
	

	

	

	

GOAT: Development of a Wireless
Sensor Network analysis tool

 Barrachina Muñoz, Sergio

Curs 2014-2015

	

Director: BORIS BELLALTA JIMÉNEZ

GRAU EN ENGINYERIA TELEMÀTICA	

Trebal l de Fi de Grau

GRAU EN ENGINYERIA EN
xxxxxxxxxxxx

	

GOAT: Development of a Wireless Sensor Network
analysis tool

Sergio Barrachina Muñoz

TREBALL FI DE GRAU

GRAU EN ENGINYERIA TELEMÀTICA

ESCOLA SUPERIOR POLITÈCNICA UPF

2015

DIRECTOR DEL TREBALL

Boris Bellalta Jiménez

 ii

 iii

To my beloved grandfather. From him I learned
the difference between doing and not doing.

 iv

 v

Special Thanks

To Boris, for supporting me and letting me go a step further.

To my parents Cati and Enrique, for being there.

To Iris, for encouraging me up day after day.

 vi

 vii

Abstract

Looking at the trend followed by information and communication technologies, we can
note a constant evolution towards embedded devices, becoming smaller and more
efficient, endowed with greater processing power, storage capacity and ease of
communications. Based on these technological advances, network physiognomies have
changed from being composed of a limited number of wired connected nodes to a
central computer, to be smaller, cheaper and lower power devices capable of processing
information locally and transfer it wirelessly.

In that sense, Wireless sensor networks (WSNs) are positioned to be one of the fastest
growing fields of study in the next years. WSNs are based on sensor nodes, which are
low cost and low consumption devices able to obtain data from their environment,
process it locally, and then communicate it via wireless links to a central coordinating
node, known as sink. Due to the small size of the nodes, batteries must also be small;
therefore saving energy consumption is vital in these networks since it is not always
possible to recharge them. Hence, there is a need to meet the goal of energy efficiency,
which is to maximize the lifetime of the network while still providing the applications
required quality of service (QoS).

This project intends to make possible the analysis of the effect of different Medium
Access Control (MAC) and routing protocols on energy consumption in several low
node density WSNs scenarios (up to 1,000 nodes). To that end, the GOAT software tool
has been developed. GOAT is a graphical network analysis tool that allows designing
WSNs and estimating its energy consumption and overall lifetime in thoroughly
configurable scenarios. The aim of the tool is to base future WSN designs on the results
gathered through the simulations.

Resum

Observant la tendència seguida per les tecnologies de la informació i comunicació,
notem una evolució constant cap a dispositius integrats, cada vegada més petits i
eficients, dotats d'un major poder de processament, capacitat d'emmagatzematge i
facilitat de comunicació. Sobre la base d'aquests avanços, les fisonomies de les xarxes
han passat de compondre's d'un nombre limitat de nodes connectats mediant cable a un
ordinador central, a ser aquests més petits, més barats i de menor consum, capaços de
processar la informació a nivell local i transferir-la inalàmbricament.

Les xarxes de sensors sense fils (WSN són les seves sigles en anglès) estan en
condicions de ser un dels camps d'estudi de més ràpid creixement en els propers anys.
Les WSN estan basades en dispositius de baix cost i consum (nodes de mesura) que són
capaços d'obtenir les dades del seu entorn, processar-les a nivell local, i comunicar-les
després a través d'enllaços sense fils a un node central de coordinació, conegut com a
gateway. A causa de la reduïda mida dels nodes, les bateries han de ser també petites,
per tant, l'estalvi de consum energètic és vital en aquest tipus de xarxes, ja que no
sempre serà possible accedir a recarregar-les. Hi ha, aleshores, una fefaent necessitat de

 viii

complir l'objectiu de l'eficiència energètica, que tracta de maximitzar la vida útil de la
xarxa mentre es mantenen els requisits de qualitat de servei de les aplicacions ofertes.

Aquest projecte té la intenció de permetre l'anàlisi de l'impacte de diversos protocols de
control d'accés al medi (MAC) i protocols d’enrutament sobre el consum d'energia en
WSNs de baixa densitat (fins a 1.000 nodes). Per a això, l'eina software GOAT ha estat
desenvolupada. GOAT és un analitzador gràfic de xarxes que permet dissenyar WSNs i
estimar el seu consum d'energia i temps de vida general en escenaris profundament
configurables. L'objectiu de l'eina és basar els futurs dissenys d’aquest tipus de xarxes
sobre els resultats recollits a través de les simulacions.

Resumen

Observando la tendencia seguida por las tecnologías de la información y comunicación,
notamos una evolución constante hacia dispositivos integrados, cada vez más pequeños
y eficientes, dotados de un mayor poder de procesamiento, capacidad de
almacenamiento y facilidad de comunicación. Sobre la base de estos avances
tecnológicos, las fisonomías de las redes han pasado de componerse de un número
limitado de nodos conectados por cable a un ordenador central, a ser éstos más
pequeños, más baratos y de menor consumo, capaces de procesar la información a nivel
local y transferirla inalámbricamente.

Las redes de sensores inalámbricas (WSN son sus siglas en inglés) están en condiciones
de ser uno de los campos de estudio de más rápido crecimiento en los próximos años.
Las WSN están basadas en dispositivos de bajo coste y consumo (nodos de medida) que
son capaces de obtener los datos de su entorno, procesarlos a nivel local, y
comunicarlos luego a través de enlaces inalámbricos a un nodo central de coordinación,
conocido como gateway. Debido al pequeño tamaño de los nodos, las baterías deben ser
también pequeñas, con lo cual, el ahorro de consumo energético es vital en éste tipo de
redes, ya que no siempre es posible acceder a recargarlas. Por lo tanto, hay una
fehaciente necesidad de cumplir el objetivo de la eficiencia energética, que trata de
maximizar la vida útil de la red mientras se mantienen los requisitos de calidad de
servicio de las aplicaciones ofrecidas.

Este proyecto tiene la intención de permitir el análisis del impacto de diversos
protocolos de control de acceso al medio (MAC) y protocolos de enrutamiento sobre el
consumo de energía en WSNs de baja densidad (hasta 1.000 nodos). Para ello, la
herramienta de software GOAT ha sido desarrollada. GOAT es una herramienta de
análisis gráfico de redes que permite diseñar WSNs y estimar el consumo de energía y
tiempo de vida general en escenarios profundamente configurables. El objetivo de la
herramienta es basar los futuros diseños WSN sobre los resultados recogidos a través de
las simulaciones.

 ix

Contents
Abstract	
 ..	
 vii	

1.	
 INTRODUCTION	
 ...	
 1	

1.1	
 Motivation	
 ...	
 1	

1.2	
 Objectives	
 ..	
 2	

1.3	
 Document	
 structure	
 ...	
 2	

2.	
 WIRELESS	
 SENSOR	
 NETWORKS	
 ..	
 3	

2.1	
 Introduction	
 to	
 WSNs	
 ..	
 3	

2.2	
 What	
 is	
 a	
 WSN?	
 ...	
 3	

2.3	
 Architecture	
 and	
 components	
 ..	
 5	

a)	
 Sensor	
 node	
 ...	
 6	

b)	
 Gateway	
 ..	
 9	

c)	
 Software	
 ..	
 10	

2.4	
 Challenges	
 ...	
 12	

2.5	
 Applications	
 ...	
 13	

3.	
 WIRELESS	
 TECHNOLOGIES	
 FOR	
 WSN	
 ..	
 15	

3.1	
 MAC	
 layer	
 impact	
 on	
 energy	
 ..	
 15	

3.2	
 IEEE	
 802.15.4	
 ...	
 16	

a)	
 Physical	
 layer	
 ...	
 16	

b)	
 MAC	
 layer	
 ..	
 17	

c)	
 Upper	
 layers	
 ...	
 18	

3.3	
 IEEE	
 802.11ah	
 ..	
 18	

a)	
 Main	
 technological	
 features	
 ..	
 19	

b)	
 Physical	
 layer	
 ...	
 19	

c)	
 MAC	
 layer	
 ..	
 20	

d)	
 Energy	
 savings	
 ...	
 21	

3.4	
 Bluetooth	
 Low	
 Energy	
 (BLE)	
 ...	
 21	

3.5	
 Other	
 WSN	
 technologies	
 ..	
 23	

4.	
 GOAT	
 ...	
 25	

4.1	
 Introduction	
 ...	
 25	

a)	
 What	
 is	
 GOAT?	
 ..	
 25	

b)	
 Main	
 features	
 ..	
 25	

c)	
 System	
 requirements	
 ...	
 26	

4.2.	
 Architecture	
 and	
 design	
 ..	
 26	

a)	
 Functional	
 design	
 ...	
 26	

b)	
 Technical	
 design	
 ..	
 27	

4.3	
 Graphical	
 User	
 Interface	
 (GUI)	
 ...	
 29	

a)	
 Design	
 ..	
 29	

b)	
 Structure	
 ..	
 31	

4.3	
 Topology	
 creation	
 ..	
 33	

a)	
 Create	
 and	
 modify	
 topology	
 ..	
 33	

b)	
 Open	
 and	
 save	
 topologies	
 ...	
 36	

 x

4.4	
 Graphical	
 information	
 displaying	
 ...	
 37	

4.5	
 Modules	
 ..	
 39	

a)	
 Physical	
 models	
 ...	
 39	

b)	
 Battery	
 models	
 ..	
 40	

c)	
 MAC	
 models	
 ...	
 41	

d)	
 Routing	
 models	
 ...	
 46	

4.6	
 Configuration	
 ...	
 49	

4.7	
 Simulation	
 ...	
 50	

a)	
 Input	
 ..	
 50	

b)	
 Output	
 ...	
 51	

4.8	
 Limitations	
 ...	
 52	

5.	
 EVALUATION	
 ...	
 55	

5.1	
 Street	
 parking	
 ..	
 55	

a)	
 Scenario	
 definition	
 ..	
 55	

b)	
 Modeling	
 and	
 results	
 ...	
 56	

5.2	
 Plague	
 tracking	
 ..	
 61	

a)	
 Scenario	
 definition	
 ..	
 61	

b)	
 Modeling	
 and	
 results	
 ...	
 62	

6.	
 CONCLUSIONS	
 AND	
 FUTURE	
 WORK	
 ...	
 67	

ANNEX	
 ...	
 69	

A1.	
 UML	
 Class	
 diagrams	
 ...	
 69	

a)	
 BatteryModel.java	
 ...	
 69	

b)	
 Goat.java	
 ...	
 69	

c)	
 MacModel.java	
 ..	
 70	

d)	
 Map.java	
 ..	
 70	

e)	
 Node.java	
 ..	
 71	

f)	
 PhyModel.java	
 ..	
 71	

g)	
 Point.java	
 ...	
 71	

f)	
 RoutingModel.java	
 ...	
 72	

A2.	
 Configuration	
 variables	
 ...	
 72	

References	
 ..	
 75	

 1

 1

1. INTRODUCTION

1.1 Motivation

The design of effective and sustainable wireless sensor networks (WSNs) is not trivial.
Limited energy resources of sensor nodes are a top constraint in this kind of networks
due to the fact that, in most cases, nodes are battery-powered devices and, consequently,
energy-constrained. Hence, the main concern is how to reduce the energy consumption
in order to extend the overall network lifetime while providing a proper enough
performance.

In order to face that issue, one possible solution would be to manually replace each of
the node batteries when they are running low. However, energy has a huge impact on
both economic and environmental matters. Hence, the mentioned solution would require
a big financial investment and would entail a great waste of energy. Another
unreasonable option would be to simply plug in each of the nodes to the stream.
Obviously, that would suppose losing almost all the mobility of the network, which has
a heavy impact on the overall design. Also, in most scenarios where WSNs are currently
deployed, these possibilities do not even exist (e.g. high risk and dangerous scenarios).
Therefore, studying how WSNs can be optimized and improved is a matter of interest
taking into account their potential ability to mix flexibility, mobility and performance.

Regarding energy consumption, the Medium Access Control (MAC) layer protocol is
crucial due to its influence on the sensor transceiver, which is the most energy-
consuming component of a sensor node. In this project, different types of MAC
protocols and routing algorithms are studied aiming to determine which kinds of them
are the most suitable with energy saving in low node density scenarios (up to 1,000
nodes). To that end, the GOAT software tool has been developed. GOAT is a graphical
network analyzer that allows designing WSNs and estimating its energy consumption
and overall lifetime in a huge variety of scenarios. This software aims to be as modular
as possible in order to facilitate future open source collaborations to improve the
analyzer itself. In that sense, GOAT implements several physical, battery, MAC and
routing models that can be selected by the user to build the simulation scenarios. GOAT
has several features such as network topology graphical representation, reading and
saving of topology data files, packet rates displaying, functional graphical user interface
(GUI), energy consumption estimation in a huge number of scenarios, etc.

As a proof of concept, this project presents the analysis of two abstractions of real
WSNs scenarios where GOAT has served to determine the optimal MAC protocol and
network design: street parking and plague tracking.	

 2

1.2 Objectives

The main objective of this project is to develop a WSN analyzer that will make it
possible to determine the energy consumption and overall network lifetime in a huge
variety of configurable scenarios. This software analyzer, GOAT, will take into account
several physical, battery, MAC and routing models. The mentioned tool should serve to
design and test future real operating WSNs before actually building them.

Also, as a proof of concept, two abstractions of real scenarios will be analyzed by using
GOAT. These analyses will serve to present the simple procedures and useful results of
the too, which should allow us to define the most suitable WSN designs in term of
energy saving.

1.3 Document structure

This document has been divided in 6 sections. At 1. Introduction, an overview of the
project can be found. Wireless sensor networks and its features and context are depicted
at 2. Wireless Sensor Networks. At section 3. WSN Technologies, the state of the art of
WSN technologies is presented. The GOAT analyzer description, design and details are
depicted at 4. GOAT. At 5. Evaluation, two scenarios modeling and results are
presented. Finally, at 6. Conclusion and future work, the project conclusions and future
steps for continuing with the work are presented.

 3

2. WIRELESS SENSOR NETWORKS

2.1 Introduction to WSNs

In recent decades there has been a significant growth of computer networks, particularly
of wireless communication kind, prompted by continuous technological advances. As a
result, smaller, lower cost and lower energy consumption electronic sensor devices, and
both wireless and wired systems capable of processing information locally and
communicating with other devices of the same type, have been deployed. These
technologies are known as Machine-to-Machine (M2M) and enable to exchange
information and operate without human intervention.

There are two categories of M2M technologies: Wireless Sensor Networks (WSNs),
which are networks composed by a group of sensor nodes located over a singular area;
and cellular networks, composed by radio cells where each cell includes a transceiver
providing larger radio coverage. Radio cells could be used to allow the gateway of a
particular WSN to reach the Internet [1].

Regarding wireless networks, the smart cities first conceptions irruption have motivated
the growth of WSNs and this upward trend will continue over the next years, with over
10 billion mobile-connected devices in 2017 [2], so that the wireless industry could see
a $1.2 trillion revenue opportunity by 2020 [3]. All these factors have promoted the
WSN research field, which has been identified as one of the most promising
technologies for various technology researchers, institutes and specialized magazines.

Nowadays, several types of sensors can be found in a huge amount of electronic devices
and systems. In most applications, these sensors act just as transducers, taking
measurements of one or more environment variables and sending this data to a central
node that is responsible for processing tasks. However, a new generation of sensors,
with their own intelligence and able to organize autonomously and interconnect with
other sensors is being deployed. That is where WSN come through, a revolutionary
technology field for applications in areas like agriculture, industry, automotive,
domotics, medicine, etc.

This chapter provides a general introduction to wireless sensor networks, their
components, challenges, applications and simulators.

2.2 What is a WSN?

A wireless sensor network is a network consisting of three main components: sensor
nodes, gateways and software. In a WSN, nodes are spatially distributed over an area in
ad-hoc manner to monitor the devices themselves or the environmental conditions, such
as temperature, sound, light, etc. The data gathered by a node is transmitted among the
rest of nodes, depending on the routing model, through virtual (wireless) links until the
data reaches the sink (or gateway). The gateway can both operate independently, or be

 4

connected to a server allowing collecting, processing, analyzing and presenting the data
measurements through software implementation.

This kind of networks often includes actuators, devices that convert electrical signals
into physical actions, however the commonly accepted name in the literature has
remained as wireless sensor networks.

Figure 1: Wireless Sensor Network overall architecture

In the picture above, a WSN diagram is shown. The local part of the system contains the
WSN, the gateway and the user interface for configuring the sink node. The global part
consists of the server or host where the sink sends the data to, and the terminals or
endpoints, where users can access this data. Software allows the user monitoring the
network throughout graphical representations, performance indicators, alarms, etc.

Wireless sensor networks enable developing ad-hoc networks without pre-established
physical infrastructure or central administration [4]. The ad-hoc expression refers to a
network where there is no central node, but where all devices are equal. Ad-hoc is one
of the easiest ways to create a network; due to they are a type of network composed by a
group of mobile nodes forming a temporary network without the aid of any external
infrastructure. For this to be put into practice, it is required that nodes collaborate with
each other to achieve a common goal: that any packet reaches its destination even if the
sink is not accessible directly from the source node. Regarding this goal, the routing
protocol is responsible for discovering routes among nodes to make all of them able to
both receive and transmit data to the sink.

In most cases, WSNs have the ability to self-restore, that is, if a node fails, the network
find new ways to route data packets. Therefore, the network will continue operating as a
whole, even if individual nodes deplete their battery and stop working. Self-diagnostic
capabilities, self-configuration, self-organization, self-restoration and self-repair, are
properties that have been developed for these networks to allow them to be unattended
(to work without human intervention).

 5

Figure 2: Rerouting after node failure

2.3 Architecture and components

A Wireless sensor network is composed of sensor nodes, gateways and software. This
subsection depicts these components and the architecture they compose.

A sensor is a device capable of detecting physical or chemical magnitudes, e.g. light,
sound, temperature, or pressure, and converting them into electrical signals to be
processed in order to get the measures data. Sensors are typically small, battery-
powered and low cost devices. A sensor node, instead, is the basic unit of a sensor
network. It has to provide some computation or processing, wireless communication
with the rest of sensor nodes in the network, and sensing functionalities. Usually sensor
nodes are not used individually, but are part of a larger and more complex system [5].

Figure 3: Libelium waspmote1

Once a sensor node takes events or measurement, the data is converted from physical to
digital in the node itself. Then, this data is transmitted outside the network, throughout
other sensor nodes if needed (when there is no direct communication between the

1 Retrieved April 20, 2015 from http://www.libelium.com/uploads/2013/02/waspmote_pro-400px.jpg

 6

source node and the sink), via a gateway element to a base station. At the base station,
information can be stored and treated temporarily. Also, it can end up on a server with
more capacity, allowing composing a historical sequence or making further data
analysis.

Figure 4: WSN architecture (based on [6])

The components of a WSN are detailed below.

a) Sensor node
As explained above, the sensor node is the basic unit of sensor network. It consists of a
mote and a sensor board. The mote is the entity composed of a processor and radio
devices, and the sensor board is a data acquisition board connected to the mote through
an expansion connector that includes a set of sensors. Some sensor node models include
the sensors in the mote itself and that is why in some bibliography sensor nodes and
motes are considered to be the same. Examples of magnitudes measured by a sensor
are: temperature, humidity, pressure or light.

Below it is shown the general architecture of a sensor node. It consists of four key
components: processor (or controller) and memory unit, detection unit (or sensors),
transceiver, and power supply. This basic design could be extended depending on the
need for specialized application or hardware, including modules such as a power
generator, a positioning system or some kind of actuators. Sensor nodes are expected to
be low cost and small, which implies having high hardware limitations.

Figure 5: Sensor node architecture

 7

The components of a sensor node are explained below.

● Controller: This component includes a microprocessor and memory unit that
provide computational and storage logic. Some of its main functionalities are
processing and data handling, temporary storage, encryption, forward error
correction (FEC), digital modulation and transmission. The computational and
storage requirements in a WSN vary depending on the application and can range
from the use of an 8-bit microcontroller up to 64 bits. Storage requirements can
also range from 0.01 to 2 gigabytes (GB) [7]. In addition to the microcontroller
memory, some models include additional external ones such as flash memories.
Hence, the processor and memory capabilities of a sensor node are significantly
low. This implies that the computational cost of the algorithms should be
minimized as much as possible.
Currently two of the most widely used low consumption processors in WSN
developments are the ones listed below:
○ ARM7: Reduced Instruction Set Computing (RISC) microprocessor

family with a versatile processor designed for mobile devices and other
low power electronics. This processor is capable of up to 130 million
instructions per second (MIPS) on a typical 0.13µm process [8].

Figure 6: ARM 7 microcontroller2

○ Atmel AVR: AVR are a family of RISC microcontrollers from Atmel.
The AVR is a Harvard architecture CPU with 32 8-bit registers. Some
instructions operate only on a subset of these records [9].

Figure 7: Atmel AVR microcontroller3

Sensors: A sensor is a hardware device that measures a physical or chemical quantity
and converts it into a signal. That is, it converts physical phenomena like sound,
pressure or light, into electrical signals. It behaves as a nexus between the environment
and the sensor network. When the electrical signal is generated, it is sent to the
microcontroller in order to be processed. There is a wide range of sensor types:

2 Retrieved April 26, 2015, from http://skpang.co.uk/catalog/images/olimex/Philips_LPC/lpc-h40.jpg
3 Retrieved April 26, 2015, from http://www.atmel.com/products/microcontrollers/avr/

 8

temperature, pressure, sound, humidity, smoke, accelerometers, magnetic, etc. Sensors
can be classified into two big categories:

• Passive sensors: Passive sensors sense data without impacting the environment
by active probing. They are self-powered (energy is just needed to amplify their
analog signal) [10]. There are two types of passive sensors:

o Omnidirectional sensors: they have no notion of direction involved in
their measurements [11].

o Narrow-beam sensors: Narrow-beam sensors have a well-defined notion
of direction of measurement, similar to a camera. That is, they should be
properly disposed in order to measure the desired event or phenomena
[11].

• Active sensors: Active sensors sense probing the environment actively and they
must be continuously connected to a power source. The radar is a typical
example of active sensor.

Figure 8: Temperature sensor4

● Actuators: An actuator is a device that converts electrical control signals to
physical action, and constitutes the mechanism by which an agent acts upon the
physical environment [12].

Figure 9: Micro motor reducer5

● Transceiver: A transceiver is a device comprising a transmitter and a receiver.
In half-duplex mode, an electronic switch allows the transmitter and receiver to
be connected to the same antenna, and prevents the transmitter output from
damaging the receiver. With a transceiver of this kind, it is impossible to receive
signals while transmitting. Full-duplex transceivers allow reception of signals
during transmission periods and require that the transmitter and receiver operate
on different frequencies in order to avoid interferences. The transmitted signal is
called the uplink, and the received signal is called the downlink [13].

4 Retrieved April 26, 2015, from https://cdn.sparkfun.com//assets/parts/4/1/8/8/10988-01.jpg
5 Retrieved April 26, 2015, from http://fadisel.com/imgs/c-6064.jpg

 9

The transceiver is the most energy-consuming component of a sensor node, so
there is a need for low-cost and energy-efficient radios.

Regarding the transceiver, there are defined the following node states:

○ Transmit: Send data packets to the network.
○ Receive: Receive data packet from the network. A transceiver in this

state could also receive packets destined to a different node (overhead).
○ Idle: Waiting for packet reception. Energy consumption is reduced due

to some hardware functions are switched off.
○ Sleep: Most of the hardware functionalities are switched off in this state.

The transceiver is not ready to immediately start receiving packets. Some
kind of wake-up mechanism has to be implemented in order to notify the
receiver when to start listening.

● Power supply: An appropriate power supply must be able to feed the node for
months, or even years, depending on the system requirements. Unattended
WSNs typically incorporate a supply via a separate power system (usually
batteries), combined with any charging source (e.g solar cells) or auxiliary
power. These recharging strategies are needed where it is not possible to
manually replace the nodes batteries, due to sensor nodes are normally placed in
remote and difficult-to-access areas

Figure 10: Node solar panel6

Considering the limited lifetime of the device, it is needed to provide efficient
power management (energy efficiency). The limited capacity of this unit requires
energy-efficient operation for the tasks of each component. All sensor node
components consume energy, but not at the same levels; the most energy
consuming state is the data transmission, being lower in the processing and data
gathering of the sensors.

b) Gateway
While motes sense any physical magnitudes of their surroundings and relay the
information received from neighbor nodes to other nodes in transit to the gateway, the
gateway collects all the information received from the motes and stores it (for example,

6 Retrieved April 27, 2015, from http://www.voltaicsystems.com/6-watt-kit

 10

in a database), and makes this information available usually via a wireless network [14].
The gateway also acts as the network coordinator in charge of node authentication and
message buffering, and provides the interface between the sensor nodes and the network
infrastructure.

A gateway must have enough computing power to be able to run a database, perform
local calculation and communicate with an existing network, but should be low power
enough to run autonomously in the field [14]. There can be multiple gateways in a
WSN, each communicating on a different, non-overlapping software-selectable wireless
channel. Gateways main tasks are: transfer WSN measurements to remote users,
transmit user commands and code updates to one or more of the network’s motes, and
alert the network administrators of potential network faults [15].

Figure 11: Wireless sensor network (WSN) gateway WSDA? Base7

c) Software
Most of WSNs are programmed based on the event-based model. Event based, or
event-driven programming is a programming paradigm in which the flow of the
program is determined by events such as user actions sensor outputs, or messages from
other programs/threads [16]. Event based programming is useful for WSN applications
due to they are centered on performing certain actions in response to an input (motes
packet transmissions). Also, the asynchronous mode of communication in WSNs, and
faulty nature of sensor nodes makes this paradigm the most elected choice.

The operating Systems (OS) for wireless sensor network nodes is typically less
complex than general-purpose operating systems. The main tasks performed by a WSN
OS are to control and protect the access to resources by managing the nodes allocation
to different users, and support for concurrent execution of processes. Some of the most
used WSN operating systems are listed below [17].

● TinyOS is maybe the first operating system specifically designed for wireless
sensor networks. TinyOS is written in the nesC programming language.

● LiteOS is an open source UNIX-like abstraction and support for the C
programming language.

7 Retrieved April 27, 2015, from http://orcom.com.ua/en/cat/19/9212/

 11

● Contiki is an open source OS developed for the field of the Internet of Things. It
uses a simple programming style in C while providing advances such as
6LoWPAN and Protothreads.

● RIOT is an open source microkernel OS that provides multithreading with
standard API and allows for development in C/C++. RIOT supports common
Internet of Things (IoT) protocols such as 6LoWPAN, IPv6, RPL, TCP, and
UDP.

● ERIKA Enterprise is an open-source and royalty-free OSEK/VDX Kernel
offering BCC1, BCC2, ECC1, ECC2, multicore, memory protection and kernel
fixed priority-adopting C programming language.

Software in WSNs can also refer to those applications that allow the user or
administrator to configure the nodes and filter, manage and visualize the data.

Figure 12: NI LabVIEW 2011 Silver Controls8

WSN Simulators

Running real experiments on a WSN testbed is costly (in terms of money and time), and
it is also very difficult to isolate one single parameter to be analyzed. Hence, simulating
WSNs is almost imperative to design and deploy them.

When it comes to simulating, two concepts arise: simulator and emulator. A Simulator
is used for developing and testing WSN protocols. Simulations are very low cost and
can be executed in relatively short periods of time. An emulator, however, is a tool
implemented in real nodes that performs the simulation by means of firmware,
hardware, and software in some cases [22]. The table below summarizes the most
relevant simulators and emulators for wireless sensor networks.

8 Retrieved April 27, 2015, from http://www.ni.com/white-paper/12892/es/

 12

Table 1: WSN simulators and simulators (based on [22])

Name Kind Event or Driven GUI Open Source WSN specific

NS-2 Simulator Discrete-Event No Yes No

TOSSIM Emulator Discrete-Event Yes Yes Yes

EmStar Emulator Trace-Driven Yes Yes Yes

OMNeT++ Simulator Discrete-Event Yes
Noncommercial

license and
commercial license

No

J-Sim Simulator Discrete-Event Yes Yes No

ATEMU Emulator Discrete-Event Yes Yes Yes

Avrora Simulator Discrete-Event No Yes Yes

2.4 Challenges

Different systems (ZigBee, 802.15.4, Bluetooth, or even proprietary radio solutions)
have been considered for transmitting data in common Machine-to-Machine (M2M)
scenarios. However, none of those systems has prevailed because of the current
diversity and complexity of applications and environments [18].

Regarding WSNs, power consumption is perhaps the central design consideration
whether they are powered using batteries or energy harvesters. Several essential issues
are key to develop low-power wireless sensor applications such as efficiently
harvesting, converting, and storing the energy as well as using available energy in the
most efficient way, while keeping a proper performance (range, data rate, latency,
and/or standards compliance) [19]. Today this is becoming possible because of the
development of ultra-low-power transceiver radio chip working in combination with a
microcontroller (MCU), which manages the transceiver; switching it on, making it
listen, transmit, wait for or receive acknowledge signals, or re-transmit, all in
accordance to the communications protocol being used [19].

Apart from energy consumption, most envisioned sensor network applications also
encounter the following main challenges:

● Architecture: Ad hoc deployment requires that the system identifies and copes
with the resulting distribution and connectivity of nodes [20]. There is no
unified system and networking architecture that is stable and mature enough to
build different applications on top.

 13

● Dynamic environmental conditions: It requires the system to adapt over time
to changing connectivity and system stimuli [20].

● Unattended operation: Configuration and reconfiguration must be automatic
(self-configuration) [20].

● Hardware cost: The current cost of each individual sensor unit is still very high.
Commercially available platforms cost in the order of €70 per unit with
temperature, humidity and light sensors when bought in large quantities [19].
Capable sensors able to track human mobility inside buildings are costing
around €200 per unit [19].

● Wireless Connectivity: Wireless communication in indoor environments is still
quite unpredictable using low-power consumption RF transceivers, in particular
in clutter environments common inside buildings, with many interfering
electromagnetic fields, such as the one produced by elevators, machinery and
computers, among others [19].

● Programmability: Some form of network re-programmability is desirable;
doing so in energy and communication conservative form remains a challenge
[19].

● Security: From the system point of view, it is critical that the information
provided by the nodes be authenticated and the integrity verified, since this
information provides the feedback loop to expensive equipment controlling
power consumption [19]. From the users’ point of view, it is also critical that
this information cannot be easily spoofed and remains protected in the back end
processor, since it may affect the privacy of users [19].

In conclusion, The technological obstacles such as the incomplete de facto
standardization of a protocol, and the energy constraints the application of wireless
sensors are tremendous and make them a fascinating area with great potential. It is
important to note that the impact of this area on the world can rival the impact that the
Internet has had in the past.

2.5 Applications

WSNs are capable of supporting a lot of very different real-world applications, but they
are also a challenging research and engineering problem because of this flexibility.
Some of the applications provided by Wireless Sensor Networks are mentioned below
[21]:

● Area monitoring: Monitor some physical or chemical phenomena in a certain
area or region.

● Earth monitoring: Earth science research such as sensing volcanoes, tectonic
plates, jungles, etc.

● Air quality and pollution monitoring: Frequently measurements of air
composition in order to safeguard people and the environment.

 14

● Forest fire detection: Fast fire alert mechanisms can be deployed with WSNs.
● Landslide detection: Detect slight movements of soil and other phenomena that

could become avalanche or similar disasters.
● Natural disaster prevention: Prevent natural disasters like floods. This kind of

network could also be used to deploy fast ways of communicating in damaged
scenarios.

● Medical care: Real-time patient monitoring, home monitoring for chronic and
elderly patients, and collection of long-term databases of clinical data are
examples of features are features of medical care wireless sensor networks.

● Industrial monitoring: Based on the data gathered from the nodes, the
processes in industry can be optimized.

● Agriculture: Using a wireless network frees the farmer from the maintenance of
wiring in a difficult environment. Some examples of systems that can be
monitored by a WSN are accurate agriculture, irrigation management, or green
house.

● Smart home monitoring: Biometric authentication for home entrance, energy
consumption saving mechanisms, or remote blinds actions can be achieved by
deploying wireless sensor network at home.

 15

3. WIRELESS TECHNOLOGIES FOR WSN

There are two categories of communication technologies for Machine-to-Machine
(M2M) applications: Wireless Sensor Networks (WSNs), for interconnecting spatially
distributed autonomous sensor nodes over a certain region; and cellular networks, for
isolated nodes located on cells providing coverage by a fixed transceiver (base station)
[1]. Cellular networks could be also used to connect the gateway of a WSN to the
Internet.

Regarding WSNs, several systems (ZigBee, 802.15.4, Bluetooth, or even proprietary
radio solutions) have been considered for transmitting data among the nodes. However,
due to the diversity and complexity of the applications and scenarios none of those
systems has prevailed [1]. In fact, unlike WiFi standards, which have been established
as de facto, there is not yet a common standard entirely focused on WSNs.

3.1 MAC layer impact on energy

Medium Access Control (MAC) directly controls the transceiver operation, which is the
most energy-consuming component of a sensor node. Hence, apart from the transceiver
design, the MAC layer is the most important part of the protocol stack when it comes to
energy saving.

By identifying the possible states of a node, MAC protocols can intend to reduce the
overall energy consumption in order to avoid wasting more energy than the needed one.
For instance, if it is known that a node will not receive packets in a period of time, this
node could be sleeping and consume just the enough energy to remain operative. The
main sources of energy waste should be identified in order to try to reduce them [23]:

● Idle listening: Listening to the channel when there is nothing to receive.
Identified as the major energy waste in WSNs (low traffic loads).

● Collisions: When more than one message is simultaneously transmitted in the
same channel. Energy spent receiving and transmitting without any profit.

● Overhearing: Receiving messages for another destination. Energy spent
receiving without any profit.

● Overhead: Headers and other kind of overhead.

As mentioned above, idle listening is the major energy waste source. Thus, making the
node sleep as much as possible, that is, switching the radio off (no packets could be
received or sent), could be one solution. In sleep mode the energy consumed is much
lower than in transmit, receive or sampling modes. In order to make a node know if it is
going to receive something and then whether it has be active or not, the common
solution is to put the transceiver into sleep mode periodically (what is known as “duty
cycle”). Then, a MAC protocol that takes this into account will notify the node when
and how to put itself active.

 16

In this section three of the most commonly used standards for WSN are depicted: IEEE
802.15.4, IEEE 802.ah and Bluetooth Low Energy (BLE). Also, a summary comparing
the most relevant WSN standards can be found at 3.5 Other WSN technologies.

3.2 IEEE 802.15.4

IEEE 802.15.4 is a standard that specifies the physical and link layer of (Low-Rate
Wireless Personal Area Networks) LR-WPANs. IEEE 802.15.4 is specially designed
for use in low-cost devices with low data rate and low power consumption [24].

Figure 13: IEEE 802.15.4 Stack architecture [24]

a) Physical layer
A radio frequency (RF) transceiver and the protocol stack constitute the physical layer
of this standard. Its frequency bands correspond to the free frequency bands available
worldwide [24]. The Table 2 summarizes this information:

Table 2: Frequency bands of IEEE 802.15.4 (based on [24])

Frequency (MHz) Available Channels Data Rate (kbps) Available Regions

868 - 868.6 1 20 Europe

902 - 928

10 (release 2003)

20 (release 2006) 30 USA

2400 16 250 Europe

Figure 14 shows the common packet structure of IEEE 802.15.4. In these packets,
within the 127 bytes of the PHY Service Data Unit (PSDU), 25 bytes are used for
physical layer headers, and the remaining 102 bytes are available for network level and
application level [24].

 17

Figure 14: IEEE 802.15.4 Packet structure [24]

b) MAC layer
Regarding the Medium Access Control (MAC) layer, IEEE 802.15.4 uses a protocol
based on the CSMA/CA algorithm, which requires listening to the channel before
actually transmitting in order to reduce packet collisions probability. Two operational
modes are designed, which correspond to two different channel access mechanisms
[24]:

• Non beacon-enabled mode: Unslotted CSMA/CA protocol is used to access the
channel and transmit using units of time called backoff periods. The procedure
is the following:

o Each node delays any activities for a random number of backoff periods.
o Then, channel sensing is performed for one unit of time.

§ If the channel is free: The transmission is starded.
§ If the channel is busy: The node enters again in backoff state.

o When the maximum number of times a node can try to sense the channel
is reached, the transmission is aborted.

• Beacon-enabled mode: In this mode, the access to the channel is managed
through a superframe. This superframe begins with a beacon that is transmitted
by the WPAN coordinator. The superframe may contain an inactive part,
allowing nodes to go sleep. The active part is divided into two parts: the
Contention Access Period (CAP) and the Contention Free Period (CFP),
composed of Guaranteed Time Slots (GTSs), that can be allocated by the sink to
specific nodes. The use of GTSs is optional. The figure below shows the
superframe structure.

Figure 15: IEEE 8021.15.4 Superframe structure [24]

 18

c) Upper layers
IEEE 802.15.4 is the protocol with the simplest. In fact, other protocols such as ZigBee
or 6LoWPAN use 802.15.4 MAC as subjacent protocol layer. The physical and Mac
layers are the same at all protocols; being the data transmission method used the
difference among them [24]. A comparison according the TCP/IP model among the
protocols using 802.15.4 as a subjacent protocol layer is shown in table 3.

Table 3: Classification of different protocols in the TCP/IP model (based on [25])

TCP/IP Layer 802.15.4 MAC 6LoWPAN ZigBee RF4CE

Application User defined User defined Standardized
and user defined
ZigBee profiles

Public or
proprietary
application

profile

Transport - e.g. UDP - -

Network - IPv6 and
6LoWPan

ZigBee NWK
layer

ZigBee RF4CE
NWK layer

Data link 802.15.4 MAC

Physical 802.15.4 PHY

3.3 IEEE 802.11ah

The IEEE 802.11ah standardization Task Group (TGah)9 was created in 2010 and aims
to create a WLAN standard for the PHY and MAC layers able to operate at sub 1 GHz
frequency bands [24]. Various scenarios have been proposed in which this new protocol
could be applied. Some examples of these scenarios would be: smart cities, agriculture
monitoring, medical care, etc.

A WLAN protocol for operating below 1 GHz would involve the benefits of low
frequency transmission such as wider wireless coverage and lower loss rate. However, it
must be noted that there is a lack of interoperability between devices in this frequency
range, because of, in most of the cases, the non-shared manufacturers’ developments
[24].

9 IEEE 802.11ah Task Group - http://www.ieee802.org/11/Reports/tgah_update.htm

 19

Figure 16: Adopted IEEE 802.11ah use case: smart grid10

a) Main technological features
The requirements defined by IEEE 802.11ah to support M2M communications are as
follows [18]:

● Up to 8,191 devices associated with an access point (AP) through a hierarchical
identifier structure.

● Carrier frequencies of approximately 900 MHz (license-exempt) that are less
congested and guarantee a long range.

● Transmission range up to 1 km in outdoor areas.
● Data rates of at least 100 kbps.
● One-hop network topologies.
● Short and infrequent data transmissions (data packet size approximately 100

bytes and packet inter- arrival time greater than 30 s.).
● Very low energy consumption by adopting power saving strategies. Cost-

effective solution for network device manufacturers.

In order to satisfy these requirements, IEEE 802.11ah provides with new PHY and
MAC layers including several modifications with respect to consolidated IEEE
standards for supporting the special constraints of M2M communications. The IEEE
802.11ah PHY layer can be considered a sub-1GHz version of the PHY layer on the
IEEE 802.11ac. Similarly, the IEEE 802.11ah MAC layer incorporates most of the main
IEEE 802.11 characteristics, adding some novel power management mechanisms [24].

b) Physical layer
IEEE 802.11ah operates over a set of unlicensed sub-1GHz radio bands that depend on
country regulations. For example, the targeted frequency bands are 863-868 MHz in
Europe, 902-928 MHz in the US, and 916.5-927.5 MHz in Japan. Regarding channel

10 Retrieved 18 May 2015, from http://www.cnx-software.com/2014/02/21/802-11ah-wi-fi-900-mhz-to-
provide-low-power-long-range-connectivity-for-the-internet-of-things/

 20

bandwidths, 1 MHz and 2 MHz have been widely adopted, although in some countries
broader configurations using 4, 8, and 16 MHz are also allowed [24].

Physical transmissions are based on Orthogonal Frequency Division Multiplexing
(OFDM) waveforms consisting of 32 or 64 tones/sub-carriers with 31.25 kHz spacing.
The supported modulations include BPSK, QPSK, and from 16 to 256-QAM.
Technologies introduce in IEEE 802.11ac such as single-user beam forming, Multi
Input Multi Output (MIMO) and downlink multi-user MIMO are also adopted in IEEE
802.11ah [24].

c) MAC layer
The MAC layer is designed to maximize the number of stations supported by the
network while ensuring minimum energy consumption, and it is expected to have a
deeper impact than the physical layer on energy saving. Three types of stations, each
with different procedures and time periods to access the common channel are defined
[1]:

• Traffic indication map (TIM) stations
This kind of station needs to listen to AP beacons to send or receive data. Their
data transmissions must be performed within a restricted access window (RAW)
period with three differentiated segments (multicast, downlink, and uplink).
Stations with a high traffic load should use this procedure to access the channel
because it combines periodic data transmission segments with energy efficiency
mechanisms.

• Non-TIM Stations
Non-TIM stations do not need to listen to any beacons to transmit data. During
the association process, non-TIM devices directly negotiate with the AP to
obtain a transmission time allocated in a periodic restricted access window
(PRAW). The following transmissions can be either periodically defined or
renegotiated, depending on the requirements set by the station. Although non-
TIM stations can transmit data periodically, it is advisable to deploy TIM
stations for high-volume data applications to achieve better management of
channel resources and benefit from all the improvements developed by IEEE
802.11ah.

• Unscheduled Stations
These stations do not need to listen to any beacons, similar to non-TIM stations.
Even inside any restricted access window, they can send a poll frame to the AP
asking for immediate access to the channel. The response frame indicates an
interval (outside both restricted access windows) during which unscheduled
stations can access the channel. This procedure is meant for stations that want to
sporadically join the network.

 21

Figure 17: Distribution of channel access restricted windows (RAW and PRAW) among signaling
beacons [1]

Figure 18: AID frame structure based on the hierarchical association of stations [1]

d) Energy savings
The possibility of keeping nodes in sleep mode for long periods of time without losing
their association with the corresponding AP is one of the main features introduced by
802.11ah. These energy saving mechanisms would be essential in smart metering'
environments, where transmission periods usually are very large (hours, days or weeks)
and are clearly established.

Energy consumption can also be reduced when stations are not sleeping by deactivating
the radio module during non-traffic periods. Moreover, a greater reduction of energy
consumption is achieved due to IEEE 802.11ah restricts to a particular group of stations
to simultaneously contend for the same channel in a specific period, which allows TIM
stations from the same group to be in a sleep mode for the rest of the time [1].

3.4 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is essentially a simplified version of Bluetooth, a
wireless technology standard for exchanging data over short distances from fixed and
mobile devices, and building personal area networks (PANs). BLE uses the same

 22

physical layer in the ISM 2.4 GHz for easy interoperability with existing devices and
allows data rates of up to 1 Mb/s at a maximum range of 10 meters [24].

With respect to the classic Bluetooth technology, BLE optimizes three basic areas of
functionality: connection and discovery modes, number of packets transmitted during
connections and size of individual packets [24]. These improvements make BLE to be
very efficient when transmitting small amounts of data to other devices at very low
latencies, becoming 15 times more efficient when compared with the classic Bluetooth.

In classical Bluetooth technology, when two devices want to communicate each other,
they have to use the same channel (or frequency) simultaneously becoming
synchronized. In order to get synchronized these devices must look for an appropriate
channel to start the exchange of information. There are 32 channels defined in
Bluetooth technology making the synchronization last up to two seconds, with the
corresponding energy consumption [24]. Instead, BLE defines just 3 channels, making
the synchronization process much faster.

Figure 19: Bluetooth, Bluetooth Smart Ready and Bluetooth Smart11

Another difference regarfing the two mentioned protocols is that BLE uses a higher
modulation index. The signal, then, occupies more bandwidth and channel filters do not
have very demanding requirements. Because of this, the channels are doubly spaced (2
MHz) [24]. In addition, when a slave node does not have data to transmit, it does not
have to maintain its radio module on. However, when this device has data to transmit, it
can wake up and send it during the next suitable event of communication.

Bluetooth Low Energy does not support mesh networks, which is a clear disadvantage,
compared with Zigbee, 6LoWPAN or Z-Wave.

11 Retrieved 14 May, 2015, from http://www.aislelabs.com/blog/2014/06/06/what-is-bluetooth-low-
energy/

 23

3.5 Other WSN technologies

As mentioned above in this section, it is challenging to find patterns of proper
comparison between the most common WSN technologies used nowadays.
Nonetheless, the outcomes of some previous research in this area are shown in the
tables below.

Table 4: Comparison of different technical features from different technologies (based on [18][26][27])

 IEEE 802.11b/g Bluetooth UWB-IR IEEE 802.15.4 Zigbee

Frequency
Band ISM 2,4 GHz ISM 2,4 GHz

3,1 GHz –
10,6 GHz

ISM 2,4 GHz,
915 MHz, 868

MHz
ISM 2,4

GHz

Spreading DSSS FHSS / TDD Baseband DSSS DSSS

Modulation
BPSK, QPSK, CCK,

OFDM GFSK

Impulse
radio, time-

domain O-QPSK O-QPSK

Range
Coverage 100 m. 10 m. <5 m. 10 m. 10 - 75 m.

Data Rate <54 Mbps 1 Mbps

20 kbps, 250
kbps, 10

Mbps 250 kbps 250 kbps

Transmission
Power High High Ultra high Very low Very low

Roaming Yes No Yes Yes Yes

Maximum
Number of

Nodes 32 per AP
8 per

Piconet 10 - 1000 <65536 <65536

Energy
Consumption Medium Low Ultra low Very low Very low

Complexity Complex
Very

complex

Simple
transmitter,

complex
receiver Simple Simple

Security WEP, WPA 64 o 128 bits 128 bits
NULL, 32, 64 or

128 bits 128 bits

Cost High Medium Very low Low Low

 24

Table 5: Specific comparison of features among Zigbee, Bluetooth and IEEE 802.11ah [18]

 25

4. GOAT

4.1 Introduction

a) What is GOAT?
GOAT is a graphical Wireless Sensor Network analyzer running on Windows, Mac OS
and Linux kind operative systems that allow designing WSNs and estimating its energy
consumption. With GOAT, we provide a tool that allows WSN managers to compare
the performance of different MAC and routing protocols in terms of power
consumption.

As mentioned before, GOAT is a graphical analyzer. It displays the topology of the
network, that is, nodes and links, and also different parameters of interest such as rates,
number of nodes, map size, etc. All the mentioned graphical items are included in a
Graphical User Interface (GUI) that enables interacting with the analyzer throughout a
series of panels, buttons, combo boxes and checkboxes.

GOAT is aimed to be an open source project. To that end, it has been designed taking
into account code modularity in order to promote future collaborations, making clear
how the program is structured and how it can be expanded and improved. The main
goal is that GOAT could be used in college and research fields, facilitating learning
WSN aspects in the first case, and allowing deeper analysis on the second one.

b) Main features
GOAT implements several functions. The main ones are mentioned below:

• Create and modify Wireless Sensor Network topologies.
• Save and open topologies.
• Set the sending rate of each of the nodes of the WSN created.
• Set and modify the sink (or gateway) of the WSN.
• Add and delete one or all nodes.
• Display distance, power and coverage matrices.
• Open and save the WSN topology.
• Display coverage links.
• Establish and display routing links automatically depending on the physical and

routing models selected.
• Display sending (𝜆), aggregated sending, receiving and overhearing rates of

each node.
• Estimate the energy consumption of each node and its lifetime depending on the

MAC model selected.
• Analyze the selected battery model impact on the WSN energy consumption.
• Estimate the proportion of the entered observation time a node stays in each of

the possible states.
• Save simulation results.

 26

c) System requirements
GOAT simulator can be exectued on Windows, Mac OS and Linux kind operative
systems. Just Java JDK 7.0 or above is required to be installed. Java 7 has the following
system requirements12:

• Windows
o Windows 8 (Desktop)
o Windows 7
o Windows Vista SP2
o RAM: 128 MB; 64 MB for Windows XP (32-bit)
o Disk space: 124 MB

• Mac OS X
o Intel-based Mac running Mac OS X 10.7.3 (Lion) or later.
o Administrator privileges for installation

• Linux
o Oracle Linux 5.5+
o Oracle Linux 6.x (32-bit), 6.x (64-bit)
o Oracle Linux 7.x (64-bit)
o Red Hat Enterprise Linux 5.5+, 6.x (32-bit), 6.x (64-bit)
o Ubuntu Linux 10.04 and above

4.2. Architecture and design

a) Functional design
GOAT allows creating and modifying WSNs topologies through its GUI. Also, from the
GUI, a user has the possibility to select different physical, battery, MAC, and routing
models for modeling the desired scenario. In order to open stored topologies and save
new ones, the GUI counts with two buttons for reading input topologies files in txt
format and writing new ones.

It is needed to modify the code of the application to change some of the analyzer
parameters. However, the code is structured in such way that the user can easily find the
variables corresponding to the parameter he wants to modify. By compiling the code
again, the new user’s configuration can be executed.

The main functionality of GOAT is simulating and estimating the consumed energy by
the network. To do so, the user can run the simulation from the GUI and analyze the
results on the console included in the application.

12 What are the system requirements for Java? - http://java.com/en/download/help/sysreq.xml

 27

Figure 20: Functional design diagram

b) Technical design
GOAT simulator has been fully written in Java programming language and using
Netbeans 8.0.213 Integrated Development Environment (IDE).

The most relevant available Java packages and classes used are listed below:

● Java.awt14: Contains all of the classes for creating user interfaces and for
painting graphics and images. Desktop - Open pdf.

● Java.io Provides for system input and output through data streams, serialization
and the file system.

● Java.util: Contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscellaneous utility
classes (a string tokenizer, a random-number generator, and a bit array).

● Java.text: Provides classes and interfaces for handling text, dates, numbers, and
messages in a manner independent of natural languages.

● Java.lang.math: The class Math contains methods for performing basic numeric
operations such as the elementary exponential, logarithm, square root, and
trigonometric functions.

● Javax.swing: Swing library is an official Java GUI toolkit released by Sun
Microsystems. It is used to create Graphical user interfaces with Java. Swing is
an advanced GUI toolkit. It has a rich set of widgets: from basic widgets like

13 NetBeans IDE 8.0.2 Information - https://netbeans.org/community/releases/80/
14 Package java.awt - http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html

 28

buttons, labels, scrollbars to advanced widgets like trees and tables. Some of the
Swing package classes used in this project are listed below:
● JFrame
● JButton
● JLabel
● JComboBox
● JCheckBox
● JTextField

UML class diagram

The Unified Modeling Language (UML) class diagram purpose is to depict the classes
within a model. In Object-oriented programming (OOP), classes have attributes (items),
operations (methods and functions) and relationships with other classes. The Figure 22
shows the GOAT’s UML diagram. UML classes’ items and methods can be found at
annex A1.UML class diagram.

 29

Figure 21: UML class diagram

4.3 Graphical User Interface (GUI)

a) Design
An important value of Goat must be the intuitive functionality or ease of learning
provided by its GUI. That is, every student or researcher who wants to design a WSN
and simulate its behavior in terms of energy consumption, must be able to that in a
simple and operative way. This is the main reason why we are trying to develop a
Graphical User Interface as and intuitive as possible.

 30

Figure 22: GOAT Graphical User Interface (GUI)

The ease of remembering is another concept that has been taken into account. Indeed,
practically no remembering will be needed due to the simplicity of use, so we expect
that an expert (e.g. wireless fields researchers), and novice users (e.g. undergraduate
students) will get their desired WSN designs and simulation results in similar times. To
achieve that, we have developed a minimalist design, with few text and buttons placed
in a recognizable interface, matching the usual patterns, commands and metaphors (e.g.
play icon for simulating) of the most common simulators. Also, monochromatic
backgrounds are used in order to avoid distracting the user while keeping a nice
environment.

Regarding this, GOAT counts with simple interfaces that help to maintain a low user
error rate. As an example, when deleting a node, the user is only allowed to do that if a
node is previously properly selected. Another example is the simulation process. When
a user wants to run a simulation, the error rate has been decreased as minimum too;
each user has to introduce and select few really understandable parameters such as
observation time, physical model, MAC model, routing model, etc. That implies that
any user will be able to easily get into the program. Also, if the user makes a mistake
introducing wrong the asked parameters, GOAT will provide clear warnings notifying
it.

Figure 23: Informational and error messages displaying

 31

Another aspect to take into account is the enjoyable/satisfaction perceived by the user.
By applying User Centered Design (UCD), we have received some feedback and
proposals from researchers and undergraduate students for improving the GUI in
different ways. It is important to note that this user feedback, even not affecting the core
code of the program, must be received and applied the sooner the better, in the first
prototypes in order to avoid fixing more effort problems in the future. As an example,
most of the users asked for buttons with icons instead of text and for a larger console.
Then, based on these comments, we decided to hone the GUI with some icons and
images and increase the size of the console.

We do not want to forget about the efficiency of task performance. Thus, we have tried
to optimize the topology displaying in order to provide the user a faster experience.
However, that it is not a priority of the service GOAT provides. Making the user to
place the nodes in 2 minutes instead of 30 second until the full topology is created is not
the point. Also, simulations are expected to be run, even in highly dense scenarios, in
relatively short period of times. That is why, as said before, we prefer to focus on the
user ease of learning and, overall, the exactitude of the presented simulation results.

b) Structure
The GUI is structured in two differentiated parts: The map and the components.

• Map: The WSN topology is displayed in this section. Nodes shapes, identifiers,
links, rates, control graphics, etc. will compose the map.

Figure 24: GOAT Map - WSN example design

• Components: The components section consists of the buttons, checkboxes, text
fields, combo boxes, labels and also, the console. These components implement
action listeners that allow the user to interact with the analyzer by adding or
deleting nodes, selecting models, running a simulation, etc.

 32

o Console: The console is a special component. It serves to show the
results of the simulation and the events performed by the user such as
deleting a node, adding a new one, open a topology file, etc. Thus, the
main goal of the console is to inform the user and display the simulations
results in an understandable manner. For convenience, the console
implements an auto scroll that automatically shows the most recently
generated messages. This way, GOAT avoids making the user to drag
the scroll bar anytime he wants to check the last message.

Figure 25: GOAT components

Figure 26: Sending rate (𝜆) pop-up window

 33

Figure 27: Random topology pop-up window

The GUI implements some metaphors that are listed in the table below.

Table 6: Metaphors

Concept Description Image

Simulate Icon placed in the button for running a simulation.

Speed15 Icon placed in the pop-up window shown when “Set rate” or “Set
all rates” buttons are clicked

Help16 Icon placed on the button for redirecting the user to the user’s
manual.

Random Icon placed on the button for generating a new randomly
distributed topology.

Save Icon placed on the button for saving the last simulation results.

4.3 Topology creation

a) Create and modify topology
Topologies can be both created and modified in GOAT. For designing a new topology
from the scratch, the user can add new nodes to the WSN manually by clicking “Add
node”, generate a random topology by clicking “Random topology”, or open a topology
txt file (which is covered in the next subsection).

15 Retrieved 18 May, from
https://lh6.ggpht.com/0t6_XvWIL1aOf_9uF6sq3nXxhtluj1zPsa3vuS_BOrEMwdfhty9GDC82vbVSULM
fI4o=w300
16 Retrieved 18 May, from http://online.lbcc.edu/pluginfile.php/34778/block_html/content/helpicon.png

 34

Figure 28: Add node and Random topology buttons

Add node adds a single node to the network whether the network has already nodes or
not. The sending rate of the new node will be set to the default rate configured in the
code (see 4.6 Configuration). If the user adds a node on a WSN with motes and a sink
defined, it automatically will be included in the routing model, generating the links
corresponding to the new topology.

Figure 29: Rerouting after adding node 6 to the WSN

In the figure above, “add sensor” was clicked from the topology of the image on the left
(with 5 nodes) resulting on the topology of the image on the right (with six nodes). To
define the sink or gateway, the user has to select the node that is going to be set as sink
and then click “Set sink”. As shown in the figure below, defining a sink will
automatically generate the routing links corresponding to the topology and the selected
physical and routing models on the GUI.

Figure 30: Routing after setting a sink node

Random topology generates a new randomly distributed topology with a number of
nodes entered by the user. The algorithm used for achieving this, places each node
following a uniform distribution over the map through the java class Random.java.
Below it is shown a piece of code for generating the locations of the nodes to be added
to the WSN.

Random rn = new Random();
double randomValueX = rn.nextDouble();
double randomValueY = rn.nextDouble();
Point p_sensor = new Point(width * randomValueX, height *randomValueY);

 35

The size of the nodes will vary depending on the total number of nodes of the WSN in
order to allow displaying properly the topology on the GUI’s map. Four levels have
been defined:

Table 7: Node size levels

Number of nodes Node radius [m]

Until 15 25

From 16 to 45 15

From 46 to 70 nodes 10

More than 70 nodes 5

Figure 31: Size level 1 (left) and size level 3 (right) WSN examples

Set rate allows setting the sending rate of a selected node. The sending rate in this
scenario stands for the number of packets of own data that a mote sends per hour. It is
not permitted to set the rate of a sink node, due to it is suppose that a gateway will not
send own data packets, but forward the sensor data to the global level. Similarly, Set all
rates allows setting the sending rates of all the nodes at once.

Delete node removes a selected node from the WSN. In order to delete a node, the user
has to select the node to delete first, and then click the button. Deleting the sink node is
also permitted. When the sink is removed from the WSN, the links are no longer
displayed. If one of the remaining nodes of the WSN is set as sink, then new links will
be generated and displayed.

 36

Figure 32: Topology after deleting the sink node

Adding a new sensor after deleting a node will create a node with an id not assigned
previously. for instance, if a node is added to the topology on the right image above, its
node id would be 12, not 4. Clear map is used for removing all the nodes of the WSN
at once. It also resets the id assignment, starting from 1 on.

b) Open and save topologies
Besides enabling creating a topology from the scratch, GOAT allows the user to both
save and open WSN topologies. To do so, two buttons are included in the GUI: “Open”
and “Save”.

Figure 33: Open and Save buttons

When the user wants to save a topology already generated on the GUI, he has to click
“Save”. Then, a window pops up asking for a name and the location of the file. This
created file has to be txt format. The topology file format generated when the save
process is finished consists of the following five columns.

• ID: Node identifier. It has no impact on the topology. The only thing to keep in
mind is that two nodes cannot have the same identifier

• X: Abscissa of the node.
• Y: Ordinate of the node.
• S: Sending rate of the mote (own data packets sent per hour)
• K: Kind of the node. It determines whether a node is a mote or a sink. A

maximum of one sink is permitted per WSN. There are, as mentioned, two
possible values for K:

o STA (or mote): 0
o Sink (or gateway): 1

An example of a topology file is shown below.

 37

Figure 34: GOAT topology file

Both opening and saving features display on the GUI console the opened and save
topology file, respectively.

4.4 Graphical information displaying
GOAT implements several functionalities that allow the user to check information
related with WSN being designed. These functionalities act on the console (matrices)
and on the map (links and rates).

Figure 35: Distance, Power, and Reachability buttons

The matrices represent an amount regarding a pair of nodes. There are three type of
matrices that can be displayed:

• Distance: The “Distance” button displays the nodes distance matrix. The user
can check the distance between any pair of nodes in that matrix.

• Power: In order to check the power that a node receives from another one, the
user can click the Power button. A matrix with all the power received by a node
from the rest of them will be displayed.

• Reachability: The reachability button

All the mentioned matrices follow the same format. Let us suppose a power matrix 𝑃.
Its component 𝑝!,!will represent the power received by the node 𝑖 from the node 𝑗. In
order to avoid misunderstandings, each matrix component where 𝑖 = 𝑗 will be set to 0.
An example of power matrix is shown below.

Figure 36: Power matrix display at console

 38

In the figure above we note that node 1 is receiving -78.3 dBm from node 2, -78.9 dBm
from node 3, and so on.

Figure 37: Graphical information displaying checkboxes

The checkboxes implemented on the GUI are listed above.

• Coverage: Displays the reachability between two nodes. That is, if a pair of
nodes can hear each other, a blue dotted line will be painted between them.

Figure 38: Coverage effect

• Tx: Aggregated sending rate. It displays the number of packets per hour that a
node sends. These packets consist on both own information and forwarding
packets.

• Rx: Listen rate. It displays the number of packets per hour that a node listens.
The number inside the parenthesis indicates the number of packets per hour that
are overhearing, that is, that are not going to be forwarded.

• S: Sending rate. It displays the number of own data packets per hour that a node
transmits to the network.

Figure 39: Sending, Reception, Overheading and Transmission rates

In order to access the user manual, a button with a question image set as icon has been
implemented. By clicking on the mentioned button, a web page will be loaded in the
default browser displaying a document with all the functionalities and instructions to
properly use GOAT.

 39

Figure 40: Help button and user manual

4.5 Modules
Several physical, battery, MAC and routing modules have been considered in GOAT. In
this subsection, the mentioned modules are depicted.

a) Physical models
The physical module implements different radio propagation models in order to know if
a node can be reached from another one, that is, if a node is in the coverage area of
another one. A radio propagation model is an empirical mathematical formulation for
the characterization of radio wave propagation as a function of frequency, distance and
other conditions [28]. We will use these models to estimate the path loss given in a link
connecting two nodes, and determine whether they can be reached or not.

The physical models implemented in the first version of GOAT are the ones explained
below:

• Free space (Friis)
The free space propagation model assumes the ideal propagation condition that
there is only one clear line-of-sight (LOS) path between the transmitter and the
receiver [29]. The power received at distance d can be calculated by the
following equation:

𝑃! = 𝑃!
𝐺!𝐺!𝜆!

4𝜋𝑑 ! 𝑊

Where 𝑃! is the transmitted signal power. 𝐺! and 𝐺! are the antenna gains of the
transmitter and the receiver respectively. L is the system loss, and 𝜆 is the
wavelength, which will vary depending on the used carrier frequency. The
power received can be also given in dB:

𝑃! = 𝑃! + 𝐺! + 𝐺! + 20 log!"
𝜆
4𝜋𝑑 𝑑𝐵

The free space model basically represents the communication range as a circle
around the transmitter. If a receiver is within the circle, it receives all packets.
Otherwise, it loses all packets [29].

 40

• Log-normal fading
Log-normal fading, also known as slow fading, arises when the coherence time
of the channel is large relative to the delay constraint of the channel. In this
regime, the amplitude and phase change imposed by the channel can be
considered roughly constant over the period of use [30]. This phenomenon can
be originated when a large obstruction such as a hill or building obscures the
main signal path between the transmitter and the receiver.

In conclusion, log-normal fading is a well-established model for distance
dependent average power attenuation. It can be modeled following the equations
above.

𝑃!(𝑑) = 𝑃! 𝑑!
𝑑
𝑑!

!!

, 2 <= 𝛾 <= 5

Where 𝑑! is the reference distance. Equivalently, the pass loss in dB can be
calculated by the following equation.

𝐿(𝑑) = 𝐿(𝑑!)+ 10𝛾𝑙𝑜𝑔
𝑑
𝑑!

!!

A table of typical 𝛾 values in different scenarios is shown below.

Table 8: Typical log-normal values (based on [31])

Scenario 𝜸

Ground-wave reflection 4

Urban cellular radio 2.7 – 3.5

Shadowed cellular radio 3 – 5

In-building LOS 1.6 – 1.8

Obstructed in-building 4 - 6

The first version of GOAT implements the following two default log-normal
fading models:

● 𝛾! = 2.2
● 𝛾! = 2.5

b) Battery models
Three well-known types of node batteries have been considered for the first version of
GOAT. The most relevant parameters taken into account regarding batteries are the
charge and the voltage feed. The three implemented battery models are considered for

 41

nodes feeded at 1.5 V. The charges, however, will differ depending on the implemented
mode as shown in the table below.

Table 9: Battery models implemented in GOAT

Battery model Charge Voltage Stored energy

AA 1500 mAh 1.5 V 8100 J

AAA 7500 mAh 1.5 V 40,500 J

Lithium 2200 mAh 1.5 V 11,880 J

Figure 41: AA batteries17

The battery model will deeply affect the node and overall network lifetimes. The higher
energy stored in the batteries, the higher the time the node could be operative.

c) MAC models
Multiple Access Control (MAC) provides addressing and channel access control
mechanisms that make it possible for several terminals or network nodes to
communicate within a multiple access network that incorporates a shared medium [40].
Bus, ring, and wireless networks are some examples of shared physical media. Packet
mode contention based MAC methods detect or avoid data packet collisions. Instead,
circuit-switched or channelization-based MAC methods reserve resources to establish a
logical channel [40].

The MAC models implemented in the first version of GOAT are depicted in this
subsection.

B-MAC

B-MAC is a carrier sense media access protocol for wireless sensor networks that
provides a flexible interface to obtain ultra-low power operation, effective collision
avoidance, and high channel utilization [41]. B-MAC employs an adaptive preamble-
sampling scheme to reduce duty cycle and minimize idle listening in order o achieve
low power operation. With B-MAC, each sensor node periodically wakes up, for few
milliseconds, only to check if there is a transmission in the air, and remains awake if it
founds activity, otherwise goes again to sleep [41]. A node willing to transmit sends a

17 Retrieved 1 June from http://rightbattery.com/wp-content/uploads/2013/08/1-5v-aa-duracell-alkaline-
battery.jpg

 42

long preamble before the packet transmission. The long preamble overlaps with the
listening time of the receiver, thus it is assured that the receiver will listen to the packet.

Figure 42: Example of B-MAC with three channels

The energy consumed by a node can be calculated adding the energy consumed in each
of the possible node states. For wireless sensor network applications, the energy used by
a node consists of the energy consumed by receiving, transmitting, listening for
messages on the radio channel, sampling data, and sleeping.

𝑒!"#$ = 𝑒!" + 𝑒!" + 𝑒!" + 𝑒! + 𝑒!"

Where the consumed energies are: 𝑒!" when transmitting, 𝑒!" when receiving, 𝑒!" when
listening packets that are not directed to the node (overhearing), 𝑒! when the node
samples the channel, and 𝑒!" when sleeping.

In the equation above, 𝑒!" and 𝑒!" are equal because the energy consumed when
listening a packet will be the same no matter whether the packet is directed to the node
or not. Then,

𝑒!" = 𝑒!" + 𝑒!"

𝑒!"#$ = 𝑒!" + 𝑒!" + 𝑒! + 𝑒!"

Also, each of the state energies can be calculated as the state power multiplied by the
time the node is in that state:

𝑒!"#"$ = 𝑃𝑇!"#"$

Transmitting state

The time a node spends to transmit a packet is given by

𝑇!"|!!"# = 𝑇!"#$%&'# + 𝑇!"# =
𝐿!"#$%&'#

2 +
𝐿!"#
𝑅

 43

Then, the time a node will spend transmitting during an observation time 𝑇!"# is given
by the number of packets it has transmitted, 𝑁!" (which will depend on the node’s
sending rate, 𝜆), multiplied by the time spent transmitting a packet.

𝑁!" = 𝜆𝑇!"#

𝑇!" = 𝑁!"𝑇!"|!!"#

The energy consumed while transmitting during an observation time will be

𝑒!" = 𝑃!"𝑇!"

Receiving state

The time a node spends listening for a packet is given by

𝑇!"|!!"# = 𝑇!"#$%&'#/2+ 𝑇!"#

The equation above considers that probabilistically a node will listens half preamble as
mean. Then, the time a node will spend receiving or listening a packet during an
observation time, 𝑇!!", is given by the number of packets it has listened, Nrx, multiplied
by the time spent listening to a packet.

𝑁!" = 𝑁!" + 𝑁!" = (𝑅!" + 𝑅!")𝑇!"#

𝑇!" = 𝑁!"𝑇!"|!!"#

It is important to note that sending, receiving and overhearing rates will be given
depending on the WSN topology and the sending rates of each node. That is one of the
most relevant values of GOAT, allowing analyzing all kind of WSNs without
depending on the topology throughout the simulation.

The energy consumed while receiving or listening to a packet will be

𝑒!" = 𝑃!"𝑇!"

Sampling and sleeping state

The time a node is not listening neither transmitting is shared between the sampling and
the sleeping time. The proportions are given by the time of a duty-cycle, 𝑇!" , and the
“awake” beacon time, 𝑇!"#$%&. Then, the time a node is sampling the channel during an
observation time 𝑇!"# is given by

𝑇! = 𝑇!"#$%&/𝑇!" (𝑇!"# − (𝑇!" + 𝑇!"))

Respectively, the time a node is sleeping can be calculated as

𝑇!" = (𝑇!" − 𝑇!"#$%&)/𝑇!" (𝑇!"# − (𝑇!" + 𝑇!"))

Or also,

 44

𝑇!" = 𝑇!"# − (𝑇!" + 𝑇!" + 𝑇!)

Energy consumed

Finally, the energy consumed by a node during an observation time is given by

𝑒 = 𝑃!"𝑇!" + 𝑃!"𝑇!" + 𝑃!𝑇! + 𝑃!"𝑇!"

And the node’s lifetime expressed in observation time units will be

𝑙 = 𝑒!"##$%&/𝑒 [𝑇!"#]

B-MAC + ACK

B-MAC with ACK is an expanded model of B-MAC. In this case, acknowledgment
functionalities are considered. For that, any time a node receives a packet destined to it,
it will generate an ACK and send it to the node that previously sent the data packet.
Some considerations have to be taken into account:

The time taken to transmit a preamble should be greater than a duty cycle in order to
ensure any preamble will be listened.

𝑇!"#$%&'# ≥ 𝑇!"

It is possible that a node would listen to data packets not directed to it, but also, ACK
packets for other nodes could be listened by the mentioned node. Then, the transmission
and reception times in the B-MAC + ACK model will be given by

𝑁!" = 𝜆𝑇!"#

𝑁!" = 𝑁!" + 𝑁!" = (𝑅!" + 𝑅!")𝑇!"#

𝑇!" = 𝑁!"𝑇!"|!!"# + 𝑁!"𝑇!"#

𝑇!" = 𝑁!"𝑇!"|!!"# + 𝑁!"𝑇!"#

The sampling and sleeping will remain the same as the B-MAC model ones.

𝑇! = 𝑇!"#$%&/𝑇!" (𝑇!"# − (𝑇!" + 𝑇!"))

𝑇!" = (𝑇!" − 𝑇!"#$%&)/𝑇!" (𝑇!"# − (𝑇!" + 𝑇!"))

IEEE 802.11ah

The IEEE 802.11ah Task Group is currently working on the standardization of a new
amendment with the focus placed on sensor and actuator networks. It will operate at
sub-1GHz bands; ensure transmission ranges up to 1 Km, minimum network data rate
of 100 kbps and very low power operation. This new amendment will extend IEEE
802.11 potential to applications such as smart metering; plan automation, eHealth or
surveillance. The CAS-based channel access protocol for IEEE 802.11ah WLANs

 45

presented in [42] optimizes the number of Channel Access Slots (CASs), their length
and their allocation to the stations (STAs), while maximizing the time they remain in
sleep mode in order to keep the energy consumption low.

GOAT implements a simplified version of the presented scheme. The following
considerations have been taken:

• Low sending rate: It is considered that only one STA (or none) per group will
transmit in a same TIM.

• Only uplink is considered: The sink node will receive data packets from the
STAs but will not send packets to them.

• Single-hop routing model is considered: All the STAs will be directly linked to
the sing (one-hop). That means that no packet forwarding will be given.

Figure 43: 802.11ah time slots distribution

The energy consumed by a node can be calculated adding the energies consumed in
each of the possible node states. The possible node states in this scheme are transmitting
(uploading), receiving, idle and sleeping.

𝑒!"#$ = 𝑒!" + 𝑒!" + 𝑒!"#$ + 𝑒!"

During an upload, or transmission, time several packets and interframe spaces are given
as shown in the figure below.

Figure 44: 802.11ah upload ime slot distribution

 46

Then, the times a node spends to transmit and receive a packet, respectively, are given
by

𝑇!" = 𝑁!"𝑇!"|!!"# = 𝜆𝑇!"#(𝑇!"# + 𝑇!"#")

𝑇!" = 𝑁!"#$𝐷𝑇𝐼𝑀 + 𝑁!"#(𝑇𝐼𝑀 + 𝑇!"# + 𝑇!"#)

And developing the reception time equation above,

𝑇!" = 𝑇!"#/𝑇!"#$𝐷𝑇𝐼𝑀 + 𝜆𝑇!"#(𝑇𝐼𝑀 + 𝑇!"# + 𝑇!"#)

A node is in idle state when, during an uplink time, it is not receiving or sending. That
is, when the interframe spaces take place.

𝑇!"#$ = 𝑁!"#(3 𝑆𝐼𝐹𝑆 + 𝐷𝐼𝐹𝑆) = 𝜆𝑇!"#(3 𝑆𝐼𝐹𝑆 + 𝐷𝐼𝐹𝑆)

Finally, as for the previous cases, the sleep time can be calculated by subtracting the
transmitting, receiving, and idle states times of the observation time.

𝑇!" = 𝑇!"# − (𝑇!" + 𝑇!" + 𝑇!"#$)

d) Routing models
The routing module defines which wireless links will be built in order to allow any
sensor node to reach the sink or gateway depending on several conditions: coverage,
quality of service (QoS), energy saving, etc. Below, the first three implemented routing
models are depicted.

Single-hop

The single-hop module just takes into account the reachability between the sink node
and the rest of nodes. If an STA is able to reach the sink, a direct link will be built
between them. Then, no forwarding is considered. All those motes that could not reach
the sink directly due to the lack of coverage will not be part of the network.

 47

Figure 45: Single-hop routing

In the picture above a grid WSN topology is shown where the node 8 is set as the sink.
We can note that those sensor nodes that are close enough to the sink are linked to it.
On the other hand, the rest of motes are out of coverage, then, they cannot reach the
sink, which implies remaining out of the network. GOAT automatically changes the
frequency value from 2.4 GHz to 868 MHz when the single-hop routing model is
selected. That is done in order to allow greater distances between the sink and the rest
of nodes as the 802.11ah standard demands.

Next-node (level based)

Next-node model determines the network links based on the levels composed by the
sensor nodes. GOAT has defined 8 levels in its first version (from level A to level H).
Nodes belonging to further levels will not be part of the network.

Figure 46: Routing levels (hops)

The procedure given in next-node module is the following:

• If a node N reaches the sink, that is, if the N belongs to level A, it gets linked to
the sink directly.

 48

• If a node N does not reach the sink:
o It gets linked to the first node it senses belonging to the highest level. For

instance, if N cannot reach the sink but reaches a node belonging to
levels C and B, it will be linked to the node in level B.

o If N reaches two or more nodes belonging to the same level, it will be
linked to the first one it reaches without taking into account proximity or
power levels.

Below it is shown how would the links be built on the grid topology presented in the
previous case, but now implementing next-node routing model.

Figure 47: Next level routing

On the example above we clearly observe a routing design generated using next-node
module. For instance, let us study the behavior of node 24. Instead of being linked to
the node 16, which is reached from the node 24 and also belongs to level A, it gets
linked to node 15. As explained before, this routing module does not take into account
the proximity or power levels. That is why node 24 gets linked to node 15 at the
moment it senses it, without finishing sensing the rest of nodes.

Closest-node (Power based)

Closest-node routing, as next-level routing, bases the links structure depending on the
levels mentioned above. In this case, however, proximity and power levels are
considered in order to optimize the WSN performance in real scenarios. The procedure
used by this model is explained below:

• If a node N reaches the sink, that is, if the node belongs to level A, it gets
directly linked to the sink.

• If a node N does not reach the sink:

 49

o It sweeps all the nodes it can reach and determines the level and
proximity to each of them. Then N will be linked to that node belonging
to the closest level to the sink and also closer to the node N.

o If N reaches two or more nodes belonging to the higher level it can hop
to, N will be linked to the closer node of both. That is, N will be linked
to the node from which it senses a higher power.

In the figure above, the closet-node routing model has been used. As expected, now
node 24 gets linked to node 16, which is the closest node belonging to level A. In terms
of packets loss, this improvement will not affect the simulation results due to collisions
nor errors are considered. However, for further GOAT versions it could be worth to
have this model and analyze its better performance.

Figure 48: Power level routing

4.6 Configuration
Some of the variables and parameters defined in GOAT have been hard-coded in the
java classes and are not accessible from the GUI. These parameters are not supposed to
be usually modified by the user. Examples of these parameters are hardware
configurations, battery standard charges or canvas colors. In case the user wants to
change one of these values, he would have to modify the open source code (java
classes) and compile it again. Then, running the simulator again will allow the user to
design and simulate with the previously configured variables.

Table 14, which can be found at annex A2. GOAT configuration variables, lists all
the mentioned parameters and their corresponding variable names, types and default
values. The Java classes where the variables are defined are also included on the table in
order to make it easier for the user to modify the code.

 50

Figure 49: Hardware variables code

4.7 Simulation
After setting up the WSN topology and the scenario to analyze, the user can run a
simulation by clicking on the button with a start icon. This subsection describes how the
simulation’s input and output are, and which associated processes take place.

Figure 50: Simulation input and output

a) Input
The following elements are needed as input in order to run a simulation:

• WSN topology: Two or more nodes topology and a defined sink are required.
Any kind of topology is allowed no matter the number of nodes or links. It is
important to note, however, that a huge number of nodes may reduce the
simulation processing speed. The WSN to be analyzed can both be designed
from scratch or by opening a previously save topology file.

• Sending rates: The GOAT simulator requires the transmitting, receiving and
overhearing rates for calculating the energy consumption independently from
the selected models. These rates are calculated based on the sending rate of each

 51

node (𝜆), the topology, and the physical model, which determines the
reachabilitity among nodes.

• Scenario configuration: In order to fully configure the scenario, the user has to
select the physical, battery, MAC and routing models from the GUI, and set the
hardware and fixed model parameters on the code.

o Models selection: The scenario models have to be selected at the GUI.
The implemented models in the first version of GOAT are the following.

§ Physical: Free-space, Log-normal (2.2), and Log-normal (2.5).
§ Battery: 2x AA, 2x AAA, and Lithium.
§ MAC: B-MAC, B-MAC/ACK, and 802.11ah.
§ Routing: Single-hop, Next-level, and Power-level.

o Parameters configuration: There are tow types of fixed scenario
parameters.

§ Models fixed parameters: Those parameters related with the
scenario models (e.g. 802.11ah TIM duration).

§ Hardware parameters: Those parameters related with the
system’s components hardware (e.g. node transmitting power).

• Observation time: Period of time during the WSN will be analyzed.

b) Output
When the user presses the simulation icon, GOAT will check if all the input elements
are properly entered: two or more nodes topology, a valid observation time (i.e. numeric
value), etc. If the input is properly entered, the simulation algorithm will generate a
MAC model for each of the nodes. This model will determine the energy consumed by
the node during the observation time, its lifetime, and its remaining battery charge.
Then, by comparing the results of all nodes, the analyzer calculates the proportion of
time the nodes spend in each of the possible states, and the network’s overall lifetime,
which is equal to the lifetime of the node that runs out of battery first.

The calculated variables are presented in two different ways: per console and in a
comma-separated value (csv) file.

• Console: The GUI console displays the following information.

o Table with node identifier, main rates (transmission, reception, and
overhearing), total energy consumed during the entered observation
time, the node’s lifetime, and the remaining charge in percentage.

o Network overall lifetime in days and years.

o Critical node (firs node to run out of battery) identifier.

o Time proportion of the states (Transmitting, receiving, sampling, idle,
and sleeping) of:

§ Network mean.

 52

§ Critical node specific values.

• Csv file: The user can save the simulation results by clicking the save button.
The generated file will be structured as shown in the figure below. The first
column represents the node identifiers; the first row indicates the time instant
when a measurement is taken (in hours), and the rest of the cells represent the
energy consumed by the node in a specific instant.

Figure 51: Simulation results csv file

4.8 Limitations
This first version of GOAT presents some limitations. The main ones are listed below.

• At the GUI, collisions among nodes cause uncontrolled nodes reallocation. It is
highly recommendable to avoid dragging nodes over others.

• No packet collisions are considered.
• The number of nodes is limited to those that fit in the map. At the moment, no

zoom feature is implemented.
• In order to modify some of the parameters the user has to modify the code and

compile it again.
• Analyses have been done considering low dense WSN (up to 1,000 nodes).

Proper estimations for WSN with a greater number of nodes are not assured.
• The number of levels, or hops from one node to the sink cannot be higher than 8.

Nodes out of coverage from level 8 will not be linked to the network.

 53

Figure 52: Unreached levels

 54

 55

5. EVALUATION

This section presents four different scenario evaluations made by GOAT as a proof of
concept. As explained in sections before, GOAT aims to allow the WSN designer to
estimate the network behavior in terms of energy consumption and lifetime before
actually building it. Regarding that, the following results are an example of how the
analyzer can help to that end.

5.1 Street parking

a) Scenario definition
This subsection analyzes different WSN designs for an outdoor parking area
management in Juan de Garay Street, in Barcelona. The scenario is based on an
abstraction of the real street parking deployed in the city of Santader throughout the
SMART SANTANDER project, which has been developed by several companies and
institutions including Telefonica I+D and University of Cantabria18.

The presented WSN will detect public parking sites availability at Juan de Garay Street,
which is about 550 meters long. There are 90 parking sites located along this street,
which will be detected by 90 sensors nodes, and 30 repeaters including the gateway.
The repeaters, installed in the streetlights and trees, will be fed by their own battery and
will listen to parking sensors based on ferromagnetic technology buried under the
asphalt. As shown in the figure below, each of these repeaters will be wirelessly
connected to 3 parking sites availability sensors, allowing full outdoor parking
management along the street.

Figure 53: Smart parking scenario

These sensors will send the data to their respective repeater periodically by single-hop
routing, and the repeaters will gather that data and forward it to the sink using next-level

18 SMART SANTANDER project - http://www.libelium.com/smart_santander_smart_parking/

 56

or power-level routing models. The gateway will be also placed in a street light
approximately in the middle of the street in order to reduce as much as possible the
maximum number of hops among the nodes and the sink. This gateway will be
constantly plugged to the steam and will store the WSN data in a server on the Internet
through a 3G connection.

Figure 54: Parking sensor (left) and repeater (right)19

This study does not focus on the sensor - repeater local parts of the network, but on the
30 repeaters network which can be modeled as a WSN composed of 30 nodes with a
sending rate of three times the packet rate a parking sensor generates.

b) Modeling and results
It is required to locate the nodes along the 530 meters of the street in a way that all the
parking sites are covered. We are considering a log-normal physical model with 𝛾 factor
of 2.2 corresponding to not crowd urban scenarios. The proposed solution is shown in
the map below. The spotted blue lines indicate the reachability among nodes. Then, for
instance, node 9 reaches (listens) nodes 10, 25 and 26.

Figure 55: Smart parking - Repeaters reachability

As at SMART SANTANDER project, we consider that a parking sensor sends a packet
each 5 minutes. Then, a node will forward 3 packets each 5 minutes, which implies a
sending rate of 36 packets per hour. We will also consider that nodes have two AAA
batteries installed (7500 mAh charge). For this scenario, we are going to study the B-

19 Retrieved 20 May 2015, from - http://www.libelium.com/smart_santander_smart_parking/

 57

MAC and B-MAC/ACK MAC protocols. In order to start the first analysis, the node
number 24 will be set as sink due to it seems to be located near to the middle of the
street, minimizing the maximum number of hops from the farthest node to the sink.
Lately, we will study which node is the better candidate to be set as sink in order to
reduce the overall energy consumption.

Next-level vs. Power-level routing

If we implement next-level routing, the generated links will compose the following
network topology.

Figure 56: Smart parking - Next-level routing

As expected each node is linked to the first node it reaches belonging to a higher level.
In principle, it is not an efficient way of routing, but is simple and could fit in an
scenario like the presented. Running a simulation with GOAT and the mentioned
parameters, these are the results generated.

● Network overall lifetime:
○ 119.51 days (118.63 days with ACK)
○ Critical node (first to get out of charge): Node 22

● Time proportion in each state:
○ Overall (mean):

■ Transmitting: 0.07 %
■ Receiving: 0.44 %
■ Sampling: 2.00 %
■ Sleeping: 97.49 %

○ Critical node:
■ Transmitting: 0.02 %
■ Receiving: 1.16 %
■ Sampling: 1.97 %
■ Sleeping: 96.85 %

For the scenario above, we obtain that the network will be operative during 119.5 days
(about 4 months). This value is determined by the critical node lifetime. The critical
node, as shown in the results, is the node number 22, which is in the receiving state
about 2.5 times the time in receiving state of the nodes mean. Also, the sleeping time is

 58

reduced to 96.85 %. It is important to note that the maximum energy consumption at a
node is given while receiving (70 mW considered in this scenario), and the minimum
one is given while sleeping (3 mW considered in this scenario). That explains why the
node 22, which listens to a lot of packets, is the first node to get out of charge.

Regarding the B-MAC/ACK MAC protocol, it can be observed that in an scenario
where no packet collisions or loss are considered it makes no sense to implement
acknowledgment features. The results given while implementing B-MAC/ACK show an
increase on the energy consumption due to the extra ACK packets generated at the
network, which will be transmitted, and also listened. In this case, the WSN overall
lifetime can be elongated by approximately one day.

Now, let us consider the Power-level routing model. This model makes a node to get
linked to the closest node belonging to a higher level. The topology obtained in this case
is shown in the map below.

Figure 57: Smart parking - Power-level routing

The results for this scenario, as shown below, confirm the improvement in terms of
energy consumption given when implementing Next-level routing. In this case, this
improvement is not very great, however any increase in energy saving will allow the
WSN to operate for a longer time (2 days more in this case). Now, the node 24 is no
longer the critical node, but the node 7. This behavior could be explained by the
increase on the number of packets that node 7 listens and the decrease given on node
24. Node 7 receives 2736 packets per hour (1296 overhearing packets), instead node 22
receives 2196 packets per hour (936 overhearing packets).

● Network overall lifetime:
○ 121.48 days (120.57 days with ACK)
○ Critical node (first to get out of charge): Node 7

● Time proportion in each state:
○ Overall (mean):

■ Transmitting: 0.07 %
■ Receiving: 0.45 %
■ Sampling: 1.99 %
■ Sleeping: 97.49 %

○ Critical node:

 59

■ Transmitting: 0.09 %
■ Receiving: 1.00 %
■ Sampling: 1.98 %
■ Sleeping: 96.93 %

Comparing the critical nodes performance in each of both cases, we note that the time
spent sleeping by node 7 is greater than the time in node 22. Also, the receiving time is
minor on node 7. Then, the critical node and the overall lifetime will be greater
applying Power-level routing instead of Next-level routing.

Sink location

Having elected the routing model, let us now determine which the best location of the
sink is in order to reduce the energy consumption to the minimum. Due to the peak of
transmitted and listened packets is given in the center nodes of the network (nodes 7, 8,
22, 23 and 25), we will run a simulation for each of the mentioned nodes. The results
are shown in the table below.

Table 10: Smart parking - Overall WSN lifetime depending on the sink location

Sink Overall lifetime [days]

Node 25 123.82

Node 8 124.72

Node 23 124.72

Node 7 127.38

Node 22 126.64

The node 7, which was the critical node in the previous case, presents the higher overall
lifetime (127.38 days). Then, we can conclude than the best WSN design in terms of
energy saving is given when the following rules are applied:

● MAC model: B-MAC
● Routing model: Power-level
● Sink: node 7

 60

Figure 58: Smart parking - node 7 set as sink

The chart below displays the energy consumption of the critical node (node 5), the node
consuming the minor energy (node 30) and the mean of all the nodes during 3,000
hours. This data has been gathered in a simulation file generated by GOAT indicating
the node identifier and the energy consumed at each hour from 1 to 3200. The overall
lifetime of the network is given when the node 5 energy consumption curve gets
constant at the 3057th hour (corresponding to 40,500 J, the energy stored in 2 AAA
batteries), when the node 5 battery gets out of charge and the WSN is considered to be
inoperative.

Figure 59: Smart parking - WSN energy consumption over time

 61

5.2 Plague tracking

a) Scenario definition
This subsection present an animal-mapping scenario based on the ENTOMATIC
project20. ENTOMATIC aims to solve a major problem faced by EU Associations of
Olive growing small and medium-sized enterprises (SMEs): the Olive fruit fly
(Bactrocera oleae) [43]. The estimated economic losses caused by the Bactrocera oleae
are approximately 600 € per hectare. The solution proposed at ENTOMATIC is to
develop a WSN composed by autonomous bioacoustic-recognition in order to detect
and control the olive tree fly population at olive trees. This infrastructure will allow
olive producers to track the fly populations and receive advice on precision pesticide
application. When the project is working, it is expected a reduction of damage to olive
fruit and oil production and to promote the sustainable use of pesticides [43].

The selected geographic zone for the analysis is an olive tree field placed near “El
Barranc de la Punta” at Secans del Montsià, Tarragona. We will consider a rectangular
area of 680 x 850 meters (57.8 ha). The scenario will implement a simplified version of
the 802.11ah MAC model due to it has been design for communicating WSN nodes
being distanced by large distances (up to 1 kilometer) and its associated routing model,
the single-hop. The implemented MAC model details can be consulted in section 4.5.c
MAC models.

This study aims to analyze the impact of the propagation and battery model on the
network overall lifetime. We will also study how to address the lack of coverage
depending the physical model selected by dividing the WSN in two or more new
smaller WSNs by setting new gateways. As in the case above, we have not considered
packet loss or collisions and regarding the 802.11ah MAC model, we are considering
the nodes to have a low sending rate (1 measurement sent every hour), which allows us

20 Entomatic project - http://entomatic.upf.edu

 62

to simplify the model and suppose that only one sensor node (or none) per group will
transmit in a TIM.

b) Modeling and results
The topology for this scenario will be randomly generated on GOAT. The area is given
by the part of the olive tree field we have selected. We will start considering that there
will be 5 nodes installed per hectare. Hence, there will be 290 nodes (5 nodes * 58
nodes/ha), 289 sensor nodes randomly distributed over the olive tree field and one
gateway centrally located. To do so we enter the following values on the “Random
topology” pop-up window:

Figure 60: Random topology input values

Below it is shown the generated topology. This capture has been taken implementing
free-space propagation model, hence each of the nodes of the WSN reach the sink and
are able to transmit its measurements. The sink has been randomly located in a centered
part of the area in order to maximize the coverage from the gateway to the rest of nodes.

Figure 61: Plague tracking WSN topology (Free-space)

Battery model impact

For the case above, let us study the overall lifetime of the network depending on the
battery model elected. Due to the abstraction done for modeling this case, all the nodes

 63

of the network will consume exactly the same amount of energy. Thus, each of the
nodes lifetime will be equal to the overall lifetime (all nodes will fall at the same time).

Table 11: Network lifetime depending on the battery model

Battery model x2 AA (1500 mAh) Lithium (2200 mAh) x2 AAA (7500 mAh)

Network lifetime 30.47 days 44.69 days 152.38 days

The table below shows the network lifetime for different battery models. We note that
installing two AAA batteries per node will allow the network to be operative for
approximately 5 months. On the other hand, the couple of AA batteries present the
minimum overall lifetime (about 1 month). In this scenario, and usually for any kind of
WSN, it is interesting to maximize the network autonomy as much as possible in order
to avoid having to replace manually the batteries of each of the 289 sensor nodes.
However, it has to be taken into account the economic impact of the chosen battery
model. Battery with higher charges will be usually more expensive and larger, so any
scenario has to be studied accurately depending on all these variables.

It is remarkable the high amount of time a node spends in sleeping state on this scenario
(99.89%). The minimum energy consumption is given while sleeping, so it is a clear
objective to maximize the time a node spends in this state in order to increase the
overall lifetime.

Physical model impact

Let us prioritize the overall lifetime and fix the battery model to a couple of AAA
batteries and focus on the physical model impact. On the figure below it can be seen the
coverage decrease when applying log-normal propagation models instead of free-space.

Figure 62: Physical model impact on coverage

If we want to keep the connectivity of each of the sensor nodes, it will be needed to
install new sinks for reaching all the area. One possible solution would be to divide the
area in smaller sectors with other sinks located in their centers. Then, new independent
WSNs will be generated covering the entire olive tree field. The table below shows the

a) Free-space b) Log-nromal (𝛾 = 2.2) c) Log-nromal (𝛾 = 2.5)

 64

number of reached sensors nodes keeping just one sink, and the number of sinks needed
to cover all the area.

Table 12: Physical model impact on topology

PHY model Free-Space Log-normal (2.2) Log-normal (2-5)

Sensor nodes connected 289 187 45

Sinks needed 1 3 9

Figure 63: Area sectoring. log-normal 2.2 (left), and log-normal 2.5 (right)

B-MAC

Finally, we present what the simulation results are when implementing the B-MAC
model. As mentioned before, the 802.11ah MAC model seems to fit best with this
scenario due the high number of sensor nodes and the area dimensions. Nevertheless, let
us check if the assumption was right by comparing the overall lifetimes got in both
scenarios. The simulation was made for Free-space physical model and 2x AAA battery
model. The new routing links are shown below.

Figure 64: B-MAC topology

 65

A comparison of the simulations results is shown in the table below.

Table 13: MAC model impact on lifetime

MAC model B-MAC B-MAC/ACK 802.11ah

Overall lifetime 110.96 days 109.22 days 152.38 days

As expected, 802.11ah offers longer lifetime. One of the key factors is the time the
nodes are in sleeping mode. For the 802.11ah scenario, the nodes were sleeping a
99.89% of the time, instead, when B-MAC is applied; the critical node (node 23) is
sleeping just the 96.04% of the observation time.

The overall lifetime is even smaller when the physical model level of restriction
increases. If the coverage among the nodes gets smaller, the number of hops will grow,
making the nodes to forward more packets and increasing its energy consumption.
Below it is shown the WSN lifetime depending on the physical mode selected.

Table 14: Physical model impact on coverage

PHY model Free-Space Log-normal (2.2) Log-normal (2-5)

Overall lifetime 110.96 days 103.34 days No coverage

Figure 65: Log-normal 2.2 (left), and log-normal 2.5 (right) topologies

In both studied cases, B-MAC and 802.11ah, packet collisions were not considered to
happen. This abstraction may be not valid on real scenarios due to the high number of
sensor nodes that are able to reach each other even having a low sending rate. In the
figure below the coverage links among the nodes of the WSN with log-normal and
𝛾 = 2.5 as physical model is shown. The high number of coverage links hinders
avoiding packet collisions and properly designed MAC protocols should be
implemented. However, these collisons may be negligible when implementing WSNs
where all the contenders send packets with a very low rate.

 66

Figure 66: Coverage links

 67

6. CONCLUSIONS AND FUTURE WORK

Conclusions

This project introduces wireless sensor networks and presents a software tool to analyze
them. The field of WSN has been identified as one of the top emerging technologies
that will change the way we understand communications, with an expected huge growth
rate during the next decades. However, the limited energy resources of sensor nodes is a
top constraint in this kind of networks due to the fact that, in most cases, nodes are
battery-powered devices and, consequently, energy-constrained. Hence, the main
concern is how to reduce the energy consumption in order to extend the overall network
lifetime while providing a proper enough performance.	

In order to face that issue, it is almost imperative to test WSN designs and try to
optimize the energy saving mechanisms before actually building them. Nonetheless,
running real experiments on WSN testbeds is costly and challenging. That is one of the
main reasons why we have developed the GOAT tool.	

GOAT is a graphical WSN analyzer that allows designing WSNs and estimating its
energy consumption in configurable scenarios. The implemented models (physical,
battery, MAC, and routing) can be thoroughly set, which offers a vast number of
possible scenarios and allows designing and testing future real operating WSNs. As a
first version, the tool can be enhanced in several aspects and in terms of performance;
nevertheless, we have managed to present two feasible real WSN scenarios where
GOAT has served to determine the optimal MAC protocol and network design. Also,
GOAT is intended to be an open project, and due to its software modularity, it is a
prototype where new models and protocols can be included and improved.	

This project has been a major learning experience for me. I have had to face several
obstacles during the end to end GOAT development, which have allowed me to delve
deep into software design and Java programming. Moreover, I have honed my
knowledge about WSN, a field in which I am deeply interested and in which I expect to
work in the near future.

Future work

The next steps for continuing with this project can be divided in two main points: code
improvement and project sharing. Below, a list of steps for each of these points is
presented.

• Improve the analyzer:
o Parameters configuration from the GUI (avoid modifying hard-coded

parameters).
o Improve the GUI design achieving professional looking.
o Add zoom feature.

 68

o Include packet collisions option for making the simulation results more
accurate.

o Implement a loader bar when a simulation carrying lots of data is being
executed.

o Allow up to 10,000 nodes simulations with proper performance.
o Solve the issues related with the graphical collision among nodes.
o Optimize window repainting and make it smoother.
o Include more physical, battery, MAC and routing models.
o Add charts and graphical results displaying at the GUI.
o Display different types of node icons (instead of circles) with own

hardware parameters.
o Allow naming the nodes.
o Implement pop-up windows with relevant data when the user hovers

over a node.

• Share the project: Perform the needed steps for making GOAT open source in
order to allow future collaborations.

o Review the final code to ensure the code is idiomatic and follows best
practices for variable names, whitespace, etc. for the Java programming
language.

o Determine software legal and property issues.
o Upload the project’s code to Github or similar platforms.
o Identify the best way to promote collaboration (post at blogs, social

networks, research conferences…).

 69

ANNEX

A1. UML Class diagrams

The classes’ items and methods are shown in the UML class diagrams below.

a) BatteryModel.java

b) Goat.java

 70

c) MacModel.java

d) Map.java

 71

e) Node.java

f) PhyModel.java

g) Point.java

 72

f) RoutingModel.java

A2. Configuration variables

The table below lists the hard-coded variables values defined in the first version of
GOAT.

Table 15: GOAT configuration variables

Java class Parameter Variable Type Default value

Goat

Frame size X frameSizeX int 1350

Frame size Y frameSizeY int 600

Sending rate (λ) defSendingRate double 10 pkts/h

Canvas font size canvasFontSize int 12

Node

STA color staColor Color (252, 201,
139)

Sink color sinkColor Color (100, 100,
100)

Node width w double 50

Node heigth h double 50

Battery
AA battery charge charge2A double 1500 mAh

AAA battery charge charge3A double 7500 mAh

 73

Lithium battery chargeLi double 2200 mAh

PhyModel

Hardware

Transmission
power

powTx double 1 mW

Sensitivity power sensitivity double -81 dBm

Transmission rate rate double 100 kbps

Transmitting power
consumption

pTx double 60 mW

Receiving power
consumption

pRx double 70 mW

Sampling power
consumption

pSampling double 10 mW

Idle power
consumption

pIdle double 8 mW

Sleeping power
consumption

pSleep double 3 mW

Friis

Transmission gain Gtx double 0 dBi

Reception gain Grx double 3 dBi

Systeml Loss L double 0 dBi

Log - normal 𝛾 gamma double 2.2 and 2.5

MacModel

Generic
Data length dataLength int 100 bytes

ACK length ackLength int 14 bytes

BMAC

Preamble length
(BMAC)

lPreamble int 128 bytes

DC time awake
(BMAC)

tDCAwake int 2 ms

DC time sleeping
(BMAC)

tDCSleep int 98 ms

 74

802.11 ah

RTS length rtsLength int 20 bytes

CTS length ctsLength int 14 bytes

Duration of a TIM
group

tTim int 200 ms

Number of TIM
groups

nTim int 8

Number of DTIM
groups

nDtim int 1000

Duration of a
DTIM group

tDtim int tTim * nTim

Length of a TIM
beacon

lTim int 62 bytes

Length of a DTIM
beacon

lDtim int 102 bytes

Duration of a SIFS
interval

tSifs int 160 ms

Duration of a DIFS
interval

tDifs int 264 ms

RoutingModel - - - - -

 75

References

[1] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver. (October 2014). The IEEE
802.11ah Wi-Fi Approach to M2M Communications. University of Pompeu Fabra.
Retrieved March 21 2015, from http://arxiv.org/pdf/1402.4675.pdf

[2] Cisco. (February 2015). Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update 2014–2019 White Paper. Retrieved March 23 2015, from
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/white_paper_c11-520862.pdf

[3] R. Cheng. (October 2011). Wireless execs see connected devices as 'next big thing'.
CNET. Retrieved March 23 2015, from http://www.cnet.com/news/wireless-execs-see-
connected-devices-as-next-big-thing/

[4] S. R. Thampuran. (June 2005). Routing Protocols for Ad Hoc Networks of Mobile
Nodes. University of Massachusetts. Retrieved April 7 2015, from
https://cs.wmich.edu/wsn/doc/adhocrouting/AdhocRouting.pdf

[5] A. Sahu, E. B. Fernande, M. Cardei, and M. VanHilst. (2011). A Pattern for a
Sensor Node. Florida Atlantic University. Retrieved April 7 2015, from
http://www.hillside.net/plop/2010/papers/sahu.pdf

[6] E. E. Flores. (October 2012). Wireless Sensor Networks applied to the Medicine,
master’s thesis (pp. 5). University of Cantabria. Retrieved April 5, 2015, from
http://repositorio.unican.es/xmlui/bitstream/handle/10902/1288/349251.pdf?sequence=1

[7] S. Gajjar, N. Choksi, M. Sarkar, and K. Dasgupta. (2014). Comparative analysis of
Wireless Sensor Network Motes. 2014 International Conference on Signal Processing
and Integrated Networks (SPIN). Retrieved April 8 2015, from
http://www.researchgate.net/profile/Mohanchur_Sarkar/publication/267393943_Compa
rative_analysis_of_WSN_motes/links/545254a70cf2bccc49089c73.pdf

[8] ARM. (n.d). ARM7 Processor Family. Classic Processors. Retrieved April 26, 2015,
from http://www.arm.com/products/processors/classic/arm7/index.php

[9] A. Elsts, G. Strazdins, A. Vihrov, and L. Selavo. (2012). Design and Implementation
of MansOS: a Wireless Sensor Network Operating System. University of Latvia.
Retrieved April 26 2015, from http://mansos.edi.lv/wp-
content/uploads/2012/11/mansos-lu-2012.pdf

[10] R. Singh, and A. K. Virk. (July 2013). Review of Key Management Schemes in
WSNs. International Journal of Science and Research (IJSR). Retrieved April 26, 2015,
from http://www.ijsr.net/archive/v2i7/MTIwMTM0NA==.pdf

 76

[11] D. K. Grupta. (2013). A Review on Wireless Sensor Networks. Inter national
Conference on Recent Trends in Applied Sciences with Engineering Applications.
Karnataka State Open University. Retrieved April 26, 2015, from
http://iiste.org/Journals/index.php/NCS/article/download/6062/6018

[12] F. Xia. (2008). QoS Challenges and Opportunities in Wireless Sensor/Actuator.
Sensors. Queensland University of Technology. Retrieved April 26, 2015, from
http://arxiv.org/pdf/0806.0128.pdf

[13] M. Rouse. (n.d.). Transceiver definition. TechTarget. Retrieved April 26, 2015,
from http://searchnetworking.techtarget.com/definition/transceiver

[14] M. Zennaro, H. Ntareme, and A. Bagula. (2008). On the design of a flexible
gateway for Wireless Sensor Networks. First International Workshop on Wireless
Broadband Access for Communities and Rural Developing Regions. Retrieved April 27,
2015, from http://arxiv.org/pdf/0806.0128.pdf

[15] M. Raluca, M. Razvan, and A. Terzi. (June 2008).Gateway Design for Data
Gathering Sensor Networks. Proceedings of the 5th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.
Retrieved April 27, 2015, from
https://www.cs.jhu.edu/~ralucam/papers/secon08stargate.pdf

[16] Cunningham & Cunningham, Inc. (November 2014). Event Driven Programming.
Retrieved April 27, 2015, from http://c2.com/cgi/wiki?EventDrivenProgramming

[17] P. Gupta, and R. Sangwan. (2014). Wireless Sensor Network. International
Journaol of Innovative Research in Technology (IJRT) 324. Retrieved April 27, 2015,
from http://ijirt.org/paperpublished/IJIRT100225_PAPER.pdf

[18] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver. (October 2014). IEEE
802.11ah: The Wi-Fi Approach for M2M Communications. University of Pompeu
Fabra. Retrieved April 7, 2015, from http://arxiv.org/pdf/1402.4675.pdf

[19] N. Srivastava. (February 2010). Challenges of Next-Generation Wireless Sensor
Networks and its impact on Society. Journal of telecommunications. Retrieved April 7,
2015, from http://arxiv.org/pdf/1002.4680.pdf

[20] M. Potnuru, and P. Ganti. (2003). Wireless Sensor Networks: Issues, Challenges
and Survey of Solutions. Proceedings of the IEEE, University of Illinois Urbana.
Retrieved April 8, 2015, from
http://www.academia.edu/890321/Wireless_Sensor_Networks_Issues_Challenges_and_
Survey_of_Solutions

 77

[21] S. Mitra. (n.d.). Wireless Sensor Network. Calcutta Institute of Engineering and
Management. Retrieved 25 March 2015, from http://ciemcal.org/wireless-sensor-
network/

[22] B. Musznicki, and P. Zwierzykowski. (September 2012). Survey of Simulators for
Wireless Sensor Networks. International Journal of Grid and High Performance
Computing (IJGHPC). Retrieved 3 April 2015, from
http://www.sersc.org/journals/IJGDC/vol5_no3/3.pdf

[23] C. Cano. (2011). Medium Access Control in WSNs. Design of Telecommunications
Infrastructures (DIT) subject material, University of Pompeu Fabra.

[24] T. Adame, and E. Ducheyne. D1.2 Update of system specifications. ENTOMATIC
project. Retrieved 21 April 2015, from http://entomatic.upf.edu/

[25] G. Bauerfeind. (July 2012). Which radio data transmission protocol matches to my
application?. Dresden elektronik ingenieurtechnik gmbh. Retrieved 6 May 2015, from
http://www.sersc.org/journals/IJGDC/vol5_no3/3.pdf

[26] Q. Wang, and I. Balasingham. (December 2010). Wireless Sensor Networks.
Norwegian University of Science and Technology. Retrieved 2 May 2015, from
http://www.intechopen.com/books/wireless-sensor-networks-application-centric-
design/wireless-sensor-networks-an-introduction

[27] J. Lee, and Y. Su. (November 2007). A Comparative Study of Wireless Protocols:
Bluetooth, UWB, ZigBee, and Wi-Fi. The 33rd Annual Conference of the IEEE
Industrial Electronics Society (IECON). Retrieved 2 May 2015, from
http://www.cs.odu.edu/~nadeem/classes/cs795-WNS-S13/papers/advance-005.pdf

[28] M. A. Alim, M. M. Rahman, M. M. Hossain, and A. Al-Nahid. (2010). Analysis of
Large-Scale Propagation Models for Mobile Communications in Urban Area.
International Journal of Computer Science and Information Security (IJCSIS).
Retrieved 25 April 2015, from http://arxiv.org/pdf/1002.2187.pdf

[29] K. Lakhtaria. (March 2012). Connectivity as a Fundamental Characteristic of
Mobile Ad Hoc Networks. Technological Advancements and Applications in Mobile
Ad-Hoc Networks: Research Trends (pp. 82-84).

[30] Essays, UK. (November 2013). Analysis Of K Connectivity Computer Science
Essay. UKEssays.com. Retrieved 15 April, 2015, from
http://www.ukessays.com/essays/computer-science/analysis-of-k-connectivity-
computer-science-essay.php?cref=1

[31] R. Mathar. (November 2009). Wireless Channel Modeling and Propagation
Effects. RWTH Aachen University. Retrieved 15 April 2015, from https://www.ti.rwth-
aachen.de/teaching/ti/data/channel_modeling.pdf

 78

[40] R. Manikandan, and K. Selvakumar. (May 2013). Power Optimistic with
Throughput Improved Adaptive CSMA MAC Protocol Design for Wireless Ad Hoc
Network. International Journal of Computer Applications. Retrieved 14 April 2015,
from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.1033&rep=rep1&type=p
df

[41] J. Polastre, J. Hill, and D. Culler. (2004). Versatile low power media access for
wireless sensor networks. In: Proceedings of the Sensys’04, San Diego, CA, 2004.
Retrieved 14 April 2015, from http://www.cs.berkeley.edu/~culler/papers/sensys04-
bmac.pdf`

[42] T. Adame, A. Bel, B. Bellalta, J. Barcelo, J. Gonzalez and M. Oliver. (October
2014). CAS-based channel access protocol for IEEE 802.11ah WLANs. European
Wireless (EW) 2014. Retrieved 8 April 2015, from http://arxiv.org/pdf/1402.4675.pdf

[43] University of Pompeu Fabra. ENTOMATIC: bioacustic identification of the olive
fruit fly. Project. Retrieved 23 Frebruary 2015, from http://entomatic.upf.edu/project

 79

 80

