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Cancer type-dependent genetic interactions
between cancer driver alterations indicate
plasticity of epistasis across cell types
Solip Park1,2 & Ben Lehner1,2,3,*

Abstract

Cancers, like many diseases, are normally caused by combinations
of genetic alterations rather than by changes affecting single
genes. It is well established that the genetic alterations that drive
cancer often interact epistatically, having greater or weaker conse-
quences in combination than expected from their individual
effects. In a stringent statistical analysis of data from > 3,000
tumors, we find that the co-occurrence and mutual exclusivity
relationships between cancer driver alterations change quite
extensively in different types of cancer. This cannot be accounted
for by variation in tumor heterogeneity or unrecognized cancer
subtypes. Rather, it suggests that how genomic alterations interact
cooperatively or partially redundantly to driver cancer changes in
different types of cancers. This re-wiring of epistasis across cell
types is likely to be a basic feature of genetic architecture, with
important implications for understanding the evolution of multi-
cellularity and human genetic diseases. In addition, if this plasticity
of epistasis across cell types is also true for synthetic lethal interac-
tions, a synthetic lethal strategy to kill cancer cells may frequently
work in one type of cancer but prove ineffective in another.
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Introduction

Most genomic alterations that contribute to cancer affect proteins

that are widely expressed and perform functions in most or all

cells of the body. However, individual cancer genes often vary

dramatically in their importance in different types of cancer

(Vogelstein & Kinzler, 2004). Human cancer genome sequencing

projects have confirmed this striking heterogeneity of the causal

driver alterations across different types of cancer (Ciriello et al,

2013; Ding & Wendl, 2013; Kandoth et al, 2013a; Zack et al, 2013),

and indeed, individual genomic alterations vary in their potency

to drive cancer when engineered in different cell types in mice

(Castellano & Santos, 2011).

Epidemiological modeling in the 1960s predicted that the devel-

opment of cancer normally involves multiple rate-limiting events

(Nordling, 1953; Armitage & Doll, 1954; Cook et al, 1969). Subse-

quently, the discovery of the phenomenon of oncogene cooperation

demonstrated that cancer-causing genomic alterations often cooper-

ate with synergistic effects on cell proliferation or survival (Land

et al, 1983; Ruley, 1983). Cooperation is an example of epistasis

(genetic interaction)—the phenomenon whereby the phenotypic

effects of combining two mutations differ from the expectation based

on the consequences of each mutation alone (Lehner, 2011). Cooper-

ation between two drivers is reflected in the co-occurrence of the two

genomic alterations in the same tumors more often than expected by

chance. Other cancer driver alterations interact antagonistically,

having partially redundant effects giving rise to mutual exclusivity in

their occurrence across individual tumors (Ciriello et al, 2012).

Epistasis is also an important concept in cancer drug discovery,

with substantial efforts directed toward identifying proteins that

cause “synthetic lethality” when inhibited in combination with

cancer-associated driver or passenger mutations (Hartwell et al,

1997; Luo et al, 2009; Nijman & Friend, 2013). For example, the

synthetic lethal interaction between BRCA2 mutations and PARP

inhibition in breast cancer cells has led to the clinical use of PARP

inhibitors in breast cancer patients (Ashworth et al, 2011).

An early computational prediction about epistasis in unicellular

organisms was that genetic interactions would change depending

upon the environmental conditions (Harrison et al, 2007). The envi-

ronmental context dependence of epistasis has been demonstrated

in multiple experimental studies (Harrison et al, 2007; St Onge et al,

2007; Bandyopadhyay et al, 2010; Guenole et al, 2013; Zhu et al,

2014), and epistatic interactions have also been reported to vary

across species (Dixon et al, 2008; Roguev et al, 2008; Tischler et al,

2008). Similarly, even within the same cell, how two genetic
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perturbations interact can differ depending upon the phenotype that

is being assayed (Laufer et al, 2013).

Using data from more than three thousand human tumors, we

show here in a stringent statistical analysis that mutual exclusivity

and co-occurrence interactions between cancer driver alterations are

frequent, but also that they change in different types of cancer. This

plasticity of epistasis across cell types is likely to be a basic feature

of genetic architecture in multicellular organisms with implications

for designing cancer therapeutics and for understanding evolution

and other human genetic diseases.

Results

Systematic identification of mutual exclusivity and
co-occurrence relationships in human tumors

To identify significant mutual exclusivity and co-occurrence

relationships between genomic alterations that contribute to human

cancers, we analyzed data from 3,164 tumors of 22 different types

studied by The Cancer Genome Atlas (TCGA) consortium (Ciriello

et al, 2013; Weinstein et al, 2013) (Table EV1). We only considered

single nucleotide variants (SNVs) in genes significantly mutated in

human cancers, recurrent copy number aberrations (CNAs), and

a set of recurrent promoter DNA methylation events (see

Materials and Methods). To increase statistical power, we restricted

our analyses to high-frequency driver events, considering alterations

detected in at least 2% of the samples under consideration

(Table EV2). We also employed a randomization procedure that

accounts for the heterogeneous distribution of alterations across

alteration types, samples, and cancer types (Fig 1A; see Materials

and Methods).

Considering all 3,164 tumors in a single analysis identified 55

significant relationships between the 86 most recurrent driver

alterations (false discovery rate, FDR = 0.1; Fig EV1A and B;

Table EV3). The interactions were quite evenly balanced between

co-occurrence (30 positive interactions) and mutual exclusivity (25

negative interactions). Not surprisingly, more significant inter-

actions were identified for alterations with a higher frequency

of occurrence (Spearman’s rank correlation coefficient = 0.34,

P-value < 0.019; Fig EV1C), suggesting that many more interactions

will be discovered as more tumors are sequenced and more cancer

types are analyzed (Fig EV1E–G).

The interactions include intuitive relationships between genes

within the same signaling pathways (Fig EV1D). For example, inter-

actions were enriched among genes involved in G1/S phase cell

cycle regulation (11 interactions among mutation of TP53, CDKN2A,

RB1, EGFR, and amplifications of 8q24 containing MYC and 12q13

where CDK4 is located) and among genes in the Ras/Raf/MAPK

pathway (three interactions among mutation of BRAF, KRAS, and

PIK3CA). Previously reported examples of co-occurrence were also

detected, including between PIK3CA and KRAS, and between

CDKN2A and TP53 (Kandoth et al, 2013a).

Identification of interactions in individual cancer types

Considering the cancer genome dataset as a single entity biases the

discovery of interactions toward those that are conserved across

different cancer types or very strong within a subset of cancers.

Therefore, we also tested for interactions between recurrent alter-

ations in each of the 22 cancer types considered individually (Fig 1A

and B). The single cancer type analyses identified 60 interactions

between cancer drivers, including 39 not detected in the pan-cancer

analysis (Fig 1C, FDR = 0.1). For example, an additional six inter-

actions were detected with the p53 tumor suppressor, and an addi-

tional four interactions were detected with deletion of 9p21 where

CDKN2A is located (Table EV4). Comparing across cancer types,

more interactions were detected in cancers in which the median

number of samples in which a driver alteration is detected is larger

(Spearman’s rank correlation coefficient = 0.64, P-value = 0.0013,

Fig EV2). The interactions include 17 supported by their detection

in independent datasets (Table EV4) and at least two that have also

been validated using functional assays (Zhao & Vogt, 2008;

Etemadmoghadam et al, 2013).

Interactions between cancer drivers are frequently cancer
type specific

Interestingly, in the single cancer type analyses, more than 90% of

the interactions were only detected in a single cancer type (Fig 1D;

Table EV4). This suggested that how driver alterations interact might

be different in different types of cancer. To more directly test this

hypothesis, we used an odds ratio (OR) heterogeneity test and

permuted data to control for confounders (see Materials and

Methods) to evaluate whether each interaction differed between two

cancer types. Across all cancer types, we were able to test whether 52

pairs of alterations detected as interacting in one cancer type showed

specificity for that type of cancer. Each interaction was re-tested in a

median of three other cancer types (mean = 4.3, Fig 2A and B).

This analysis revealed that 57% of the interactions were specific

to particular types of cancer (FDR = 0.1, Figs 2A and EV3). This

included 53% of the examples of co-occurrence and 65% of the

examples of mutual exclusivity (Fig 2C). Differential interactions

were detected both when comparing between cancers from different

tissues and when comparing between cancer subtypes from the

same tissue (Table EV5).

To illustrate how the interactions change across cancer types, in

Figure 3 we provide two views of the interaction network detected

in each cancer type: a static network indicating the strength of inter-

action, and a differential network indicating the extent to which

each interaction changes in other types of cancer. Together, these

networks illustrate how the detected interactions between drivers

change across different types of cancer.

Cancer type-specific interactions identify functionally related
cancer drivers

We compiled datasets of physical and functional interactions

between human proteins to investigate how the co-occurrence and

mutual exclusivity interactions detected in the tumors relate to

previously described relationships between proteins (see Materials

and Methods). This revealed that the detected interactions are

strongly enriched between genes whose products are known to

physically or functionally interact (Fig 2D). Interestingly, the inter-

actions showing cancer type specificity are more enriched between

genes encoding physically (~5- to 16-fold) or functionally interacting
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Figure 1. Identification of co-occurrence and mutual exclusivity interactions in different types of cancer.

A Randomization procedure to identify interactions across 22 cancer types.
B Numbers of interactions, their interaction types (left), and their alteration types (right) identified in analyses of 14 different cancer types in which interactions were

detected (FDR = 0.1). The remaining 8 of 22 cancer types had no detected interactions. See Figure EV1 for the same analysis at a stricter FDR (FDR = 0.05).
C Overlap between the interactions detected in the pan-cancer analysis and in the analyses of individual cancer types. Of the 39 interactions only detected in the

analyses of individual cancer types, 10 were also tested in the pan-cancer analysis. All of the 34 interactions only detected in the pan-cancer analysis were also tested
in at least one individual cancer type.

D Most interactions were only detected in a single type of cancer.
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proteins (~6- to 8-fold) than the interactions detected when consid-

ering all cancer types together (Fig 2D, P < 3.3E-5; Mann–Whitney

test).

Intra-tumor heterogeneity and unrecognized cancer subtypes do
not account for the systematic changes in interactions

Mutual exclusivity and co-occurrence between drivers can be

caused by epistasis between the drivers, but they can also poten-

tially be caused by the confounders of intra-tumor heterogeneity or

unrecognized cancer subtypes. For example, a high level of

intra-tumor heterogeneity in one cancer type could generate false-

positive co-occurrence interactions and false-negative mutual exclu-

sive interactions because alterations present in different individual

cells within the tumor would wrongly be detected as co-occurring

by sequencing. However, if intra-tumor heterogeneity were the

cause of the changes in interaction between two cancer types, then

the odds ratios of the detected interactions would change in a

consistent direction when comparing two cancer types: The ORs

should all increase in the more heterogeneous cancer type. This is

not the case in our data, with even highly heterogeneous

cancers such as glioblastoma having both mutually exclusive and

A

C D

B

Figure 2. Identifying differential interactions across cancer types and their functional enrichment.

A Fifty-two of sixty driver pairs detected as interacting in one cancer type could be re-tested in at least one other cancer type and 30 of these were detected as
interacting differentially (FDR = 0.1). Numbers in parentheses indicate the total number of interactions re-tested and detected, including any redundancy of retesting
and detection across different cancer types.

B Volcano plot comparing differences of the log of the odds ratios for the co-occurrence of genomic events in two cancer types (i.e., detected cancer type and compared
cancer type). A total of 52 detected interactions were re-tested a total of 234 times in additional cancer types. Color coding is for the cancer type in which the
interaction was re-tested, as in Figure 1.

C Number of significant positive differential, significant negative differential, and non-significantly differential interactions in each cancer type. See Figure EV1 for
analyses at a stricter FDR.

D Enrichment for physical or functional protein–protein interactions in the pan-cancer analysis (55 pairs) or within each cancer type as differential interactions (30
pairs) or other interactions (30 pairs). Error bars denote 95% confidence intervals (**P-value < 1.0E-3).
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co-occurring relationships that are stronger than in other cancer

types (Fig 3). Moreover, a similar proportion of differential interac-

tions is detected when comparing between both heterogeneous and

non-heterogeneous cancer types (Fig EV4).

In addition to intra-tumor heterogeneity, unrecognized cancer

subtypes with subtype-specific driver alterations could also poten-

tially generate false-positive mutual exclusivity and co-occurrence.

However, we observe that interactions detected in our analysis are

A B

Figure 3. Interaction and differential interaction networks for 14 cancer types.

A In the static network, nodes represent genomic events altered in at least 2% of the samples in each cancer type with their sizes indicating the frequency of alteration
and their colors representing the type of alteration. Edge color indicates the interaction type (red: co-occurrence, blue: mutual exclusivity) and width represents the
strength of interaction (absolute log of odds ratio).

B In the differential network, edge color corresponds to the type of differential interaction (yellow: higher odds ratio, co-occurrence is significantly stronger in the
named cancer type than in another cancer type; green: lower odds ratio, mutual exclusivity is significantly stronger in the named cancer type than in another cancer
type; FDR = 0.1). Edge width indicates the strength of differential interaction (absolute difference of the odds ratios between two cancer types). Only the strongest
differential odds ratio is shown for each interaction. Cancer types are abbreviated as in Figure 1. All networks were drawn using Cytoscape (Smoot et al, 2011).
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still observed when only considering samples from cancer subtypes

that were not explicitly considered in our original analysis

(Fig EV5). In addition, the strong enrichment for interactions

between proteins known to physically or functionally interact

(Fig 2D) is not consistent with interactions driven by unrecognized

subtypes or intra-tumor heterogeneity.

Discussion

In this study, we performed a systematic analysis of co-occurrence

and mutual exclusivity between cancer driver alterations in different

types of cancer. We found that at least half of the interactions

between cancer drivers differ in the strength of interaction in differ-

ent cancer types. This suggests that how genomic alterations inter-

act cooperatively or partially redundantly to driver cancer varies

substantially in different cancers. In some cases, these changes in

functional relationships across cell types could be due to differences

in the precise alterations affecting each driver. In other cases,

however, it is likely to be changes in the molecular interaction

networks between cell types—for example, changes in feedback or

cross talk (Bernards, 2012; Prahallad et al, 2012) or the cellular

environment—that underlie the changes in potency and epistasis.

Previously, it has been shown in unicellular organisms that

epistatic interactions change quite substantially when comparing

between two different environmental conditions (Harrison et al,

2007; St Onge et al, 2007; Bandyopadhyay et al, 2010; Guenole

et al, 2013). This suggests that extensive re-wiring of epistasis

across cell types is likely to be a basic feature of the genetic architec-

ture of complex traits.

The plasticity of epistasis across cell types has important implica-

tions for evolution because it allows mutations to alter phenotypic

traits in one cell type without necessarily altering traits in other cell

types. Moreover, many additional human diseases beyond cancer

are caused by mutations in widely expressed housekeeping genes.

Although all cells inherit mutated copies of these genes, disease

pathology is often limited to a small number of cell types (Lage

et al, 2008). Our analysis suggests that cell type-specific epistatic

interactions will underlie some of the cell type-specific effects of

inherited mutations (Fig 4A). Our results also predict that the

genetic modifier loci of disease-causing mutations will often differ

across cell types, which is important to consider for diseases that

affect multiple cell types, tissues, or organs (Fig 4B).

Epistasis is also an important concept in cancer drug discovery,

with large-scale screens being performed to identify genes that are

synthetic lethal with cancer-associated genomic alterations (Luo

et al, 2009; Nijman & Friend, 2013). If the plasticity of epistasis that

we detected here is also true for synthetic lethal interactions, then

our results have an important take-home message for the exploita-

tion of synthetic lethality in cancer therapy, predicting that particu-

lar synthetic lethal strategies will often only prove effective in a

limited subset of cancers carrying a targeted vulnerability (Fig 4C).

Indeed, the available data from large-scale screens and from clinical

studies are consistent with this prediction: Synthetic lethal strategies

that work in vitro in one cell type often fail in another cell type or

in vivo, and synthetic lethal strategies that are clinically effective in

one type of cancer can prove ineffective in a second type (Ashworth

et al, 2011; Prahallad et al, 2012; Lord & Ashworth, 2013). Our

results suggest that the set of effective synthetic lethal targets for a

defined genomic alteration may vary substantially in different types

of cancer, and we propose that drug discovery and evaluation

programs should be adjusted accordingly.

Materials and Methods

Cancer genome data

We used comprehensive molecular datasets collected across 22

cancer types by the TCGA consortium (Weinstein et al, 2013). The

number of samples per cancer type varied from 10 (Uterine_Other)

to 432 (Ovarian) and the combined dataset comprised 3,164 samples

(Table EV1). Hyper-altered samples were excluded (more variant

than 3rd quartile + interquartile range × 4.5) (Kandoth et al, 2013a).

Molecular subtypes were defined in the respective TCGA studies

A

B

C

Figure 4. Implications of cell type-specific epistasis for evolution, for
other genetic diseases, and for cancer therapy.

A Mutations in universally expressed housekeeping genes can have cell type-
specific effects because of cell type-specific epistasis.

B The modifier loci of a disease gene will change across cell types.
C Inhibiting a protein may cause synthetic lethality in combination with a

cancer-associated genomic alteration in one type of cancer but fail in
another type of cancer.
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(Cancer Genome Atlas Research Network, 2011, 2012a,b, 2014a,b;

Brennan et al, 2013; Kandoth et al, 2013b).

Genomic alterations

We considered somatic single nucleotide variants (SNVs), copy

number alterations, and DNA methylation events identified by the

TCGA consortium (http://cbio.mskcc.org/cancergenomics/pancan_

tcga/) (Ciriello et al, 2013). In brief, recurrently mutated genes were

identified using the MuSiC (Dees et al, 2012) and MutSig (Banerji

et al, 2012) algorithms from whole-exome sequencing data. Somatic

mutation calls were assigned to all truncating mutations and to

only non-synonymous, single-residue substitutions that existed in

hotspots (Ciriello et al, 2013). Copy number alterations were deter-

mined using GISTIC and the Firehose pipeline (Mermel et al, 2011)

and filtered for functional alterations using the criteria of concordant

mRNA expression as previously reported (Ciriello et al, 2013).

Levels of DNA methylation were measured as b-values (0, minimal

level of DNA methylation; 1, maximal level of DNA methylation),

and DNA hypermethylation calls were assigned only to samples

with b-values greater than 0.1, filtering for concordant mRNA

expression changes. A total of 479 functional alterations, consisting

of 199 recurrently mutated genes, 151 copy number losses, 116 copy

number gains, and 13 epigenetically silenced genes, were analyzed

in this study (Table EV2).

Candidate genes within copy number alterations

To further prioritize individual genes within chromosomal copy

number alterations, we analyzed the concordance between mRNA

expression level and copy number changes across samples for

cancer types that have differential interaction partners. For each

region, we classified samples into altered (amplified or deleted) and

not altered and tested for a difference in expression using the

Mann–Whitney test. mRNA expression data were obtained from

cBioportal (Gao et al, 2013) and were log2-transformed. Genes

within chromosomal events were sorted according to the FDR

q values (Fig EV6).

Detection of interactions

To determine the significance of the co-occurrence or mutual

exclusivity of a pair of functional events, we applied a permutation

strategy that controls for the mutational heterogeneity within and

across tumor samples. We used the permatswap function in the R

package vegan (http://vegan.r-forge.r-project.org/) to produce

permutated genomic alteration matrices that maintain the total

number of alterations for each alteration across samples as well as

the total number of alterations per sample, considering copy number

alterations, somatic mutations, and DNA hypermethylations as sepa-

rate classes. We permuted genomic events for each cancer type sepa-

rately to control for any biases in alteration frequencies in the

different cancer types. A total of 10,000 permutations were

performed, and the proportion of permutations in which the

observed co-occurrence was higher (Pco) or lower (Pme) than in the

real data was taken as an empirical P-value. In the pan-cancer analy-

sis, permutations were also performed within each cancer type sepa-

rately and then the numbers of co-occurrences were summed across

cancer types. We only tested for interactions between copy number

alterations on different chromosomes to avoid the confounding influ-

ence of linkage. To correct for multiple hypothesis testing, the mini-

mal P-values of Pco and Pme were converted to FDR using the method

of Benjamini and Hochberg (1995) with the p.adjust function in R.

Analysis of differential interactions

To test whether interactions differ between cancer types, we consid-

ered 52 pairs of alterations that were detected as significant interac-

tions in one cancer type and that were also individually altered in at

least 2% of the samples of at least one other cancer type. In each

cancer type, we quantified the co-occurrence of the two genomic

events using a 2 × 2 contingency table and the odds ratio as follows:

Cancer type i
Altered frequency
in Gene 2

Non-altered frequency
in Gene 2

Altered frequency
in Gene1

COi B onlyi

Non-altered frequency
in Gene 1

A onlyi Neitheri

Odds ratioi ¼ ðCOi � NeitheriÞ=ðA onlyi � B onlyiÞ

Cancer type j
Altered frequency
in Gene 2

Non-altered frequency
in Gene 2

Altered frequency
in Gene 1

COj B onlyj

Non-altered frequency
in Gene 1

A onlyj Neitherj

Odds ratioj ¼ ðCOj �NeitherjÞ=ðA onlyj � B onlyjÞ

0.5 was added to each frequency when calculating odds ratios to

avoid division by zero frequencies. We then performed Tarone’s test

for the heterogeneity of odds ratios (ORs) using the R package metafor

(http://cran.r-project.org/web/packages/metafor/). To control the

mutational heterogeneity between cancer types, we compared the

observed Tarone’s heterogeneity test statistic (Tobs) with the statistic

from 10,000 permuted datasets (Trandom). Permutations were

performed as described above, and the proportion of permutations in

which Trandom was greater than Tobs was used as an empirical P-value

and corrected for multiple hypothesis testing using the method of

Benjamini and Hochberg.

Saturation analysis

To explore whether the number of detected interactions is approach-

ing saturation or not, we performed two different saturation

analyses: first, down-sampling within each cancer type (only includ-

ing those with more than 10 detected interactions); and second,

down-sampling of the number of different cancer types for the pan-

cancer analysis. In the down-sampling within each cancer type, the

sizes of subsampling were defined to sample regularly (by adding

10 samples each time) in the interval from 10 tumor samples to the

total number of samples within each cancer type, and this process

was repeated 10 times. In the down-sampling of the pan-cancer, we

added 100 samples each time in the interval from 100 tumor
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samples to the final number (3,000) and repeated this process 10

times. To evaluate the effect of adding various different cancer

types, we defined 22 random orderings of the 22 cancer types. For

each ordering, we sequentially added a different cancer type accord-

ing to the random order. In each random set, 10,000 permutations

were performed.

Functional evaluation of interactions

We compared the interaction networks to physical and functional

protein–protein interactions from four different sources: HPRD

(Human Protein Reference Database) v.9 (Keshava Prasad et al,

2009), an integrated and filtered set of protein–protein interactions

(Park et al, 2011), STRING (Search Tool for the Retrieval of

Interacting Genes/Proteins) v.9 (Franceschini et al, 2013), and

HumanNet (Human gene functional interaction network) v.1 (Lee

et al, 2011). HPRD is a manually curated protein–protein interaction

database and the integrated and the filtered protein interaction set

merges seven existing interaction databases (the Biomolecular

Interaction Network Database, the Molecular Interaction Database,

the Database of Interacting Proteins, IntAct, BioGRID, Reactome,

and the Protein–Protein Interaction Database) after excluding low-

confidence protein–protein interaction pairs, as described (Park

et al, 2011). STRING integrates various biological datasets such as

gene expression and high-throughput experiments. We only consid-

ered STRING interactions with confidence scores greater than 700

and excluded experimentally validated protein–protein interactions

(evidence score of experiment is higher than 400). HumanNet is a

probabilistic functional gene network built by integrating 21 differ-

ent types of evidence. We took gene pairs with an interaction score

greater than 2.0. For copy number alterations, genes in the altered

regions were reported in a previous study (Ciriello et al, 2013). We

assigned an edge between two genomic alterations when at least

one protein encoded in the first genomic alteration has a physical or

functional protein–protein interaction with a protein encoded in the

second alteration. To measure the enrichment for protein–protein

interactions shown in Figure 2D, we randomly selected the same

number of detected interacting pairs from recurrent altered genes

(at least 2% of samples from the cancer types) 1,000 times. Enrich-

ment for protein–protein interactions was calculated as follows:

Enrichmentppi ¼ Nobs;ppi=AverageðNrandom;ppiÞ

where: Nobs,ppi = total number of protein–protein interactions

among the detected pairs; Nrandom,ppi = total number of protein–

protein interactions among the randomly selected pairs.

Change in interaction between two types of cancer

The change in interaction between two types of cancer was quanti-

fied as the change in the log of the odds ratio.

Expanded View for this article is available online:

http://msb.embopress.org
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