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Spectral Efficiency of Dynamic Coordinated
Beamforming: A Stochastic Geometry Approach

Namyoon Lee, David Morales-Jimenez, Angel Lozano, and Robert W. Heath Jr.

Abstract—This paper characterizes the performance
of coordinated beamforming with dynamic clustering. A
downlink model based on stochastic geometry is put
forth to analyze the performance of such base station
(BS) coordination strategy. Analytical expressions for the
complementary cumulative distribution function (CCDF)
of the instantaneous signal-to-interference ratio (SIR) are
derived in terms of relevant system parameters, chiefly the
number of BSs constituing the coordination clusters, the
number of antennas, and the pathloss exponent. Utilizing
this CCDF, with pilot overheads further incorporated into
the analysis, we formulate the optimization of the BS
coordination clusters for a given fading coherence. Our
results indicate that (i) coordinated beamforming is most
beneficial to users that are in the outer part of their cells
yet in the inner part of their coordination cluster, and that
(ii) the optimal cluster cardinality for the typical user is
small and it scales with the fading coherence. Simulation
results verify the exactness of the SIR distributions derived
for stochastic geometries, which are further compared
with the corresponding distributions for deterministic grid
networks.

I. INTRODUCTION

A. Background

Base station (BS) coordination is regarded as an
effective approach to mitigate intercell interference [2]–
[4]. The idea is to allow multiple BSs to coordinate their
transmit/receive strategies (e.g., beamforming, power
control, and scheduling) by utilizing channel state infor-
mation (CSI). The performance would increase mono-
tonically with the number of coordinated BSs if such
CSI could be acquired at no cost and thus, ideally,
entire systems should be coordinated [5]–[9]. In practice
though, coordination of an entire (large) network is not
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only computationally unfeasible, but undesirable once
the ensuing overheads are taken into account [10]. A
central concept in the implementation of BS coordination
is then that of a cluster, defined as the set of BSs that a
given user coordinates with. From the vantage of a user
then, only those BSs outside the cluster are sources of
interference. Intuitively, a larger cluster reduces intercell
interference but it also increases the overheads required
to acquire the necessary CSI at the BSs. It follows that
determining the optimal cluster cardinality is a key step
to assess the true benefits of BS coordination. This paper
tackles such optimization for a particular coordination
strategy.

B. Related Work

In toy setups where all the BSs can participate in the
coordination, centralized schemes have been shown to
yield sum spectral efficiencies that increase unboundedly
with the transmit powers [5]–[8]. In large networks,
where the CSI-acquisition overheads and the channel un-
certainty caused by fading selectivity prevent large clus-
ter cardinalities, out-of-cluster interference is inevitable
and the spectral efficiency has been shown to be funda-
mentally bounded no matter how sophisticated the coop-
eration [9]–[13]. Nevertheless, small cooperation clusters
not incurring too much overhead do provide performance
improvements with respect to a noncooperative baseline.
Since, despite their regularity, deterministic grid models
are remarkably unfriendly to analysis, most of the results
for grid networks are simulation-based. Analytical results
are available only for the simplest embodiments thereof,
in particular for the so-called Wyner model where BSs
and mobile users are located along a one-dimensional
universe [13], [14].

Approaches based on stochastic geometry are rapidly
gaining momentum because of their superior analytical
tractability and because they happen to match well the
heterogeneous nature of emerging networks [15]. Within
this framework, the performance of BS coordination
schemes with fixed cluster structures established a-priori
has been studied [16]–[18], [21].

Dynamic BS clustering is a way of forming coopera-
tive BS sets such that users in a network select their own
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cooperation BSs based on users’ locations and channel
quality. Given the evidence (e.g., [19], [20], [23]) that
dynamic clusters based on user locations and channel
propagation features perform far better than their fixed
counterparts (i.e., static BS clustering), there is clear
interest in extending the existing stochastic geometry
analyses to such dynamic cooperation structures.

C. Contribution

We consider the downlink of a network whose topol-
ogy is modeled through stochastic geometry. BS lo-
cations are modeled as a homogeneous Poisson point
process (PPP) with the corresponding cells determined
from a tessellation of the plane into Voroni regions. Users
in each cell are randomly located and each one then
defines its own cluster, i.e., the set of BSs it coordinates
with, on the basis of such location. Under this dynamic
BS clustering policy, the set of users that share the same
BS cluster are served through coordinated beamforming,
a method that mitigates intra-cluster interference. Our
contribution is to characterize the performance of such
dynamic coordinated beamforming.

We derive analytical expressions for the signal-to-
interference ratio (SIR) distributions and the ergodic
spectral efficiency in terms of system parameters, chiefly
the path-loss exponent, the number of antennas per BS,
the cluster cardinality, and the pilot overhead. We obtain
these analytical results for users with specific in-cluster
relative locations and, by marginalizing over such loca-
tions, for the typical user. Utilizing this latter result, we
then characterize the benefits of coordination in terms of
the net ergodic spectral efficiency, incorporating the pilot
overheads required for coordinated beamforming. From
this, we obtain the optimal cluster cardinality for the
typical user. Our finding is that coordinated beamforming
is most beneficial to users that are in the outer part of
their cells yet in the inner part of their coordination
cluster, and that the optimal cluster cardinality for the
typical user is small and scales with the fading coherence
Through simulation, the accuracy of the derived SIR
distributions is verified.

The remainder of the paper is organized as follows.
Section II describes the proposed models as well as
the performance metrics for the considered coordinated
beamforming scheme. In Section III, analytical expres-
sions for the SIR distribution are derived for specific
relative in-cluster locations. The SIR distribution for the
typical user is derived in Section IV, and then utilized
in Section V to analyze the optimal cluster cardinality.
Section VI concludes the paper.
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Fig. 1. A snapshot of the proposed model for K = 2. A user connects
with its two nearest BSs while receiving interference from the rest.
The relative location of the first BS is determined by the parameter
�1 in our model.

II. MODELS AND METRICS

A. Network Model

We consider a cellular network consisting of BSs,
each equipped with Nt antennas. The locations of these
BS are established according to a homogeneous PPP,
� = {dk, k 2 N}, on the plane R2. This PPP has
density �. By tessellating the plane into Voronoi regions
around each BS, we can define cells in the traditional
manner. We further consider a population of single-
antenna users distributed according to another homoge-
neous PPP, �U = {uk, k 2 N}, which has density �U
and is independent of �.

B. Dynamic Clustering Model

Without loss of generality, we can order the BSs in in-
creasing distance from the user. The dynamic clustering
technique that we analyze relies on the policy of having
each user coordinate with the K closest BSs, where
K  N

t

is the cardinality of the coordination clusters
(cf. Fig. 1). For later use, we define �

1

= kd
1

k/kdKk
as the distance to the closest BS normalized by that to
the furthest in the cluster. Given that the user density is
much higher than the BS density, i.e., �U � �, with high
probability there shall be K users that choose to connect
with the same set of K BSs. (For scenarios of lower user
densities, �U ⇡ �, it is possible to consider user-centric
coordination strategies involving the K < N

t

nearest
BSs.)
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C. Signal Model
Under the premise of separate encoding at each BS,

the kth BS sends an information symbol sk (intended
for the kth user) through a linear beamforming vector
vk = [v1k, v

2

k, . . . , v
Nt

k ]

T with unit norm, kvkk2 = 1, k 2
{1, 2, . . . ,K}. Without loss of generality, let us focus on
a user located at the origin. The observation at this user
is

y
1

= kd
1

k��/2h
1,1v1

s
1

+

K
X

k=2

kdkk��/2h
1,kvksk

+

1
X

k=K+1

kdkk��/2h
1,kvksk + z

1

(1)

where h
1,k = [h1

1,k, h
2

1,k, . . . , h
Nt

1,k] 2 C1⇥Nt represents
the downlink channel between the kth BS and the
user, with entries that are independent and identically
distributed (IID) complex Gaussian random variables
having zero mean and unit variance, i.e., CN (0, 1).
The channels vary over time in an IID block-faded
fashion. Further, � represents the pathloss exponent and
z
1

denotes the additive Gaussian noise, z
1

⇠ CN (0,�2

).
The transmit power at each BS satisfies E

⇥

|sk|2
⇤

 P .
Each user learns the downlink channels from the K

BSs within its cluster by means of orthogonal pilot
symbols and then conveys this information back to the
BSs via error-free feedback links. From this CSI, the
coordinated beamforming scheme constructs the beam-
forming vectors vk, k 2 {1, . . . ,K}, that nullify intra-
cluster interference while maximizing the desired signal
strength for the K users in the cluster. Thus, the first BS
selects beamforming vector v

1

solving

maximize: |h
1,1v1

|2 (2)
subject to: hk,1v1

= 0 for k 2 {2, . . . ,K},
kv

1

k
2

= 1

which always exists when Nt � K. The corresponding
instantaneous SIR for the user at the origin is

SIR(K,N
t

,�) =
|h

1,1v1

|2kd
1

k��

IK
. (3)

where

IK =

1
X

k=K+1

|h
1,kvk|2kdkk�� (4)

is the aggregate out-of-cluster interference power. This
instantaneous SIR in (3) involves multiple levels of
randomness:

1) The randomness associated with the user location
relative to its serving BS; this is incorporated
through kd

1

k. Equivalently, and more conveniently

to the analysis that follows later, it can be incor-
porated through kdKk and �

1

=

kd1k
kd

K

k .
2) The randomness associated with the user location

relative to the interfering BSs; this is incorporated
through kdkk, k > K.

3) The randomness associated with the desired link
fading; this is incorporated through h

1,1.
4) The randomness associated with the interference

fading; this is incorporated through h
1,k, k > K.

D. Performance Metrics

The CCDF of the instantaneous SIR is characterized
at two different levels, with the absolute dimensions of
the network abstracted out.

1) Specific Relative Cluster Geometry: First, we char-
acterize the CCDF of the SIR for some given relative
distances {�

1

, . . . , �K}, but with the absolute distances
{d

1

, . . . , dK} and the out-of-cluster interference IK
marginalized over. Since the signals received from BSs
k = 2, . . . ,K do not contribute interference by virtue
of (2), it suffices to condition on �

1

and the ensuing
conditional CCDF is

F c

SIR|�1(K,N
t

,�, �
1

; �)=P [SIR(K,N
t

,�) � � |�
1

] (5)

=E
"

P
"

|h
1,1v1

|2 (�
1

kdKk)��

IK
�� | �

1

, kdKk, IK

#

|�
1

#

.

(6)

where the expectation over kdKk and IK , characterized
in Section III, effect the marginalization. This conditional
CCDF does not correspond to the distribution of the
SIR experience by any actual user in the system, but it
is representative of the average behavior in all possible
cluster geometries that share a particular �

1

, i.e., a partic-
ular relative location of the user within the cluster. This
SIR distribution should be interpreted carefully because
�
1

is dependent of the cluster cardinality K. Intuitively,
�
1

⌧ 1 represents geometries where the user is located
near the cluster center whereas �

1

⇡ 1 indicates that the
user is near the cluster edge.

2) Average Cluster Geometry: By further marginal-
izing over �

1

, we obtain the SIR distribution averaged
over all possible geometries, which is less informative
than the one in (6). In particular, this fully marginalized
distribution does not allow discriminating between situ-
ations that are either favorable or adverse to coordinated
beamforming, but it does serve as a stepping stone
towards the computation of average quantities. The fully
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marginalized CCDF of the SIR is

F c

SIR(K,N
t

,�; �) = P [SIR(K,N
t

,�) � �] (7)

=E
"

P
"

|h
1,1v1

|2 (�
1

kdKk)��

IK
�� |�

1

, kdKk, IK

##

.

(8)

where the expectation is now also over �
1

in addition
to kdKk and IK . This distribution will be used to
characterize the performance of the typical user in Secs.
IV and V.

III. SPECIFIC RELATIVE CLUSTER GEOMETRY

In this section, we characterize the conditional CCDF
in (6) in terms of K, N

t

and �.

A. General Characterization

We begin by providing a general characterization in
integral form.

Theorem 1. For a given �
1

,

F c

SIR|�1(K,N
t

,�, �
1

; �)

= E
"

Nt�K
X

m=0

r�m

m!

(�1)

m
d

mL
˜I
r

(s)

dsm

�

�

�

�

s=r�

#

(9)

where ˜Ir = ��
1

�
P1

k=K+1

Hkkdkk�� while L
˜I
r

(s) =

E
h

e�s˜I
r

i

denotes the Laplace transform of ˜Ir, which is
given in (53) in Appendix B, and the expectation is over
kdKk = r, distributed as per Lemma 3.

Proof. See Appendix A.

Although general and exact, the form given in The-
orem 1 is rather unwieldy, motivating the interest in
more compact characterizations. Still in full generality,
we next provide closed-form upper and lower bounds to
the distribution.

Theorem 2. For a given �
1

,

F c,L
SIR|�1(K,N

t

,�, �
1

; �)  F c

SIR|�1(K,N
t

,�, �
1

; �) (10)

F c

SIR|�1(K,N
t

,�, �
1

; �)  F c,U
SIR|�1(K,N

t

,�, �
1

; �) (11)

with

F c,U
SIR|�1(K,N

t

,�, �
1

; �) =

Nt�K+1

X

`=1

�

Nt�K+1

`

�

(�1)

`+1

h

1+D(`��
1

�,�)
iK

(12)

F c,L
SIR|�1(K,N

t

,�, �
1

; �) =

Nt�K+1

X

`=1

�

Nt�K+1

`

�

(�1)

`+1

h

1+D(`��
1

�,�)
iK

(13)

where  = (Nt �K + 1)!

�1
Nt�K+1 and

D(A,B) =

2A

B � 2

2

F
1

✓

1, 1� 2

B
, 2� 2

B
,�A

◆

(14)

with
2

F
1

(·) the Gauss hypergeometric function.

Proof. See Appendix B.

The upper and lower bounds coincide when N
t

= K,
implying that for this most important case we obtain the
exact CCDF.

Corollary 1. For a given �
1

and K = N
t

,

F c

SIR|�1(K,K,�, �
1

; �) =
1

h

1 +D(��
1

�,�)
iK

. (15)

B. Special Cases

To shed further light on the significance of the expres-
sions in Thm. 2 and Cor. 1, it is instructive to consider
certain special cases.

1) Noncoordinated Network: The most basic special
case is the one where there is no coordinated beam-
forming, i.e., where K = 1 (and �

1

= 1 with the
conditioning thereupon immaterial). By setting N

t

= 1

we then recover the CCDF of the SIR given in [15],
namely

F c

SIR(1, 1,�; �) =
1

1 +D(�,�)
(16)

which Thm. 2 therefore generalizes. For this special case,
the derived expressions are useful to characterize the
benefits of having N

t

antennas. As illustrated in Fig. 2,
the upper bound tightly matches the exact CCDF over
the entire range of SIRs of interest and for distinct values
of N

t

, i.e., F c,U
SIR (1, N

t

,�, 1; �) ' F c

SIR(1, Nt

,�, 1; �).
2) Coordinated Network with N

t

= K: With the
coordinated beamforming activated and N

t

= K, the
behavior is characterized by the simple expression in
Cor. 1. Particularized to � = 4, which is a standard value
in terrestrial outdoor wireless systems, D(·, ·) reduces to

D(⇠, 4) =
p

⇠ arccot

✓

1p
⇠

◆

(17)

which, plugged into (15), yields

F c

SIR|�1 (K,K, 4, �
1

; �) =
1

h

1 +

p
��2

1

arccot

⇣

1p
��21

⌘iK
.

(18)

This simple CCDF facilitates gauging different scenarios
as indicated earlier: �

1

⌧ 1 corresponds to users located
in the central part of the cluster while �

1

⇡ 1 corresponds
to users located near the cluster edge. Specifically, as
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Fig. 2. CCDF of the SIR for � = 4 and different numbers of transmit
antennas in the absence of coordinated beamforming.

TABLE I
ERGODIC SPECTRAL EFFICIENCY (BITS/S/HZ) OF COORDINATED

BEAMFORMING FOR Nt = K = 2, C(2, 2, 4, �1)

Relative location �1 �1 = 1
3 �1 = 1

2 �1 = 2
3

C(2, 2, 4, �1) 5.377 3.3361 2.1318

illustrated in Fig 3, when K = Nt = 2 and � = 4, a user
with �

1

= 0.5 (in red) has a better SIR distribution (and
thus higher benefits from coordinated beamforming) than
a user with �

1

= 0.8 (in blue). A similar observation can
be made for �

1

= 1/4 and �
1

= 1/3 when K = Nt =

� = 4.
The following example further illustrates benefits of

coordinated beamforming in terms of ergodic spectral
efficiency for different relative locations, �

1

.

Example 1: For N
t

= K = 2 and � = 4, the ergodic
spectral efficiency (in bits/s/Hz) is

C(2, 2, 4, �
1

)=

Z 1

0

log

2

(1+�) dF
SIR|�1(2, 2, 4, �1) (19)

=

Z 1

0

log

2

e

(1 + �)
F c

SIR|�1(2, 2, 4, �1) (20)

=

Z 1

0

log

2

e

(1 + �)
⇥

1+

p
��2

1

arccot

�

1/
p
��2

1

�⇤

2

d� (21)

where in (20) integration by parts was applied. The
values for different relative locations �

1

, listed in Table
I, reveal that the most substantial gains of coordinated
beamforming are obtained for small �

1

, which corre-
sponds to cluster-center areas. This is because cluster-
edge users remain subject to strong interference from
out-of-cluster BSs.
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Fig. 3. Conditional CCDF of the SIR for � = 4 and K = Nt 2
{2, 4}.

IV. AVERAGE CLUSTER GEOMETRY

This section is devoted to the characterization of the
CCDF in (8). Specifically, tight lower and upper bounds
are derived as a function of K, N

t

and �.

A. Upper and Lower Bounds

The following Lemma provides the probability density
function (PDF) of �

1

=

kd1k
kd

K

k induced by the underlying
PPP.

Lemma 1 (PPP distance ratio). Let kd
1

k and kdKk
denote the distances from the origin to the first and the
Kth BSs. The PDF of �

1

=

kd1k
kd

K

k is given by

f�1(x) = 2(K � 1)x(1� x2)K�2 for 0  x  1.
(22)

Proof. See Appendix C.

Applying the above lemma to (12) and (13) we can
readily write

F c,U
SIR (K,N

t

,�; �)

=

Nt�K+1

X

`=1

✓

Nt�K+1

`

◆

(�1)`+1
Z

1

0

f�1(x)

[1+D(`x��,�)]
K
dx

(23)

F c,L
SIR (K,N

t

,�; �)

=

Nt�K+1

X

`=1

✓

Nt�K+1

`

◆

(�1)`+1
Z

1

0

f�1(x)

[1+D(`x��,�)]
K
dx

(24)

for which analytical approximations are derived next.
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Fig. 4. CCDF of the SIR for different cluster cardinalities with � = 4
and Nt = K.

B. Bound Approximations

As shown in App. D, the integrals within (23) and
(24) satisfy
Z

1

0

2(K � 1)u(1� u2)K�2

[1 +D(�̃u� ,�)]
K

du ' 1

1 +

�̃2/�
p
K
A
⇣p

K
�̃2/�

⌘

(25)

where �̃ = `� and A (y) =

R1
y

1

1+v
�

2

dv. From (25),
the bounds to the unconditioned CCDF of the SIR in
turn satisfy

F c,U
SIR (K,N

t

,�; �) '
Nt�K+1

X

`=1

�

Nt�K+1

`

�

(�1)

`+1

1 +

(`�)2/�p
K

A
⇣ p

K
(`�)2/�

⌘

(26)

F c,L
SIR (K,N

t

,�; �) '
Nt�K+1

X

`=1

�

Nt�K+1

`

�

(�1)

`+1

1 +

(`�)2/�p
K

A
⇣ p

K
(`�)2/�

⌘

(27)

which, for the most relevant case where � = 4 and N
t

=

K, coincide yielding

F c

SIR(K,K, 4; �) ' 1

1 +

p

�
K arccot

⇣q

K
�

⌘ . (28)

The simple expression in (28) clearly shows how coordi-
nation with the K nearest BSs improves the CCDF of the
SIR with K because arccot(x) is a decreasing function
of x. Furthermore, this approximation recovers the exact
CCDF of the SIR for K = 1.

To validate (26) and (27), we compare them with
simulation results in Fig. 4. The agreement is excellent

for the various values of K considered and the entire
range of SIRs of interest. As K increases, the SIR
improves because the out-of-cluster interference abates,
but that would come at the expense of further overheads.
This motivates the optimization of K with the overhead
incorporated, a problem that is tackled in Section V.

C. Low-SIR Analysis

To wrap up our characterization of the SIR distribution
under coordinated beamforming, we specialize it to the
low-SIR regime, which is of particular relevance for
the purposes of establishing communication outages in
quasi-static communication settings [30].

Proposition 1. The unconditioned CCDF of the SIR for
K = N

t

expands as

F c

SIR(K,K,�; �)=1�K(K�1)

��2

�

⇣

�
2

+1

⌘

� (K�1)

�

⇣

�
2

+K
⌘ �

+ o(�) (29)

Proof. See Appendix E.

For � = 4, the expansion in (29) further simplifies
into

F c

SIR(K,K,�; �) = 1� �

K + 1

+ o(�) (30)

which evidences that, by allowing coordinated beam-
forming from the K nearest BSs, the outage probability
in a quasi-static setting would decrease linearly with K.

V. OPTIMAL CLUSTER CARDINALITY

Having characterized the SIR distributions of a user
at a specific relative location and of the typical user, in
this section we establish the corresponding optimal (in
terms of ergodic spectral efficiency) cluster cardinalities.
To compute the effective ergodic spectral efficiency, we
incorporate pilot overheads into the formulation so as to
account for the cost of acquiring the CSI required for
the coordinated beamforming.

Although we have ignored background noise in the
analysis of SIR distributions, we take it into account
for the purpose of pilot transmissions with out-of-cluster
interference, as these take place in an orthogonal fashion
among users within a cluster. For a given fading coher-
ence Lb (in symbols), the pilot overhead is

↵ =

L
p

(K,Nt,SINR)
Lb

, (31)

where L
p

(K,Nt,SINR) denotes the number of sym-
bols reserved for pilots. This number varies with K
and Nt, and also with the pilot-transmission SINR.
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We henceforth model the number of pilot symbols as
L
p

(K,Nt,SINR) = ⌘KNt where ⌘ � 1 is an SINR-
dependent parameter that signifies the number of pilots
per transmit antenna and fading coherence interval; the
value of ⌘ approaches 1 for SINR ! 1 [29].

With the SIR distributions obtained in Secs. III and
IV, we compute the optimal K for different situations.

A. Optimal Cluster Cardinality for a Specific Relative
Cluster Geometry

Assuming that perfect CSI is gathered from the pi-
lot observations at the receiver and complex Gaussian
codebooks are used, the ergodic spectral efficiency (in
bits/s/Hz) for a specific relative cluster geometry is

C(K,N
t

,�, �
1

,↵)

= (1� ↵)

Z 1

0

log

2

(1 + �) dF
SIR|�1(K,N

t

,�, �
1

; �)

= (1� ↵)

Z 1

0

F c

SIR|�1(K,N
t

,�, �
1

; �)

(1 + �) loge 2
d� (32)

from which the cluster cardinality K? that optimizes
the effective spectral efficiency for a specific relative
cluster geometry is obtained as the solution of the integer
optimization

K?
(�

1

) = max

K2{1,2,...,Nt}
C(K,N

t

,�, �
1

,↵) (33)

which can be obtained by means of a numerical line
search technique. Notice that, under the relative cluster
geometry characterization, K? is solely a function of
�
1

=

kd1k
kd

K

k . Thus, if the serving BS distance is fixed to
kd

1

k, �
1

decreases as K (and thus kdKk) increases.
Fig. 5 shows the effective ergodic spectral efficiency

for �
1

=

n

q

0.1
K ,
q

0.3
K ,
q

0.5
K

o

with parameters L
b

/⌘ =

200, � = 4, and N
t

= K. As shown in this figure, K?

increases with �
1

because cluster-edge users benefit the
most from a cluster enlargement—even if their spectral
efficiencies remain lower.

B. Optimal Cluster Cardinality for an Average Cluster
Geometry

The effective spectral efficiency averaged over �
1

is

C(K,N
t

,�,↵)=(1�↵)

Z 1

0

log

2

e

(1 + �)
F c

SIR

(K,N
t

,�; �) d�

(34)

from which the optimal cluster cardinality K? for an
average cluster geometry is obtained as the solution of
the integer optimization

K?
= max

K2{1,2,...,Nt}
C(K,N

t

,�,↵) (35)
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Fig. 5. Ergodic spectral efficiency as a function of K with a fixed
channel coherence parameter Lb

⌘ = 200.
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Fig. 6. Ergodic spectral efficiency as a function of K for different
channel coherence parameters, Lb

⌘ 2 {20, 50, 100, 200}.

whose solution can be obtained by a numerical line
search technique.

Fig. 6 depicts the effective spectral efficiency as a
function of K for different ratios L

b

/⌘, with � = 4 and
N

t

= K. Notice how the optimum cluster cardinality
increases with the channel coherence relative to the
pilot cost, ranging from K?

= 2 when L
b

/⌘ = 20 to
K?

= 5 when L
b

/⌘ = 200. For N
t

= K = 4, the
effective average spectral efficiencies for different fading
coherences are summarized in Table II.

The optimal cluster cardinality with a short fading
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TABLE II
EFFECTIVE AVERAGE SPECTRAL EFFICIENCY (BITS/S/HZ) OF COORDINATED BEAMFORMING FOR Nt = 4

Cluster Cardinality K 1 2 (Gain w.r.t. K = 1) 3 (Gain w.r.t. K = 1) 4 (Gain w.r.t. K = 1)
No pilot overhead (↵ = 0) 3.968 5.018 (26.4%) 4.249 (7.1%) 3.517 (-11.4%)
Lb/⌘ = 200

�
↵ = KNt

200

�
3.889 4.817 (23.8%) 3.994 (2.7%) 3.236 (-16.8%)

Lb/⌘ = 20
�
↵ = KNt

20

�
3.174 3.011 (-5.2%) 1.699 (-46%) 0.703 (-78.1%)

coherence (L
b

/⌘ = 20) is K?
= 1, implying that the

cost of the coordination is in this case higher than the
return. On the other hand, for a relatively long coherence
(L

b

/⌘ = 200) the optimal cluster cardinality is K?
= 2

with a 23.8% gain in average spectral efficiency relative
to the K = 1 baseline.

VI. COMPARISONS

In this section, we compare the SIR distributions
derived under our stochastic geometry model with the
corresponding results—obtained through simulation—
for a deterministic grid model. Since grid and PPP
stochastic geometry models correspond to optimistic and
pessimistic scenarios of real BS deployments as argued
in [15], this comparison can be seen to convey upper
and lower bounds to the actual benefits of dynamic
coordinated beamforming.

In a deterministic square network, the BSs are ar-
ranged into a periodic square lattice on R2. For simula-
tion purposes (cf. Fig. 7), we consider 36 BSs located
at regular grid points and drop a user uniformly within
the square highlighted in blue. Since we are considering
dynamic clustering, in each realization the user selects
its K nearest BSs for coordination and the rest of the
BSs constitute sources of interference. Without loss of
generality, we can again index the BSs in increasing
distance from the user and express the SIR as

SIRgrid =

H
1

kd
1

k��

P

36

k=K+1

Hkkdkk��
(36)

where Hk and kdkk denote fading coefficient and dis-
tance from the kth nearest BS to the user, respectively.
In particular, H

1

has a Chi-squared distribution with
N

t

�K + 1 degrees of freedom. Meanwhile, the fading
of all the interfering links, {HK+1

, HK+2

, . . . , H
36

}, are
exponential with unit mean. Then, the CCDF of the SIR
is

F c

SIRgrid
(K,N

t

,�; �)=E [P [SIRgrid>� |kd
1

k, {kdkk, Hk}]] ,

where the expectation is over kd
1

k and {kdkk, Hk} for
k 2 {K + 1, . . . , 36}.

Fig. 8 shows the CCDFs for the two different models.
As one would expect, the CCDF of the SIR in the de-
terministic grid model is somewhat more favorable than

−1000 −500 0 500 1000 1500

−1000

−500

0

500

1000

1500

 

 

BS 1

BS 2

User

Fig. 7. A snapshot of the grid model for K = 2. A user is uniformly
located within the square region highlighted in blue, and it selects its
two nearest BSs for coordination. In this snapshot, these BSs are the
ones located at (0, 0) and (0, 500).

in the stochastic geometry model because, under PPP,
the nearest interferer’s location can be arbitrarily close
to the in-cluster BSs. Nevertheless, the shapes of the
CCDFs in the two models are analogous, which allows
us to anticipate the gains by coordinated beamforming
in actual deployments.

VII. CONCLUSION

In this paper, we have characterized the performance
of coordinated beamforming with dynamic BS clusters.
Capitalizing on the tools of stochastic geometry, we
have derived SIR distributions in terms of the number
of BSs per cluster, the number of antennas per BS and
the pathloss exponent. From these distributions, we have
obtained analytical expressions for the effective ergodic
spectral efficiency and optimized the cluster cardinality
as function of the fading coherence. Our key finding is
that coordinated beamforming is most beneficial to users
in the inner part of the coordination clusters as opposed
to users near the edges, where the mitigation of in-cluster
interference makes less of a difference because of the
strong out-of cluster interference component. Further, we
have found that the optimal cluster cardinality for the
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Fig. 8. CCDF of the SIR with coordinated beamforming for both
the stochastic and the deterministic grid models, with � = 4.

typical user is small and that it scales with the fading
coherence.

APPENDIX A
PROOF OF THEOREM 1

The proof relies on two Lemmas, reproduced next for
the sake of completeness.

Lemma 2. [Fading distribution] The fading distribution
of the desired link of a given user, H

1

= |h
1,1v1

|2, is
chi-squared with 2(N

t

�K+1) degrees of freedom while
the fading distributions for the out-of-cluster interference
links, Hk = |h

1,kvk|2 for k 2 {K + 1,K + 2, . . .},
are exponential with unit-mean. Furthermore, all fading
terms Hk for k 2 {1,K+1,K+2 . . .} are mutually
independent.

Proof. See [26, Appendix A].

Lemma 3. [PPP distance distribution] Given a PPP
in R2 with intensity �, the distribution of the distance
kdKk between a typical user and its Kth serving BS is
the generalized Gamma distribution

fkd
K

k(r) =
2(�⇡r2)K

r�(K)

e��⇡r2 (37)

where �(K) =

R1
0

e�xxK�1

dx is the Gamma function.

Proof. See [24].

Let us denote by

Ir =
X

d
k

2�/B(0,r)

Hkkdkk�� (38)

the aggregate interference power from all the out-of-
cluster BSs, conditioned on the Kth in-cluster BS loca-
tion satisfying kdKk = r where B(0, r) denotes a circle
centered at the origin with radius r. Then, the conditional
CCDF of the SIR is given by

F c

SIR|�1(K,N
t

,�, �
1

; �)

= E
"

P
"

�

H
1

�
1

��
�

r��

Ir
� � | �

1

, kdKk = r

#

| �
1

#

(39)

= E
h

P
h

H
1

� ��
1

r��Ir | �1, kdKk = r
i

| �
1

i

(40)

= E
h

P
h

H
1

� r� ˜Ir | �1, kdKk = r
i

| �
1

i

(41)

where ˜Ir = ��
1

�Ir and the expectation is over the
distribution of r. From Lemma 2, since H

1

= |h
1,1v1

|2
is chi-squared with N

t

�K +1 degrees of freedom, we
obtain

F c

SIR

(K,N
t

,�, �
1

; �)

= E
"

E
"

Nt�K
X

m=0

r�m

m!

˜Imr e�r� ˜I
r | �

1

, kdKk = r

#

| �
1

#

(42)

where the inner expectation is over the distribution of ˜Ir.
From the derivative property of the Laplace transform,
which is E

⇥

Xme�sX
⇤

= (�1)

m d

mL
X

(s)
dsm , we finally

obtain

F c

SIR

(K,N
t

,�, �
1

; �)

= E
"

Nt�K
X

m=0

r�m

m!

(�1)

m
d

mL
˜I
r

(s)

dsm

�

�

�

�

s=r�

#

(43)

which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

To prove this result, the following lemma is needed.

Lemma 4. [Alzer’s Inequalty [27], [28]] If H
1

is chi-
squared with 2M degrees of freedom, then the CDF
FH1

(�) = P[H
1

< �] is upper and lower bounded by
�

1� e��
�M  FH1

(�) 
�

1� e��
�M (44)

where FH1
(�) =

R �
0

e�xxM�1

(M�1)!

dx and  = (M !)

� 1
M .

Strict equalities hold when M = 1, i.e., when H
1

is
an exponential random variable with mean one.

Now we are ready to prove Theorem 2. We focus on
proving the upper bound therein because the lower bound
is directly obtained from the former by setting  = 1.
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Conditioned on the Kth BS being located at distance
r from the user, the conditional CCDF of the SIR can
be written as

P
"

�

H
1

�
1

��
�

r��

Ir
� � | �

1

, kdKk = r

#

= P
h

H
1

� ��
1

r��Ir | �1, kdKk = r
i

. (45)

Applying Lemma 4 and the binomial expansion,

P[H
1

> x]  1�
�

1� e�x
�Nt�K+1

=

Nt�K+1

X

`=1

✓

N
t

�K + 1

`

◆

(�1)

`+1e�x` (46)

from which the conditional CCDF of the SIR in (45) is
upper bounded as

P
h

H
1

� ��
1

r��Ir | �1, kdKk=r
i


Nt�K+1

X

`=1

✓

N
t

�K+1

`

◆

(�1) +̀1E
h

e�`�
�

1 r
��I

r |�
1

, kdKk=r
i

(47)

where the expectation is over the distribution of Ir.
Letting N

t

� K + 1 = M and unconditioning with
respect to the location of the Kth BS,

F c

SIR(K,N
t

,�, �
1

; �)

= E [P[SIR(K,N
t

,�, �
1

) > � | �
1

, kdKk = r] | �
1

]


M
X

`=1

✓

M

`

◆

(�1) +̀1E
h

E
h

e�`��1 r
��I

r | �
1

kdKk = r
i

|�
1

i

(48)

with inner and outer expectations over the distributions
of Ir and r, respectively. To evaluate these expectations,
we first compute the conditional Laplace transform of
Ir. Conditioned on kdKk = r, such Laplace transform
is

LI
r

(s)= E
⇥

e�sI
r | kdKk = r

⇤

(49)

= E
h

e�s
P

d

k

2�/B(0,r) Hk

kd
k

k��

| kdKk = r
i

(50)

= E

2

4

Y

d
k

2�/B(0,r)

e�sH
k

kd
k

k�� | kdKk = r

3

5 (51)

= E

2

4

Y

d
k

2�/B(0,r)

1

1 + skdkk��
| kdKk = r

3

5 (52)

= exp

✓

�2⇡�

Z 1

r

u

1 + s�1u�
du

◆

(53)

where (51) follows from the independence of dk and
Hk, (52) holds because Hk is exponentially distributed
and unit mean for k 2 {K + 1,K + 2, . . .}, and (53)

follows from the probability generating functional of the
PPP. Evaluating this conditional Laplace transform at
s = `��

1

�r� ,

LI
r

(`��
1

�r�)

= exp

 

�2⇡�

Z 1

r

u

1 + (`��
1

�)�1

�

u
r

��
du

!

=exp

 

�⇡�r2(`��
1

�)2/�
Z 1

(`�1�)
�2
�

1

1 + v�/2
dv

!

(54)

= exp

⇣

�⇡�r2D(`��
1

�,�)
⌘

(55)

where (54) follows from the variable change

v =

✓

1

`�
1

�1/�

◆

µ

r

�

2

(56)

while (55) holds because

D(`��
1

�,�) = (`��
1

�)2/�
Z 1

(`��1 �)
�2/�

1

1 + v�/2
dv

=

2`��
1

�

� � 2

2

F
1

✓

1,
� � 2

�
, 2� 2

�
,�`��

1

�

◆

.

To uncondition the foregoing Laplace transform, we
marginalize it with respect to r using the distribution
in Lemma 3. With that, the Laplace transform of the
aggregate out-of-cluster interference power emerges as

E
h

LI(`�
�
1

�r�)
i

=

Z

r>0

exp

⇣

�⇡�r2D(`��
1

�,�)
⌘

2(�⇡r2)K

r�(K)

e��⇡r2
dr

(57)

=

Z 1

0

e�x

 

x

⇡�[1 +D(`��
1

�,�)]

!K�1

⇥ 2(⇡�)K

�(K)[1 +D(`��
1

�,�)]2⇡�
dx (58)

=

"

1

1 +D(`��
1

�,�)

#K

(59)

where (58) follows from the variable change

x = ⇡�[1 +D(`��
1

�,�)]r2 (60)

whereas (59) follows from the definition of the Gamma
function. By plugging (59) into (48), we finally obtain

F c

SIR(K,N
t

,�, �
1

; �)
Nt�K+1

X

`=1

�

Nt�K+1

`

�

(�1)

`+1

h

1 +D(`��
1

�,�)
iK

(61)

and, by setting  = 1, we further have the lower bound
in (13), which completes the proof.
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APPENDIX C
PROOF OF LEMMA 1

We start by computing the joint PDF of kd
1

k
and kdKk. Consider the four nonoverlapping areas
A

1

= B(0, r
1

), A
2

= B(0, r
1

+ dr
1

)/B(0, r
1

),
A

3

= B(0, rK)/B(0, r
1

+ dr
1

), and A
4

= B(0, rK +

drK)/B(0, rK). By definition of the PPP, the joint prob-
ability that kd

1

k and kdKk belong to the two (thin ring)
areas A

2

and A
4

, respectively, is given by the product
of the four independent probability events as

P [kd
1

k 2 A
2

, kdKk 2 A
4

]=

⇢

P
1

P
2

P
3

P
4

if r
1

 rK
0 otherwise

(62)

where

P
1

= P[No points in A
1

] = e��⇡r21

P
2

= P[One point in A
2

] = �⇡2r
1

dr
1

e��⇡2r1dr1

P
3

= P[K�2 points in A
3

]

=

(�⇡)K�2

(K � 2)!

⇥

r2K � (r
1

+dr
1

)

2

⇤K�2
e��⇡2[r

2
K

�(r1+dr1)2]

P
4

= P[One point in A
4

] = �⇡2rKdrKe��⇡2r
K

dr
K .

From the limits of the joint probability in (62), the joint
PDF of kd

1

k and kdKk emerges as

fkd1k,kdK

k(r1, rK) = lim

dr1,drK!0

P [kd
1

k 2 A
2

, kdKk 2 A
4

]

dr
1

drK

=

(

4(�⇡)K

(K�2)!

r
1

rK
�

r2K � r2
1

�K�2

e��⇡r2
K if r

1

 rK
0 otherwise

Utilizing the joint PDF of kd
1

k and kdKk, we derive the
CDF of �

1

=

kd1k
kd

K

k as

P[�
1

 x] = P


kd
1

k
kdKk  x

�

(63)

= P [kd
1

k  xkdKk] (64)

=

Z 1

0

Z xr
K

0

fkd1k,kdK

k(r1, rK)dr
1

drK

(65)

=

Z 1

0

Z xr
K

0

4(�⇡)K

(K � 2)!

r
1

rK
�

r2K � r2
1

�K�2

e��⇡r2
K

dr
1

drK

= 1� (1� x2)K�1 (66)

where 0  x  1. Therefore, the PDF of �
1

is given by

f�1(x) =
dP[�

1

 x]

dx
(67)

= 2(K � 1)x(1� x2)K�2. (68)

APPENDIX D
PROOF OF EQ. (25)

Recall that

D(�̃��
1

,�) = �̃2/��2
1

Z 1

1/(�̃2/��21)

1

1 + v
�

2

dv. (69)

where �
1

is distributed as per Lemma 1. We approximate
the integral above as a constant value that captures the
effect of the randomness induced by �

1

,

E
"

Z 1

1/(�̃2/��21)

1

1 + v
�

2

dv

#

' 1p
K

A
 p

K

�̃2/�

!

(70)

where the expectation is over �
1

. From (70),

D(�̃��
1

,�) ' �̃2/��2
1p

K
A
 p

K

�̃2/�

!

. (71)

Plugging (71) into the left side of (25) and marginalizing
with respect to �

1

,
Z

1

0

2(K � 1)x(1� x2)K�2

[1 +D(�̃x� ,�)]
K

dx

'
Z

1

0

2(K � 1)x(1� x2)K�2

h

1 +

�̃2/�
p
K
A
⇣p

K
�̃2/�

⌘

x2
iK

dx (72)

=

1

1 +

�̃2/�
p
K
A
⇣p

K
�̃2/�

⌘ . (73)

APPENDIX E
PROOF OF PROPOSITION 1

Recall that the upper bound in Thm. 2 is exact for
K = N

t

. The outage probability P
out

(K,K,�, �
1

; �) =
1� F c

SIR

(K,K,�, �
1

; �) expands at � = 0 as

P
out

(K,K,�, �
1

; �) = 1� F c

SIR

(K,K,�, �
1

; �) (74)

= 1� 1

⇣

1 +

��1 �
��2

⌘K
+ o(�)2 (75)

= 1�
 

1� K��
1

�

� � 2

!

+ o(�)2

(76)

where we have invoked the series expansion of the Gauss
hypergeometric function at � = 0,

D(��
1

�,�) =
��
1

�

� � 2

+ o(�)2 (77)

as well as
1

(1 + x)K
= 1�Kx+ o(x)2. (78)
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By dropping the second order error term and marginal-
izing with respect to �

1

, we obtain the average outage
probability

1� F c

SIR(K,K,�; �)

=

KE
h

��
1

i

�

� � 2 + o(�)
(79)

=

K�
R

1

0

��
1

f�1(x)dx

� � 2

+ o(�) (80)

=

2K(K � 1)�
R

1

0

x�+1

(1� x2)K�2

dx

� � 2

+ o(�) (81)

=

K(K � 1)

� � 2

�

⇣

�
2

+ 1

⌘

� (K � 1)

�

⇣

�
2

+K
⌘ � + o(�) (82)

which completes the proof.
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