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Abstract

Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular
level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant.
When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a
background activity –or chatter– that may affect signal transmission through the network and, therefore, the response of
the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell,
specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external
chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity
levels of the network outputs, and effectively determines the paths of information flow. Our results show that the
interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions
between different information-processing scenarios.
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Introduction

Signal transduction, the process through which information

about the extracellular environment is conveyed to the cell’s

interior, is a property of all living organisms. Signaling molecules

stimulate their receptors, which transmit the signal downstream

through a series of protein-protein interactions that ultimately

modify DNA expression and protein levels [1,2]. In this manner,

external information affects cell behavior. This description of

signal transduction has traditionally involved independent signal-

ing cascades –or pathways–, in which information is linearly

transmitted from membrane to nucleus. Correspondingly, exper-

imental studies have usually analyzed pathway stimulation by

single inputs, such as variations in a chemical signal (e.g. a nutrient

or hormone) or a physical property (e.g. illumination or

mechanical pressure). However, extracellular media often contain

a complex mix of molecules that have the potential to feed the

signaling network with multiple inputs simultaneously [3]. In

addition, it is now known that proteins in one signaling cascade

often interact with proteins of other pathways, forming a dense

web of connections [4–6]. Thus cells must be able to perform such

complex information-processing tasks as signal integration [7–9]

and multiplexing [10] while dealing with cross-talk [11,12].

Adding to these information-processing requirements, the

signaling machinery has to cope with the fact that a cell’s

environment is not stationary, but subject to fluctuations [13,14].

Here we explore the impact of these environmental fluctuations on

the information processing capabilities of the signaling network as

a whole. In particular, we study how transmission of information

from one single input node is affected by the fluctuating

background activity, or chatter, provided by other network inputs.

To address this issue in a way that explicitly accounts for the

complexity of the system under consideration, we use one of the

most comprehensive dynamic models of cell signaling currently

available in the literature, a recently published Boolean network

for the human fibroblast that involves over 130 protein species

[15] (see Figure 1a; a fully annotated version can be found in

Figure S1). The dynamics of this network are implemented as a set

of logic rules, an approach that, despite its simplicity, represents a

good choice when building a detailed kinetic model is unfeasible.

Indeed, Boolean networks have successfully been applied to

modeling numerous biological processes, including gene regulation

[16–19], cellular differentiation [20,21], developmental patterning

[22], and signal transduction [23–26], evidencing that sequences

of cellular events can be reproduced by this type of discrete

dynamic models.

Given the ubiquity of periodic oscillations in cellular processes

[27–29], we assume that the input signal is either periodic in time

(structured signal) or erratic (unstructured). By performing

extensive numerical simulations, we characterize the response of

the fibroblast’s signaling network to such periodic input signals

under different chatter levels. Our findings suggest that the level of
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background activity shapes the response of the entire network to

the input signal, thus providing a mechanism for context-dependent

signaling [11] in dynamic situations.

Model

The Boolean Network (BN) model used in this work was built by

Helikar and coworkers [15] to describe the signaling pathways in a

prototypical human fibroblast (see Supporting Text S1 for

additional details). The network, which was created by careful

inspection of a large body of experimental literature, contains 9

input nodes and 130 internal nodes (see Figure 1a). The input

nodes represent signals of varying nature, namely stress signals, a

growth factor, a calcium channel, signaling by extracellular matrix

components and by ligands that use G-protein coupled receptors.

Following the original work, we consider six of the 130 internal

nodes to be outputs of the network, even though they also signal to

other nodes. The choice of these six species (the proteins Akt, Erk,

Rac, Cdc42, SAPK and p38) as network outputs was motivated by

their role in regulating well-defined cellular processes: pro-

grammed cell death (apoptosis) in the case of Akt, gene

transcription for Erk, cytoskeletal regulation for Rac and Cdc42,

and, finally, cellular stress for SAPK and p38.

Mathematically, the BN used here (termed original network

hereafter) consists of 139 elements, or nodes, connected by 542

links. Nodes represent chemical species, which are assumed to be

either active or inactive, and edges represent their interactions.

The states of all species are updated synchronously at each

iteration according to a set of node-specific deterministic rules.

Hence, the state xi(t) of node i (equal to 0 if the node is inactive

and 1 if it is active) is completely determined by the states of its ki

inputs at iteration t{1 and by its logic rule fi (see full details in the

Supporting Text S1). Therefore, for given inputs and initial

conditions of the network, the states of all nodes evolve in a

deterministic and reproducible manner. To introduce the

unpredictable evolution of the cell environment into the model,

here we allow random fluctuations in the activity of the input

nodes. We define a probability q for an input to be active, and at

each iteration of the network dynamics we draw the state of this

input node from a Bernoulli distribution with probability of success

equal to q (i.e. Pr xi(t)~1½ �~q for input node i). The parameter q

therefore determines the average level of background chatter in the

network, which is lowest for q~0 and highest for q~1. Note that

q additionally controls the degree of variability in the input

sequence, which is maximal at q~0:5, and disappears for both

q~0 and q~1.

In this context, a single realization of the network dynamics may

be assumed to correspond to the behavior of a single cell, and the

ensemble average of the activity over R cell realizations at a fixed q

level can be regarded as the average cell population activity,

Xi(t)~
1

R

XR

cell~1
x

i,cell(t). Note that Xi(t) is a continuous

variable representing the proportion of cells in the population

Figure 1. Boolean network model and simulations. (a) The
Boolean network model under investigation. The network has 9 input
nodes (blue squares at the top row), which we force with periodic or
random signals (compare stress to the other inputs, respectively), as
pictured schematically above each node, depending on the simulation
performed. The network has 130 internal nodes, six of which are
considered output nodes (red circles at the bottom row, while the rest
of the internal nodes are represented by black circles). (b) Response of
the network to a constant chatter level. Here we show a realization of
the network dynamics (cell #1) in which the states of all input nodes
randomly switch between 0 and 1 at a chatter level of q~0:8. For
clarity, we show the evolution of only one input node (stress, in blue)
and one output node (p38, in red). The population average signal for
the two nodes, calculated averaging data from R = 201 realizations, is
shown at the bottom. (c) Response of the network to periodic
stimulation of one input node. We show one network realization in
which input node stress oscillates (period T0~20), and the other input
nodes are set to chatter level q~0:8.
doi:10.1371/journal.pcbi.1002297.g001

Author Summary

Far from being silent and static, the habitat of a cell is
usually composed by multiple and simultaneous signals.
We can consider nutrients, hormones, temperature, light,
and other stimuli as elements building a default environ-
ment in which cells grow, divide and die. This environ-
ment, which has an intrinsically fluctuating nature, is the
setting in which cells process all incoming stimuli. Here we
examine the role that this background activity –or
signaling chatter– plays in the transmission of information
in a typical human cell. We address this question using a
cellular model of signal transduction that we simulate
using both random and periodic stimuli. We find that the
level of background chatter determines the response of
the whole signaling network to external stimuli. Different
areas of the network are activated by specific levels of
background activity, routing the information through
chatter-dependent paths. In this way, different levels of
chatter allow the network to select between different
responses, given the same stimulus. These features
depend on the architecture and functional connectivity
of a truly biological network, since we find that
randomized versions of the model are incapable of
showing this behavior.

Information Routing Driven by Background Chatter
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with species i active at iteration t. This ensemble representation,

together with the chatter model introduced above, allows for a

realistic description of stochastic fluctuations, as it dilutes the effect

of flipping input-node states at the macroscopic level [30],

provided the number R of cell realizations is large enough. In

this representation, the chatter levels correspond to the population

average activities of the input nodes.

The random sequences of activity states obtained for inputs with

a constant chatter level provide the network with an unstructured

signal that lacks temporal information. Figure 1b shows the

behavior of the output node p38 (red) for a given realization of the

unstructured sequences for all inputs set at chatter level q~0:8 (for

clarity, only the input stress is shown, in blue). All simulations

below have been made for a duration of 1600 iterations, well

beyond the span of any transient behavior [26] (which has been

eliminated by removing the first 160 iterations before data

analysis). Notice that both nodes show constant activity at the

population level (see bottom plot in Figure 1b). In this case,

averages over cell realizations are effectively equivalent to

temporal averages. In this paper we consider an additional type

of input sequence that does introduce temporal information:

oscillating (structured) inputs whose states turn on and off

periodically. We illustrate this case in Figure 1c, in which the

input stress oscillates and the rest of inputs fluctuate with a fixed

level of chatter, q~0:8 (only the input stress is shown). In this case,

the average population activity of the output node p38 also

oscillates at the frequency of the input, therefore recovering the

temporal information supplied by the external stimulation. In the

following we describe the conditions in which these structured and

unstructured signals are transmitted, and the role played by

background chatter during this process.

Results

The logic of the original network allows sensing the
background chatter level

To study the contribution of chatter to the network dynamics,

we first consider the response of the network to unstructured inputs.

These have been implemented with a constant chatter level q for

all the input nodes. Under these conditions, the population

activities of the output nodes fluctuate around a constant value

that depends on the chatter level (see bottom plot in Figure 1b). In

Figure 2a we show the temporal average of the population signal

for all the output nodes, for increasing levels of chatter. The

average population activity increases monotonously for three of

the outputs (Akt, Erk and Rac) as the chatter level increases. In

particular, we observe that the average activity of Erk is

approximately proportional to the chatter level. On the other

hand, the average population activities of the other three outputs

(Cdc42, SAPK and p38), depends non-monotonically on the

chatter, becoming maximal for an intermediate value of q. Thus,

the original network responds to background chatter in a

nontrivial manner.

We now ask to what extent the effects of constant chatter

described above can be attributed to the specific connectivity

architecture of the fibroblast network being used here. In order to

address this issue, we generate a family of random networks that

maintain the topology (i.e. the setting of nodes and links) of the

original network, while permuting randomly the update rules, thus

changing the logic of each node (see Figures S2 and S3, and

accompanying Supporting Text S1 for the full details). The results

obtained from multiple realizations of this randomized altered-logic

(AL) version of the network show that its response is, in general,

not sensitive to the chatter level (Figure 2b). Therefore, the

responsiveness to chatter is not guaranteed solely by the network

topology, but seems to require a particular type of logic rules

governing the dynamics of the nodes. To check whether this is

indeed the case, we generate a second family of randomized

networks, keeping now unaltered both the topology of the original

network and the logic rules of the nodes, but randomly reassigning

the inputs of each of the update rules (see Figure S2). This

randomization is less severe than the previous one, since it

maintains the type of logic rules in the network. We observe that

networks of this altered-input (AI) family are sensitive to chatter

levels in a similar way to the original experimentally-based

network (Figures S4 and S5). Taken together, these results reveal

that the biologically realistic network studied here responds in a

nontrivial manner to a constant level of background chatter, and it

is the distribution of logic rules of the network nodes, which is far

from random (see network properties in the Supporting Text S1),

that determines this responsiveness.

Background chatter enhances the network response to
periodic stimulation

Here we study the ability of the network to process and transmit

structured information under different levels of background chatter.

In order to do so, we examine the response of the network to the

periodic stimulation of a specific input node, maintaining the rest

of inputs at a constant chatter level (see examples of realizations

and population activity for this type of input in Figure 1c).

Contrary to what is observed for unstructured inputs (Figure 1b),

the output signals obtained in these settings do have temporal

structure. This is illustrated in Figure 3a, which shows the

population average, Xi(t), for all the output nodes upon periodic

stimulation of the input node stress. Some outputs (Erk and Cdc42)

do not show a significant response to the periodic modulation of

stress, while others (Akt, Rac, SAPK, and p38) do oscillate at the

period of this input.

In order to quantify the amount of periodicity in the network’s

response, we calculate the power spectral density (PSD) of each

output node (see Figure S6). Figure 3b shows the value of this

quantity at the frequency of the stress modulation, PSDi(n0), as a

function of increasing q levels. This plot shows that the response at

the input frequency changes in a nontrivial manner as a function

of the chatter level (specially for Akt, Rac, SAPK, and p38). The

different outputs reproduce the input periodicity in distinct ways,

Figure 2. Temporal average of the population activity of the
output nodes for increasing chatter levels. In these simulations,
the activity of all input nodes is unstructured (i.e. the probability of the
input nodes being active is set to a constant value q). (a) Original
network: the average activity of some output nodes increases
monotonically, while it peaks at intermediate chatter levels for other
outputs. (b) Randomized altered-logic network: the network activity is
basically insensitive to chatter levels. In these randomized networks, the
logic rules of the nodes are changed randomly (see Supporting Text S1
for details). The population activity was estimated from R~201 cell
realizations for each network. After dismissing a transitory period of 160
iterations [26], the temporal average of the population was calculated.
doi:10.1371/journal.pcbi.1002297.g002

Information Routing Driven by Background Chatter

PLoS Computational Biology | www.ploscompbiol.org 3 December 2011 | Volume 7 | Issue 12 | e1002297



in some cases displaying their maximum response at intermediate

q values. The stress-activated protein kinase (SAPK), for instance,

seems to respond better to periodic stimulation by input stress at

chatter levels close to q~0:3. Another stress-activated protein,

p38, is also an interesting example that presents two ranges of high

response for chatters around q~0:4 and 0:9. This behavior

implies that the most responsive output to stress varies as the

chatter level changes. In the particular example shown in

Figure 3b, the most responsive output under increasing chatter

values follows the sequence SAPK, Akt, p38 and Rac. In this

sense, the network acts as a system capable of selecting its dominant

output depending on the degree of background activity.

We have studied in detail the periodic stimulation of every input

node of the fibroblast network, and have found that they all show

the same qualitative phenomenology (see Figure S7), with the

exception of the a ligands. These ligands differ from the rest of

inputs in that they represent generic pathways. For example, as

ligands correspond to the signals that use the as subunit of the G

protein (which include epinephrin, glucagon, TSH, and more),

while ai ligands (like acetylcholine, serotonin and angiotensin) use

the ai subunit, etc. They possibly fail to respond because their logic

has somehow been altered during the generalization process. For

clarity of presentation, we continue focusing hereafter on the

periodic perturbation of stress only.

We now examine the extent to which the chatter-dependent

ability of the network to select its response depends on its

connectivity. To address this question, we now perform the same

numerical experiment for the two randomizations of the network

described previously (and shown in Figure S2). As in the case of

unstructured inputs discussed in the previous section, AL networks

in which the logic at all nodes is randomized (right column in

Figure S2) are again insensitive to chatter, and in fact they do not

respond to the periodic input at all (Figures S7 and S8). In contrast

to the case of unstructured inputs, where AI networks did respond

to the levels of chatter (Figure S5), we observe here that this second

family of randomized networks are barely able to sense the

periodic input, and are thus unable to show a sensitivity of the

output to background chatter. A particular example of the

response of such weakly randomized network to a periodic

modulation of the stress input is shown in Figure 3c. Only p38

responds at all in this case. Other realizations of the randomization

and the responses to other inputs are displayed in Figure S7,

showing a similar behavior. This suggests that the topological

structure of the network and the distribution of logic rules of the

nodes are not sufficient for a successful information processing, but

the original –specific– logic rules for each node are needed.

Chatter level determines the information path
Next we study how the information is transmitted from the

stimulated input to the dominant output, and which nodes

participate in this transmission. To that end, we calculate the

power spectral density at the stimulation period for all network

nodes, and the maximum cross-correlation (in absolute value)

between the average signals of all pairs of nodes (see Supporting

Text S1 for additional details). Figure 4 shows this information in

the case of a periodic modulation of the input stress, and for two

different values of the chatter level, q~0:3 and q~0:9, which

correspond to the conditions for which SAPK and p38,

respectively, are dominant outputs (Figure 3b). A common feature

of both panels in Figure 4 is that there are several internal nodes

that reproduce quite well the periodic input signal (i.e. they have

high values of the power spectral density at the input frequency),

and which are usually connected to each other by high cross-

correlation values. However, there are also important differences

between the two chatter levels. For instance, when q~0:3
(Figure 4a), most of the nodes that transmit the signal from the

stimulated node to the dominant output node (in this case, SAPK)

are not so active for q~0:9 (Figure 4b), and a different set of nodes

transmit the information from the stress input to p38, Rac and

Akt, which now become dominant outputs. Together, these results

show that chatter is able to select which output responds

dominantly to a given input by determining the set of internal

nodes that are most affected by the input. These nodes in turn

signal downstream until a given output node is reached.

Figure 4 shows that the chatter level sets which groups of

internal interconnected nodes convey information from the inputs

to the outputs. These groups of nodes and the links between them

constitute preferred paths of information transmission. In order to

characterize which of these paths are dominant in transmitting

information, we resort to optimization algorithms of graph theory.

For each stimulated input and chatter level, we assign a weight to

each edge (i,j) of the network equal to the inverse of maximum

cross-correlation Cij (see Supporting Text S1 for additional

details). Then, for each of the network outputs we use a shortest

path algorithm [31] to identify those paths going from the

stimulated input to the considered output with the minimal sum of

weights. This approach is well suited for our problem, as it

penalizes large paths, and paths where at least one edge has a low

cross-correlation. Each of the paths found using this method is

assigned a score equal to the inverse of the sum of weights. Thus,

the higher the score of a path, the higher the correlations of its

constituent interactions. Those paths with highest score in terms of

sums of these weights are what we define as dominant paths. In

Figure 5a, we show the score of the best paths found going from

input stress to p38 as a function of the chatter level q (see Figure S9

for the results corresponding to other input-output combinations).

In Figure 5b, we show the nodes and interactions forming these

paths. They are relatively short, as they usually involve between 3

and 7 intermediate species (structurally the network has 7 paths

with 3 or less intermediate species from stress to p38, and 570

paths with 7 or less intermediate species). For low chatter levels, a

Figure 3. Network response to periodic stimulation of input
node stress in the presence of chatter. (a) Temporal evolution of
the population average of the output nodes (R = 201 cells) for a chatter
level of q~0:3 in the original network. Some species (Akt, SAPK and
p38) oscillate at the frequency of the input signal. Power spectral
density (PSD) at the input frequency obtained from the population
average of each output node versus chatter level, q, in the original
network (b) and an AI randomized network (c).
doi:10.1371/journal.pcbi.1002297.g003

Information Routing Driven by Background Chatter

PLoS Computational Biology | www.ploscompbiol.org 4 December 2011 | Volume 7 | Issue 12 | e1002297



group of paths emerges involving the MKK3 and MKK6

activation of p38. This group of paths is responsible for the first

peak in the power spectral density of p38 shown in Figure 3c. At

high levels of chatter, these paths fade out, and the oscillatory

behavior of p38 (second peak in Figure 3c) becomes then due to

inhibition by the MAP phosphatases (MKP), which in turn are

activated through the adenyl cyclase (AC-cAMP) pathway. This is

a specific prediction of our model, according to which the

preferential pathway through which p38 is activated by stress

changes with chatter. Since chatter can be varied by controlling

the concentrations in the culture medium [32] of all input signals

other than stress, it would be interesting to vary the medium

composition of a fibroblast culture in a controlled way. The goal

would be to measure the correlation between p38 activity and that

of the main players of the two alternative pathways, e.g. MKK3

and AC, to check whether this correlation changes with medium

composition. Similar predictions can be extracted for other input-

output pairs.

The network presents a balance between robustness and
responsiveness

From the results of the previous section it is clear that different

dominant paths emerge as a consequence of varying chatter levels.

The remaining question is what happens to those internal nodes of

the network not involved in the aforementioned paths when chatter

level varies. To address whether they significantly change their

processing capacity, we analyze the sensitivity to chatter variation of

the power spectral density at the input frequency, PSDi(n0), and of

the maximum cross-correlation (in absolute value) between edges,

Cij . We call these two magnitudes, respectively, node sensitivity

[Si(q) for node i] and edge sensitivity [Sij(q) for the interaction pair

(i,j)] (see Supporting Text S1 for additional details).

Figure 6 summarizes the results obtained in the case when the

network is driven by an oscillating stress signal (see Figure S10 for

other inputs). Both nodes and edges are colored according to the

maximum (in absolute value) sensitivity for all chatter levels. Blue

(red) color indicates a positive (negative) variation in the direction of

increasing chatter. Color intensity indicates the magnitude of this

maximum variation. In this figure, it can be observed that just a few

nodes and a few of the 542 edges of the network have a significant

variation of power and correlation when varying chatter levels. Note

that most of the sensitive nodes and edges are involved in one or

more dominant paths at a given chatter level (see Figures 4 and 5).

Thus, while species belonging to paths involved in information

transmission are sensitive to variations in the chatter level, the rest of

the network nodes seem to be robust against these variations.

Discussion

Cells live in environments whose composition affects the way in

which they function. An example is the interstitial fluid (IF)

Figure 4. Chatter level determines the set of nodes that
respond to the input modulation. Power spectral density at the
input frequency (color coding of the circles) and maximum cross-
correlation (in absolute value) between pairs of nodes (grey coding of
the edges) for a periodic modulation of the stress input and two values
of the background chatter level affecting the rest of inputs: (a) q~0:3,
(b) q~0:9.
doi:10.1371/journal.pcbi.1002297.g004

Figure 5. Paths of information flow for varying levels of
chatter. (a) Information transmission scores (see text) of the dominant
paths versus chatter level for a periodic modulation of the stress input,
when considering p38 as output. (b) Edges defining these dominant
paths.
doi:10.1371/journal.pcbi.1002297.g005

Information Routing Driven by Background Chatter
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surrounding cells in higher organisms, which affects processes as

important as embryogenesis, tissue morphogenesis, remodeling

and cancer progression [33]. The composition of the IF changes

over time as a function of tissue irrigation rate, inflammation, and

organ motility, for example. Modifications of the IF are known to

affect fibroblasts [34], supporting the view that these cells are

exposed to varying environments. While being subject to purely

external sources of variation, cells also contribute to modifying

their surroundings by secreting multiple signaling molecules

themselves [35]. In a given physiological situation only a small

subset of those signals will carry information relevant to the cell

[36].

Noteworthily, the information-carrying signals are frequently

dynamical, since oscillations in cell physiology are ubiquitous [37],

and in many cases clearly periodic, driven for instance by regular

biological rhythms such as those generated by circadian clocks

[29,38]. The remaining signals may constitute a source of

background activity, or chatter, that is bound to affect the cellÕs

response to the relevant inputs. Experimental evidence hints at the

existence of signaling fluctuations in different cell types. Transient

fluctuations in phosphate signaling, for instance, exist in yeast [39].

T cells, on the other hand, are known to be activatable by small

numbers of T-cell-receptor (TCR) ligands [40,41], and can

therefore be expected to undergo strong fluctuations in TCR

signaling [32]. In the particular case of fibroblasts, considered in

this paper, fluctuations in extracellular pH are known to exist [42],

and transient deactivation of ERK signaling (a pathway specifi-

cally considered in the model above) has been associated with cell

cycle control [43]. The level of chatter will depend on many

variables, including cell type, tissue, developmental stage, health

status, etc. In this paper we numerically examine how the

information transmission capabilities of a periodically stimulated

human cell depend on the amount of background chatter.

At the experimental level, context-dependent signaling is

beginning to be unraveled. For example, the Alliance for Cell

Signaling (AfCS) recently compared the effect of 22 individually

applied inputs (cytokines, GPCR ligands, TLR ligands, and

tyrosine-kinase receptor ligands) upon 42 cell outputs (cytokine

production, protein phosphorylation, calcium, and cAMP levels),

to the effect of all possible pairwise combinations of those inputs

[11]. According to the results of that study, only a few ligands are

able to control cellular outputs independently from the other

inputs. In contrast, most inputs act as modulators of signal

transduction, providing the cell with the ability to perform context-

dependent signaling. Our results fit well with these findings, as we see

that the level of background activity of the input nodes determines

the capability of the cell to respond to other inputs (in particular,

to follow both unstructured and structured signals). In their work,

Natajaran et al. [11] coin the term interaction agent to refer to the

network circuits that couple different signaling pathways. They

claim that such circuits would be silent in single ligand

experiments and become active upon multiple input signaling,

causing the non-additive effects observed for certain pairs of

inputs. In our theoretical study we effectively observe different

areas of the network being used at specific chatter levels, thus

supporting the existence of these circuits.

Our results show specifically that a detailed signaling network,

carefully compiled from published experimental data [15],

responds in a nontrivial manner to background chatter, both

intrinsically and in the presence of a periodic modulation of one of

the inputs. This work extends the findings of Helikar and

colleagues, who created the network in the first place and studied

its stationary response to different input levels for increasing

intensities of noise [15]. They concluded the network divides

biological stimuli into categories, since it reduces the full range of

possible external inputs to a limited number of cell responses, in a

manner that is robust to noise. We divert from the work of Helikar

et al. in that we focus on the dynamics of the system. Having

recently explored the relaxation time and frequency response of

the network [26], we now show that chatter is able to enhance the

response of certain outputs to a given input when tuned to optimal

levels. Given that chatter controls the amount of stochasticity

acting upon the network, this is a situation reminiscent of

stochastic resonance, a phenomenon in many physical and

neurosensory systems by which the detection of a weak signal is

enhanced by noise [44]. Our simulations have been performed

using synchronous updating but, as shown in Supporting Text S1

and in Figure S11, our results are qualitatively unaltered when the

updating is asynchronous (whose main effect is the destruction of

deterministic attractors, which is also caused by chatter). We also

note that the temporal character of the chatter is relevant for the

phenomena reported here, as discussed in Supporting Text S1 and

in Figure S12.

Recent studies have shown that signaling networks prioritize

dynamic range over signal strength [45]. This entails a linear

relationship between the input signal and the output response of

the network, which ensures that the reaction of the network to an

oscillatory input will also be oscillatory with the same main

frequency, for a large wide range of input amplitudes. Our results

fit well with this finding, and extend it by assigning a relevant role

to the background chatter coming from other input nodes, which

enhances the frequency response. It would be interesting to extend

these studies to the situation in which more than one information-

carrying signal act upon the system, following the recent

experimental studies of Natajaran et al. [11] and Hsueh et al.

[36] discussed above, which have revealed synergistic effects in

signal integration.

Figure 6. Maximum sensitivity of nodes and edges to chatter
variation for periodic input stress. Red (blue) color scales for
negative (positive) values of the sensitivity. Only a few nodes and edges
present a high maximum (in absolute value) sensitivity. Most of these
few nodes and edges are part of at least one of the paths previously
identified as dominant (see Figures 4 and 5). The major part of nodes
and edges not involved in information paths are robust to chatter, since
they are mostly insensitive to it.
doi:10.1371/journal.pcbi.1002297.g006

Information Routing Driven by Background Chatter

PLoS Computational Biology | www.ploscompbiol.org 6 December 2011 | Volume 7 | Issue 12 | e1002297



Our results also show that varying chatter levels allow the

network to select which output nodes respond preferentially to a

given input. Indeed, output switching is achieved via a mechanism

that places few requirements on the temporal structure of

contextual, non-specific signals. Thus, we conjecture that cells

could use environmental noise (to which they are unavoidably

subject) to choose among alternative information routes, and

eventually among different cellular responses. Randomized

versions of the original network in which the topology of the

connections is maintained -and only the integration rules at the

nodes are altered- fail to reproduce this property, indicating that

the chatter-driven selectivity reported here is fine-tuned to the

specific architecture and logic of the experimentally-supported

network.

Concurrent with the ability of background chatter to select the

dominant output for a given input, chatter also selects the network

path through which information is transmitted. The nodes

belonging to these preferred paths can be expected to form the

classifier hyperspace proposed by Oda and Kitano in their study of

the Toll-like receptor signaling pathway [5]. These preferred paths

are sensitive to chatter and allow transitions between different

information processing scenarios that underlie different output

responses. In that way, a given signaling network can have

multiple working states that are selected by the background

chatter. The rest of the network nodes not belonging to the

preferred paths, on the other hand, remains insensitive to chatter.

In that way, we can conjecture that signaling networks have a

built-in balance between responsiveness and robustness within

their coupling architecture, and this balance is modulated by

background chatter. Taken together, the results presented here

indicate that background activity levels are key for determining the

response of the cell to a given input, by allowing the emergence of

novel system-level properties such as information routing, output

switching, and context-dependent signaling.

Supporting Information

Figure S1 Annotated fibroblast network. Specific informa-

tion about the update rule for each node can be found at http://

mathbio. unomaha.edu/Database.

(EPS)

Figure S2 Network randomization. Two methods of

randomizing signal integration at the network nodes. The update

rule of one of the nodes of the original network is shown as an

example (left column). The first randomization method (altered-

logic, middle column) consists on shuffling the output of the update

rule, in such a way that the logic of the logic gate changes but the

number of active output states is maintained. The second

randomization method (altered-input, right column) consists instead

on shuffling the inputs of the network node while maintaining the

logic of the update rule (the logic is given below the truth table in

each case).

(EPS)

Figure S3 Topological comparison of the networks.
Distribution of the number of canalizing functions for the AL

networks, as defined in Figure 7. The arrow marks the number of

canalizing functions of both the original and the AI networks.

(EPS)

Figure S4 Response of the biological and randomized
networks to unstructured inputs. Temporal average of the

output population activities for increasing chatter level for

unstructured inputs. (a) Original network; (b–f) five out of 100

realizations of the altered-logic network models, in which the logic

rules at the nodes are changed randomly (see Figure 7); (g–k) five

realizations out of 100 of the altered-input network models, in

which the logic rules are maintained but the inputs are shuffled

randomly.

(EPS)

Figure S5 Quantifying the responsiveness of random-
ized networks to unstructured inputs. Distribution of the

number of output nodes that respond to the unstructured inputs of

Figure 9, for 100 realizations of each of the two types of network

randomizations described in Figure 7. A node is considered

responsive when the dynamic range of the average activity SXiT
(difference between maximum and minimum values for varying q,

as in Figure 9) surpasses a given threshold, taken here equal to 0.25

in the units of the y-axis of Figure 9, without loss of generality. The

arrows indicate the number of responsive inputs of the original

biological network.

(EPS)

Figure S6 Network response to periodic stimulation of
the input node stress in the presence of chatter. Power

spectral density of the average activity shown in Figure 3a of the

main text. The first frequency peak corresponds to the frequency

of the input signal (n0~0:05). These power spectral densities are

calculated for series of 1600 iterations, after dismissing a transitory

period of 160 time iterations in the data.

(EPS)

Figure S7 Response of the biological and randomized
networks to structured inputs. Power spectral density at the

stimulation frequency of the population activities of the output

nodes (see legend in Figure 9) for five structured inputs (calcium

pump, IL1=TNF{a, extracellular matrix, EGF and oxidative

stress), as a function of chatter level, q. (a) Wild type network; (b–f)

five altered-input networks; (g–k) five altered-logic networks.

(EPS)

Figure S8 Quantifying the responsiveness of random-
ized networks to structured inputs. Distribution of the

number of output nodes that respond to a modulation of the stress

input (Figure 12), for 100 realizations of each of the two types of

network randomizations described in Figure 7. A node is

considered responsive when the dynamic range of the power

spectral density at the stimulation frequency (difference between

maximum and minimum values for varying q, as in Figure 12)

surpasses a given threshold, taken here equal to 3% of the

maximum PSD of the input, without loss of generality. The arrows

indicate the number of responsive nodes of the original biological

network.

(EPS)

Figure S9 Paths of information flow between different
input-output pairs, and varying levels of chatter. Paths

with highest correlation for all chatter levels (top panels in each

figure set) and correlation scores of those paths as chatter increases

(bottom panels in each figure set). Figure sets (a) to (e) correspond

to the five different specific inputs, and within each set the columns

correspond to the different outputs.

(EPS)

Figure S10 Network sensitivity to chatter. Maximum

sensitivity of nodes and edges when no structured input is present

(a) and for five structured inputs (b–f, input listed right before each

plot). Red (blue) color scales for negative (positive) values of the

sensitivity. Only a few nodes and edges present a high maximum

sensitivity in absolute value. Most of these few nodes and edges are

part of at least one of the paths previously identified as dominant.
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The major part of nodes and edges not involved in transmission

information paths are robust to chatter as they do not have large

sensitivities to it.

(EPS)

Figure S11 Robustness to asynchronous updating. Net-

work response to periodic stimulation of input node stress

(v0~0:05) in the presence of chatter, quantified by the power

spectral density of the output nodes (see legend in Figure 9), for

three different asynchronous updating methods (see text). The

power spectral densities are calculated for time series of 1600

iterations, after dismissing a transitory period of 160 iterations in

the data, and for a population of size R = 201 for each q. (a,b)

Results for the two-step partial randomization update scheme,

with a probability of being updated in the first step equal to 0.5 (a)

and 0.05 (b). (c) Results for the complete randomization update

scheme.

(EPS)

Figure S12 Role of temporal variation of the chatter.
Fraction of responsive cells (realizations) versus chatter level q for

(a) 201 realizations of temporally varying chatter, as considered in

the main text, and (b) 2001 realizations of quenched chatter (see

Supporting Text S1 for a definition of quenched chatter). A cell is

considered responsive if the maximum value of the cross-

correlation function between input (stress) and output (color coded

according to the legend in Figure 9) surpasses 6.25% of the perfect

score.

(EPS)

Text S1 Supporting Text.

(PDF)
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