cell survival. Furthermore,

we found that p57 has a critical role for cell survival to various

types of stresses that also activate p38 at G1.
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The role of p57 in cell-cycle control and its biological

functions have been elusive, mainly for the difficulty to detect

this protein in many cells and tissues as well as the fact that

mice lacking p57 show strong developmental defects (Pateras

et al, 2009). p57 have been involved in regulation of

signalling by its association with the JNK kinase (Chang

et al, 2003). In contrast, we have shown that cells deficient

in p57 do not show altered p38 signalling. Recent data

pointed out the relevance of p57 in bone marrow HSCs. p57

is critical to brake cycling HSCs, which is important for

maintaining quiescence and permit self-renewal activity

(Matsumoto et al, 2011; Tesio and Trumpp, 2011; Zou et al,

2011). This role seems to be shared with p27 since expression

of p27 at the p57 locus partly bypasses p57 requirement

(Matsumoto et al, 2011). In addition, both p27 and p57 seem

to share the same mechanism of control, which involves

interaction with Hsc70 and CyclinD in the cytoplasm to

prevent entry of CyclinD at the nucleus (Zou et al, 2011). In

response to stress, the regulation of cell-cycle progression by

p57 seems to be completely different. First, p57 is mainly a

nuclear protein whose nuclear localization does not change

in response to stress. Similarly, cyclinD localization is mainly

nuclear and does not change upon stress. Moreover, we have

found that phosphorylation of p57 increases its ability to
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inhibit CDK2 activity. Both in vitro and in vivo analyses have

shown that phosphorylation of p57 at Thr143 by p38 is a key

factor for CDK2 inhibition. Therefore, in response to stress

p57 imposes a cell-cycle delay differently from that observed

to maintain HSC quiescence. Of note, it has been shown that

p27 is upregulated in p57� /� HSC cells and that expression

of p27 in the p57 locus can replace p57 function on HSC

quiescence (Tesio and Trumpp, 2011; Zou et al, 2011).

However that was not the case in p57� /� MEFs which

expressed similar p27 protein levels as wild type MEFs.

Furthermore, phosphorylation of p57 by p38 lays in a

region that is conserved neither in p27 nor in p21. Taken

together, it is likely that p57 has a specific function in cell-

cycle regulation upon stress that is not shared by the other

Cip/Kip inhibitors.

It has been shown that downregulation of p57, both

transcriptionally or translationally, is frequent in many

human cancers (Pateras et al, 2009), indicating that the

levels of p57 might be important to control cell-cycle

progression as it has been described by other inhibitors

(Besson et al, 2008). For instance, p38 SAPK promotes the

expression and stabilization, directly or indirectly, of p21 and

p27 CDKis in response to different stimuli (Kim et al, 2002;

Todd et al, 2004; Cuadrado et al, 2009; Lafarga et al, 2009;

Swat et al, 2009). In contrast, we do not observe a stress-

induced change on p57 protein levels, intracellular

localization or stability but rather a change on the affinity

of the CDKi towards Cdk2. We have shown that

phosphorylated p57 binds more efficiently to Cdk2 which

results in a more efficient inhibition of Cdk2 activity both

in vitro and in vivo. Our results support a novel regulatory

mechanism by which changes on the affinity of the CDKi

towards the CDK, caused by specific phosphorylation,

inhibits more efficiently CDK activity and resulting in

delayed cell-cycle progression.

Cells deficient in p38 or p57 display a dramatic impairment

on viability upon osmostress, suggesting that cell-cycle arrest

in G1 play an important role in the survival of stressed cells.

Remarkably, cells expressing a non-phosphorylatable mutant

of p57 are as sensitive to osmostress as the p57� /� or

p38� /� cells. Therefore, the role of p38 on promoting cell

survival in response to stress in G1 is mainly mediated by p57

phosphorylation. Of note, p57� /� cells still express p21 and

p27 CDKis further supporting a prevalent role of p57 in

delaying cell-cycle progression in response to osmostress.

Of note, p57� /� cells have increased p21 levels, indepen-

dently of stress, suggesting that cells induce the expression of

p21 to compensate for the loss of p57. Despite this fact, p21

upregulation was not sufficient to neither impose a G1 delay

nor promote cell survival upon an osmotic shock.

In addition to osmostress, p38 is activated by other insults

such as oxidative stress, ionomycin and UV. All those stimuli

not only induce p38 activation but also p57 phosphorylation

at Thr143. Correspondingly, activation of p38 by MKK6DD

also results in p57 phosphorylation at Thr143. Both p38� /�

and p57� /� deficient cells are also extremely sensitive to

oxidative stress and ionomycin. Importantly, sensitivity of

p57� /� cells to those stresses is suppressed by expression of

wild-type p57 but not the p57T143A mutant, indicating that

phosphorylation of p57 in response to unrelated stresses is a

general mechanism to modulate cell-cycle progression and to

maximize cell survival. On the other hand, we have found

that albeit p57 is phosphorylated, it is not essential for cell

survival in response to UV. It is known that UV induces DNA

damage that is repaired later during the cell cycle (Sinha and

Häder, 2002). For instance, upon UV damage, p38 contributes

to G2/M cell-cycle delay via inhibition of CDC25B/C

phosphatases which leads to CDK1/CyclinB inhibition

(Bulavin et al, 1999, 2001; Manke et al, 2005). It is

therefore possible that the relevance of p57 is restricted to

stress-induced G1 arrest and that alternative p38-mediated

targets control other phases of cell-cycle progression. This

strongly suggests that p38 is controlling a network of cell-

cycle components to maximize cell survival in response to

external stimuli.

In summary, this study uncovers a novel function for p57

that integrates external signals transduced by p38 SAPK to

control the cell-cycle machinery, establishing a checkpoint in

G1 which is critical to delay cell-cycle progression and permit

cellular adaptation to stress.

Materials and methods

Cells, transfection and infection
Human embryo kidney 293T (HEK 293T), HeLa, wild-type MEFs,
p38a� /� (Ambrosino et al, 2003), p27� /� and p57� /� MEF cells
were maintained in Dulbecco’s modified Eagle’s medium
(Biological Industries) containing 10% fetal calf serum (Sigma)
and supplemented with 1 mM sodium pyruvate, 2 mM L-
glutamine, 100 U/ml Penicillin and 100mg/ml Streptomycin
(Gibco) and cultured in a 5% CO2 humidified incubator at 371C.
Primary p57 null MEFs, a gift from Dr Manuel Serrano (CNIO,
Madrid), were spontaneously immortalized following the classical
3T3 immortalization protocol described by Todaro and Green
(1963). When indicated, cells were incubated with 10mM
SB203580 (Calbiochem) for 30 min, 0.5mM BIRB 0796 (Axon
Medchem) for 2 h, 150mM MK-2 Inhibitor III (Calbiochem) for
30 min, Cyclohexamide (Sigma) for 20 min and 10mM MG132 for
10 min (Sigma) prior to the stress. Cells were stressed with NaCl
(ranging from 100 to 300 mM), 600 mM H2O2 (Sigma), 7.5mM
Ionomycin (Sigma) or UV (5 mJ). DNA transfections and siRNA
transfections of HEK 293T, HeLa and MEF cells were performed
using respectively FuGENE 6 (Roche Diagnostics) or Oligofectamine
(Invitrogen) following manufacturer’s protocol. MEF cells were
infected for up to 3 days with supernatants containing lentiviruses
produced in transfected HEK 293Tcells. Briefly, HEK 293Tcells were
co-transfected with the lentiviral vector pWPI along with the
lentiviral packaging and envelope vectors pMDG2 and psPAX2
and left for 48 h before harvesting the media. After a brief
centrifugation to remove cell debris, cleared supernatants were
added directly to cell culture dishes growing MEF cells.

Plasmids constructs and siRNAs
pcDNA3-Flag was obtained from Dr Pura Muñoz-Canoves (UPF,
Spain). Constructs to express GST–CDK2 (human), His–cyclinA
(bovine) and GST–Cak1/Civ1 in E. coli have been previously
described (Brown et al, 1995, 1999; Ferby et al, 1999). The
lentiviral vectors pWPI, pMD2G and psPAX2 were obtained from
Dr Didier Trono (EPFL, Lausanne). The mouse p57 cDNA was PCR
out from the Cdkn1c/5930414J15 plasmid and cloned into the EcoRI
and XhoI sites of pGEX4T1 (GE Healthcare) to generate a GST–p57
fusion protein using the oligonucleotides mp57.1 forward CAT GAA
TTC ATG GAA CGC TTG GCC TCC and mp57.1 reverse CAT CTC
GAG TCA TCT CAG AGC TTT GCG. The GST–p57 N-Term and
C-term were obtained using the full-length GST–p57 as a template
by PCR with the complementary oligonucleotides N-term mp57
reverse CAT CTC GAG GAC CTG TTC CTC GCC GTC and the
C-term mp57 forward CAT GAA TTC GAC CCG ATC CCG GAC
GCG and subcloned into the EcoRI and XhoI sites of the pGEX4T1
vector. The GST–p57 mutants were generated using the
Quickchange XL site directed mutagenesis kit from Stratagene
following manufacturers’ instructions with the following mutagen-
esis primer pairs: T139G (GTG GCG GAG CCC GGG CCA CCC GCG
ACC and GGT CGC GGG TGG CCC GGG CTC CGC GAC), T143A
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(ACC CCA CCC GCG GCC CCG GCC CCG GCT and AGC CGG GGC
CGG GGC CGC GGG TGG GGT), T167G (ACC TCC GAC CCG GGT
CCG GAC CCG ATC and GAT CGG GTC CGG ACC CGG GTC GGA
GGT). C-terminal Flag-tagged versions of full-length p57 and
p57T143A were PCR out from the pGEX4T1 vectors and cloned into
the BamHI and EcoRI restriction sites of a pCDNA3-Flag using the
oligonucleotides mp57.2 forward CAT GGA TTC ATG GAA CGC TTG
GCC TCC and mp57.2 reverse CAT GAA TTC CAG ACG TTT GCG
CGG. Ds-Red p57 wt and Ds-Red p57T143A were generated by
subcloning wild-type p57 and p57 T143A into the pDs-Red-
Express-N1 (Clontech). Lentiviral expressing Flag-tagged p57 was
obtained from the pCDNA3-Flag vectors by PCR using the oligonu-
cleotides: 5p57PacI forward CAT TTAATTAA ATG GAA CGC TTG
GCC TCC and 3p57PacI reverse CAT TTAATTAA TCA TTT ATC GTC
ATC GTC CTT GTA ATC TCT CAG ACG TTT GCC CGG and cloned
into the pWPI PacI restriction site. The underlined sequences
indicate restriction enzymes used. All the constructs and site-
directed mutations were checked by sequencing using the ABI-
Prism kit from Applied Biosystems. Cdt1 protein levels were
knocked down using the EMU044861 Mission esiRNA (Sigma).

Bacterial expression and purification of recombinant proteins
E. coli were grown at 371C until they reached an OD600 of 0.5
absorbance units. At this point, GST- or His-tagged proteins were
induced for 4 h by adding 1 mM IPTG and switching the culture
temperature to 251C. After induction, cells were collected by
centrifugation and resuspended in 1/50th volume of STET 1�
buffer (100 mM NaCl, 10 mM Tris–HCl pH 8.0, 10 mM EDTA pH
8.0, 5% Triton X-100 supplemented with 2 mM DTT and the 1 mM
PMSF, 1 mM Benzamidine, 200mg/ml Leupeptine and 200mg/ml
Pepstatine). Cells were lysed by ice-cold brief sonication and cleared
by high speed centrifugation. GST-fused proteins were pulled down
from supernatants with 300ml of gluthatione-sepharose beads (GE
Healthcare, 50% slurry in equilibrated with STET) by mixing 45 min
at 41C. The gluthatione-sepharose beads were collected by brief
centrifugation and washed four times in STET 1� buffer and two
times in 50 mM Tris–HCl pH 8.0 buffer supplemented with 2 mM
DTT. The GST-fused proteins were then eluted in 200ml of 50 mM
Tris–HCl pH 8.0 buffer supplemented with 2 mM DTT and 10 mM
reduced gluthatione (Sigma) by mixing for 45 min at 41C and stored
at � 801C. His-tagged cyclinA was purified from E. coli as described
but incubating the sonicated lysate supernatant with Talon metal
affinity beads (Clontech) for 90 min at 41C. The beads were washed
with 60 mM Imidazole, 500 mM NaCl and 20 mM Tris–HCl (pH 8.0).
His–cyclinA was eluted in the same buffer supplemented with 1 M
Imidazole. Fractions containing the purified recombinant proteins
were dialysed overnight against 50 mM Tris (pH 8.0), 50 mM NaCl,
0.1 mM EDTA, 0.5 mM DTT, and 5% glycerol and stored in aliquots
at � 801C.

Western blot and immunoprecipitation assays
Transfected cells were washed with ice-cold PBS and scraped into
500ml of IP/lysis buffer (10 mM Tris–HCl pH 7.5, 1% NP-40, 2 mM
EDTA, 50 mM NaF, 50 mM b-glycerolphosphate, 1 mM Sodium
Vanadate, 1 mM PMSF, 1 mM Benzamidine, 200mg/ml Leupeptine
and 200mg/ml Pepstatine). The lysates were cleared by micro-
centrifugation and 10% retained as input. The remainders were
subjected to immunoprecipitation with either 5ml of agarose-
conjugated anti-Flag (Sigma) or 50ml sepharose-protein A beads
(GE Healthcare, 50% slurry equilibrated in IP buffer) coupled to
specific antibodies by mixing overnight at 41C. Immune complexes
were collected by brief centrifugation and washed rapidly three
times with IP buffer. Immunoprecipitates and the input samples
were subjected to PAGE–SDS and western blotting. Commercially
available antibodies used were as follows: mouse monoclonal
anti-a-Tubulin (Sigma, S9026), mouse monoclonal anti-Flag
(Sigma, S2220), rabbit polyclonal anti-Cdk2 (Santa Cruz, sc-163),
rabbit polyclonal anti-cyclinD (Santa Cruz, sc-717), rabbit polyclo-
nal anti-p57(Santa Cruz, sc-8298), mouse monoclonal anti-p57
(Santa Cruz, sc-56341), rabbit polyclonal anti-p21 (Abcam,
ab7960), rabbit polyclonal anti-p27 (Santa Cruz, sc-528), rabbit
polyclonal anti-p38a SAPK (Santa Cruz, sc-535), rabbit monoclonal
anti-pp38 SAPK (Cell Signaling, clone 3D7), rabbit polyclonal anti
IkBa (Santa Cruz, sc-371), rabbit polyclonal anti-Histone 3 (Abcam,
ab-1791), rabbit polyclonal anti-Cdt1 (Santa Cruz, sc-28262), rabbit
polyclonal anti-HSP27 (Stressgen, #SPA-523) and Mouse anti-phos-

pho-serine/threonine (BD Transduction Laboratories). Mouse
monoclonal anti-HA and mouse monoclonal anti-myc were house
made from the 12CA5 and 9E10 hybridomas, respectively.
Rabbit polyclonal antibodies specifically targeting p57 phosphory-
lation at T143 were generated by Genscript Corporation.
Horse Radish Peroxidase conjugated anti-rabbit and anti-mouse
antibodies and the Enhanced Chemiluminiscence kit were from
GE Healthcare.

Immunocytochemistry
Cells were grown in chamber slides and fixed in 95% ethanol, 5%
acetic acid for 10 min and permeabilized with 1% formaldehyde,
0.25% Triton X-100 in TBS for 5 min. Fixed cells were blocked with
3% BSA/TBS for 30 min. The primary antibodies were incubated at
1/50 dilution in blocking buffer overnight. The secondary anti-
rabbit IgG-FITC antibody (Sigma, F0382) was used at 1/100 dilution
in blocking buffer for 1 h.

Cytoplasm and nuclear fractionation
Cells were rinsed and scrapped off with cold PBS. Cell pellets were
then resuspended and incubated for 10 min in cold hypotonic buffer
(10 mM HEPES-KOH pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT,
1 mM PMSF). After brief vortexing and pelleting, the supernatant
was kept as a cytosolic fraction. The pellet nuclear fraction was then
resuspended and incubated for 20 min in cold high salt buffer
(20 mM HEPES-KOH pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM
MgCl2, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF). After spinning, the
supernatant was kept as the nuclear fraction.

In-vitro p38 SAPK and Cdk2 kinase assay
GST–p38a SAPK was activated in vitro in a small volume (15ml/
assay) by mixing with GST–MKK6DD in 1� kinase assay buffer
(50 mM Tris–HCl pH 7.5, 10 mM MgCl2, 2 mM DTT) in the presence
of 100 mM cold ATP plus/minus 10mM SB203580 (Calbiochem) for
20 min at 301C. In all, 15ml of the activated GST–p38 SAPK was used
to phosphorylate in vitro either eluted GST-fused proteins or
immunoprecipitates from mammalian expressed proteins. The
reactions were carried in 1� kinase assay buffer in the presence
of 1mCi/assay of radiolabelled 32P-g-ATP (3000 Ci/mmol from
Perkin-Elmer) in a final volume of 40ml/assay for 20 min at 301C.
Cdk2 immunoprecipitates from MEF cell extracts were incubated in
1� kinase assay buffer buffer in the presence of 50mM cold
ATP, 1 mCi/assay of radiolabelled 32P-g-ATP (3000 Ci/mmol from
Perkin-Elmer) and 4mg of histone H1 (Roche Diagnostics) in a
final volume of 40ml/assay for 20 min at 301C. Reactions were
stopped by adding SB5X (250 mM Tris–HCl pH 6.8, 0.5 M DTT,
10% SDS, 20% glycerol, 0.5% Bromophenol Blue) and boiling at
1001C for 5 min. Phosphorylated proteins were subjected to PAGE–
SDS and coomassie blue stained or transfer blotted onto a PVDF
membrane and exposed to BIOMAX XAR films (KODAK). The
incorporated radioactivity was quantified by phosphoimaging
using a Typhoon 8600 apparatus and the ImageQuant software
from Molecular Dynamics.

Activation of recombinant Cdk2 and inhibition of
Cdk2-cyclinA by p57
Purified bacterially expressed GST–Cdk2 (200 ng/assay) was acti-
vated by incubation with GST–Cak1/Civ1 (100 ng/assay) in the
presence of 100 mM cold ATP and followed by the addition of His–
cyclinA (200 ng/assay) in 1� kinase buffer. Active Cdk2–cyclinA
complexes were then incubated with 10, 20 and 50 ng of either non-
phosphorylated or in-vitro phosphorylated GST–p57, GST–p57T143A

or GST–p27kip1 proteins for 1 h at 41C. The recombinant complexes
were then assayed for 15 min at 301C in a final volume of 10ml of
kinase buffer (50 mM Tris–HCl pH 7.5, 10 mM MgCl2, 2 mM DTT,
150mM cold ATP) containing 2mCi/assay of radiolabelled 32P-g-ATP
(3000 Ci/mmol) and 4mg of histone H1. The reactions were stopped
with sample buffer and analysed by SDS–PAGE, autoradiography
and phosphoimaging.

Cell cycle, cell viability and nuclear condensation
Exponentially growing wild-type MEFs, p38a knockout MEFs and
p57 knockout MEFs were stressed with 100 mM NaCl. One hour
later, nocodozale (Sigma) was added to a final concentration of
100 ng/ml to trap the cells at the G2/M phase. DNA was labelled
in vivo by incubating MEF cells with 8 mM of Hoechst 33342 (Sigma)
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for 1 h before being trypzinized and collected for cell-cycle
FACS analysis. Cell viability upon osmostress was assessed by
labelling living cells with 1mg/ml PI (Sigma) for 10 min followed
by FACS analysis. The stained cells were acquired on an LSR flow
cytometer (Becton Dickinson) using the CellQuest software.
Cell-cycle profiles and viability were then analysed with the
WinMDI software. The MTT viability assay was assessed
using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bro-
mide (Sigma). Cells were incubated with MTT (0.2 mg/ml)
for 60 min at 371C. The blue formazan derivative was solubilized
in DMSO and the dual wavelength was measured at 560 and 620 nm
in a BioRad plate reader. DNA nuclear condensation was evaluated
by labelling the cells with 8mM Hoechst 33342 for 60 min at 371C.
Nuclei was visualized in an Olympus CKX 41 fluorescent
microscope using an excitation/emission wavelength of 350/
460 nm. Cells with condensed and/or fragmented chromatin were
quantified.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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