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Abstract

In the nucleus of HIV-1 infected cells, unintegrated HIV-1 DNA molecules exist in the form of one and two LTR circles and
linear molecules with degraded extremities. In tissue culture they are invariably more numerous than the provirus, the
relative proportion of integrated to unintegrated forms varies widely from ,1:1 to 1:10 and even over 1:100. In vivo, this
ratio is unknown. To determine it, single nuclei from two infected patients with a known provirus copy number were
microdissected, HIV DNA was amplified by nested PCR, cloned and individual clones sequenced. Given the extraordinary
sequence complexity, we made the assumption that the total number of distinct sequences approximated to real number
of amplifiable HIV-1 DNA templates in the nucleus. We found that the number of unintegrated DNA molecules increased
linearly with the proviral copy number there being on average 86 unintegrated molecules per provirus.
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Introduction

The phenomenal intrapatient variation of human immunode-

ficiency virus type 1 (HIV-1) genome needs no introduction

[1,2,3,4,5,6,7]. The absence of proofreading mechanisms associ-

ated with the reverse transcriptase, the high recombination rate

and high turnover are the main factors [8,9,10]. Whenever

multiple infections occur, recombination invariably follows.

Recombination is present at all levels of HIV genetics [11,12].

Within an infected individual recombinant genomes show up in

network analyses of HIV sequences [13,14,15,16]. In an animal

model, macaques inoculated simultaneously with SIVmac239Dvpx
or Dvpr and with SIVmac239Dnef, the emergence of wild-type

virus was detected in blood in as little as 2 weeks post-inoculation

[17,18]. Finally, some strains in widespread circulation are clearly

composites of at least 2–3 other clades [19,20,21,22].

Recently, it was shown that in infected patients ,85% of

infected CD4+ T cells in blood contain only one copy of HIV-1

DNA [23]. This would suggest a limited potential for recombi-

nation in virus produced by these cells. However, HIV replicates

mainly in secondary lymphoid organs. The spleen is a secondary

lymphoid organ replete with white pulps and germinal centres and

it is in such structures that HIV recombination will occur. Indeed,

the majority of HIV-1 infected cells in vivo harbour multiple

proviruses and additional unintegrated DNA molecules [4,5], the

average proviral copy number per infected cell being 3–4 with

a range of 1–8 [5]. Greater than 75% of infected cells harboured

two or more proviruses [5]. The ratio of unintegrated/provirus

DNA molecules was not addressed [5]. It is well known that

proviruses are accompanied by unintegrated DNA forms, either as

covalently closed circles with one or two LTRs or linear molecules

with ends degraded by exonucleases [24,25,26,27]. In tissue

culture experiments the relative proportion of integrated to

unintegrated forms varies widely from ,1:1 to 1:10 and even

over 1:100 [28,29].

How can this ratio be addressed for single cells in vivo?

Fluorescence in situ hybridization (FISH) can quantify the number

of proviruses per cell [5]. In this work, Jung et al., reported

extensive genetic variability within the hypervariable V1V2 region

of viruses from two patients. Indeed, the vast majority of sequences

were unique. This is perhaps not too surprising as the hypervari-

able V1V2 region of env is one of the most variable regions of the

HIV-1 genome and thus offers the greatest resolution. This choice

also meant there was no interference from the HIV-1Denv probe
used for FISH [5]. Given the phenomenal variation for these two

patients, it is probably a reasonable assumption to equate the

number of unique sequences with total number of distinct

molecules within the nucleus. Accordingly, if sequencing was

performed on the nuclei of single cells, it is possible to estimate the

number of unintegrated DNA copies per nucleus.

Materials and Methods

Patients/Ethics Approval
The two patients, B and R, have been already described

[1,4,5,30]. Briefly, patient B was at stage clinical B1 and had

a blood CD4 count of 583/ml and a plasma viremia titre of 5,900

RNA copies/ml. Patient R was at stage C2, while the blood CD4

count and viremia were 317/ml and 126,000 RNA copies/ml

respectively. Splenic tissues from patients B and R came from
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Hôpital Saint-Louis (Paris, France), [1,4,5,30]. Ethics approval for

the two patients have been obtained from Hôpital Saint-Louis

(Paris, France). Informed consent were obtained from the patients

B and R.

Preparation of Cells for Fluorescence In situ Hybridization
Frozen spleen cells from HIV-infected patients were thawed

and stimulated with 2.5 mg/ml phythaemagglutinin (PHA)

(Difko, Detroit, MI. USA) in the presence of 10 mM azidothy-

midine (AZT) (Sigma, Taufkirchen, Germany) to prevent the

virus spread in the cell culture [1,4,5,30]. After two days of

culture in RPMI 1640 (Lonza, Velviers, Belgium) with 10% fetal

calf serum (Invitrogen, Karlsruhe, Germany), 1% penicillin/

streptomycin (Biochrom AG, Berlin, Germany) and IL-2 (100 U/

ml; Chiron Behring, Marburg, Germany), the cell nuclei were

prepared via incubation with 0.1 M KCl for 30 min at 37uC,
fixed with methanol/acetic acid 3:1 at 4uC and stored at 220uC.
The HIV FISH was performed according to our previous HIV

protocol [5]. Nuclei with defined HIV provirus numbers were

microdissected using a PALM Robot16 MicroBeam, according

to the manufacturer’s instructions (PALM Bernried, Germany),

and transferred to PCR tubes with the laser pressure catapulting

technique.

PCR Amplification, Cloning and Sequencing
A fragment of the HIV envelope genome (V1V2) was amplified

employing a semi-nested procedure. In order to increase sensitivity

and specificity, hot start PCR was performed. First round

primers were LV15 59- gccacacatgcctgtgtacccaca and LV13 59-

CTTTAGAATGCGAAAACCAGCCG while primers SK122

and SK123 59-CTAAAGCCATGTGTAAATTAACC and 59-

TGGCTCAAAGGATACCTTTGGACA were used for the

second round. The first and second round of PCR involved

standard amplification, the reaction parameters were 95uC for

5 min, followed by 35 cycles (95uC for 30 s, 55uC for 30 s, and

72uC for 30 s) and finally for 10 min at 72uC. The buffer

conditions were 2.5 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl

(pH 8.3), 200 mM of each dNTP, 100 mM of each primer, and 2.5

units of Taq DNA polymerase (Cetus) in a final volume of 50 ml.
The equivalent of 0.2 l of the first round reaction is used as

template in the second round. Amplification products were

purified from agarose (Qiaex II kit, Qiagen, France) and directly

cloned into the pCR2.1-TOPO vector included in the TOPO TA

Cloning Kit (Invitrogen Corp., San Diego, CA). After trans-

formation of E. coli TOP10F’ Blue cells, up to 4000 clones were

picked and sequenced by GATC Biotech.

Determination of PCR-mediated Recombination
Frequency
To appreciate the PCR-mediated recombination frequency, ten

picograms each of DNA corresponding to V1V2 mini-prep clones

01 and 16 were mixed and subjected to 35 cycles of PCR with

primers L1 and L2 and 1/10 of the first PCR was used to amplify

for 35 cycles with primers SK122 and SK123 under the same

conditions as those described above [2,5,31]. The DNA was

purified and cloned into TOPO TA cloning site. About 500

colonies were screened with 4 different 32P-labeled oligonucleo-

tides (Probes A1 59 AACACCAATAATAGTAGCAA and A2 59

TGATACTTCTAGCTATAGC for clone 01 and B1 59

GTGCACTAATAATAACACC and B2 59 TATAGGAAATGA-

TACTACTA for clone 16, data not shown). Plaques giving

positive hybridization signals with both couple of primers A1+B2
or/and B1+A2 were considered PCR-mediated recombinants.

Recombination was confirmed by sequencing and a recombination

frequency of 2/500 or ,461023 established.

Results

Quantification of Unintegrated HIV-1 DNA
For sequencing, how many molecules should be sequenced to

detect the real number of distinct viral DNA in a sample? We

considered P, the probability of finding a new sequence, and N as

the absolute number of distinct sequences, while x and y are the

number of total and unique sequences experimentally determined

respectively. The relationship between P and N is obtained from

the equation, P= (N2y)/N (Figure 1). For an x/y ratio ,2

approximately 80% of unique sequences (y) can be identified.

HIV-positive interphase nuclei from two patients (B and R) were

laser microdissected and transferred to PCR tubes and the V1V2

env region amplified. In order to increase sensitivity and specificity,

hot start PCR was performed. Four splenocytes from patient R

harbouring a single provirus constituted the starting point

(Figure 2). Small numbers of sequences were sufficient for the

number of unique sequences (y) to plateau. The values of y ranged

from 12–14 to 39, which translates into values of N of 13–16 and

42 respectively (Figures 2). Given the underlying assumption that

all genomes are genetically unique, the unintegrated/provirus

ratios are $13:1 to 42:1.

A similar analysis was performed on the nuclei of six splenocytes

with 2 or 6 proviruses from patient B (Figures 3A and 4A). The

number of unique sequences identified ranged from 131 to 172 for

cells harbouring 2 proviruses, and between 359 and 677 for those

with 6 proviruses (Figure 4A). Values of N ranged from 150–927,

while the unintegrated DNA/provirus ratios (Z) were of the order

of 75–155 (Figure 4A). Approximately 927 unique HIV genomes

were predicted for nucleus B06 (Figures 3A and 4A). A selection of

V1V2 protein sequences from B06 is shown in Figure 3B,

a number of which are arguably recombinants. Most probably if

more sequences from other cells were sequenced it would be

possible to identify more recombinants. Indeed, given the

Figure 1. Relationship between the probability P of scoring for
a new sequence as a function of the ratio of genetically distinct
(y) and total (x) sequences.
doi:10.1371/journal.pone.0036246.g001

Unintegrated HIV DNA In Vivo
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frequency of HIV recombination and the 70% fraction of multiply

infected splenocytes for patient B, probably all sequences were

recombined in a relatively recent time frame. Recombination was

confirmed by sequencing and a recombination frequency of 2/500

or ,461023 established. In parallel, Taq polymerase mutation

frequency was shown to be f ,1025, suggesting that the high

mutation frequency observed was not associated to Taq poly-

merase.

G to A Hypermutation at a Single Cell Level
The B6 nucleus also harboured two G-.A hypermutated

sequences which were interesting. Such genomes are associated

with editing by host cell cytidine deaminases APOBEC3F and 3G

in the context of a Dvif genotype. The enzymes show distinct

dinucleotide contexts associated with editing, notably TpC.CpC

for APOBEC3F and CpC.TpC for APOBEC3G, where the

edited base is underlined [32,33,34,35,36,37]. The two sequences

showed remarkable selectivity for dinucleotide editing context. For

clone 06 TpC was very strongly preferred over CpC, while for

clone 79 the opposite was apparent (Figure 3C). These striking

differences suggest that occasionally only A3F or A3G are

packaged, which is feasible given the estimations of low levels

packaged into virions [38]. Presumably hypermutated genomes

with less startling biases probably reflect co-packaging of both

APOBEC3 proteins.

Discussion

For these two patients, proviruses are accompanied by a very

large number of unintegrated forms, varying from Z=13–155

molecules per provirus (Figure 4A). As only 10 nuclei were

analysed (4 from patient R +6 from B), this number is by no

means a maximum. Interestingly the relationship between N

and pv is linear (Figure 4B). While the sample size of this

present study is low and thus has limited statistical power, the

results obtained for the patients are similar. Given these large

values for Z, it is logical that many splenocytes harbour

unintegrated DNA alone. As the present study focussed on cells

with FISH-positive proviruses such cells were not scored. While

the values for Z are large compared to those derived from tissue

culture, a recent report in a very different setting, peripheral

blood mononuclear cells from HIV-infected Elite suppressors

identified an unintegrated/integrated DNA ratios of between

10/1 to up to 10,000/1 [39].

Figure 2. Quantification of genetically distinct HIV-1 V1V2 Env sequences within four splenocytes from patient R harbouring
a single HIV-1 provirus.
doi:10.1371/journal.pone.0036246.g002

Unintegrated HIV DNA In Vivo

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36246



The extraordinary genetic variation among HIV DNA

molecules found in different nuclei indicates that the source of

virus infection was very complex. Within an established HIV-

infected patient there are three sources of genetically complex

virus. These are circulating virus, virus on follicular dendritic cells

(FDC) and virus associated with dendritic cells (DC) presented to

CD4+ T lymphocytes. As the infection frequency of splenocytes

was ,1%, this rules out circulating virus, as the major source. The

virus on FDC surfaces is essentially in the form of immune

complexes and is mainly presented to B cells [40]. By contrast DCs

present very efficiently HIV to CD4+ T lymphocytes [41]. While

the present data cannot distinguish between the FDC and DC

sources, the cellular immunology of DCs pleads in favour of the

latter.

Using cell free virus to infect cells ex vivo, treatment of the target

cell by proteasome inhibitors enhances viral growth ,3 fold

indicating that more viruses infect and enter a cell than make it to

the nucleus [42]. Assuming a comparable phenomenon in vivo the

number of virions needed to infect a single splenocyte would be of

the order of 40–2800. If other catabolic pathways were operative,

the number of virions would necessarily be even greater.

Infection of a single cell by many virions could well be a general

phenomenon in virology. However, in order to quantify the

number of incoming virions some trait is needed to distinguish

them from the replication template for progeny virus. For

retroviruses the incoming genome is RNA while the template for

transcription is DNA. For RNA viruses, such as poliovirus, there is

no such trait distinguishing parent and daughter genomes. Of

course recombinants are a tell tale sign. Following vaccination

with the three attenuated polioviruses, recombinants among them

have been described, as have recombinants between vaccinating

strains and wild type poliovirus and other enteroviruses [43,44].

Although negative stranded viruses such as influenza are known to

recombine rarely, recombinants can be identified [45]. Along with

the above data such examples indicate that multi-infection is

probably commonplace, an inevitable consequence of the capacity

of a cell to produce hundreds to thousands of virions in a very

small space.
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