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Abstract

The small carrier wavelength at millimeter-wave (mm-Wave) frequencies enables the implementation

of a large number of co-located antennas. This paper exploits the potential of large antenna arrays at these

frequencies to develop a low-complexity directional modulation technique: Antenna Subset Modulation

(ASM) for point-to-point secure wireless communication. The main idea in ASM is to communicate

information by modulating the far-field radiation pattern at the symbol rate by driving only a subset

of antennas in the array. Two techniques for implementing antenna subset selection are proposed. The

first technique is simple where the antenna subset to be used is selected at random for every symbol

transmission. While randomly switching antenna subsets does not affect the symbol modulation for a

desired receiver along the main lobe direction, it effectively randomizes the amplitude and phase of the

received symbol for an eavesdropper along a sidelobe. Using a simplified statistical model for random

antenna subset selection, an expression for the average uncoded symbol error rate (SER) is derived

as a function of observation angle for linear arrays. To overcome the problem of large peak sidelobe

level in random antenna subset switching, an optimized antenna subset selection procedure based on

simulated annealing is then discussed. Finally, numerical results comparing the SER performance and

secrecy capacity of the proposed techniques against conventional array transmission are presented. While

both methods produce a narrower information beam-width in the desired direction, the optimized antenna

subset selection technique is shown to offer better security and array performance.
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I. INTRODUCTION

Recent advances in storage technology and computing power have lead to an increasing demand

for high-fidelity digital multimedia content. While current wireline communication standards based on

fiber-optic technology can provide data rates at multi-gigabits per second to meet this demand, high

infrastructure, installation and maintenance costs prohibit their use in many applications. Using wireless

technology as an alternative solution is very attractive mainly because of its low-cost, inherently flexible

and scalable nature. However, contemporary wireless systems cannot accommodate services at multi-

gigabit rates due to the scarcity of spectrum at conventional operating frequencies (< 3 GHz). This has

motivated wireless system designers to explore the millimeter-wave (mm-Wave) frequency band, the the

radio spectrum between 30 and 300 GHz. The huge swath of spectrum available at mm-Wave can support

high-rate point-to-point wireless communication thereby enabling new broadband applications such as

uncompressed HD video streaming, high-speed file transfer, console gaming, fixed wireless access, cellular

distributed antenna systems and wireless backhaul for next-generation mobile communications [1], [2].

In view of this, several standards and organizations are promoting the use of mm-Wave for wireless

personal area networking, local area networking and millimeter-wave mobile broadband [3]–[8].

Enabling mm-Wave radio frequency (RF) technology for large-scale consumer electronics and com-

mercial applications will require the development of power-efficient radios. While standard wireless

transceivers for sub-GHz frequencies are based on digital baseband modulation, pushing mm-Wave

radios towards a “mostly analog” architecture is essential to reduce the power consumption of baseband

circuitry [9], [10]. Another important area of concern for mm-Wave communication is information

security. Especially with mm-Wave replacing many previously wireline communication applications such

as enterprise networking and inter-base station backhaul, wireless systems in this band should start

considering physical (PHY) layer security as a primary system requirement. In particular, point-to-point

long-range mm-Wave links operating outside the 60 GHz band are more vulnerable to data interception

because of the lower air absorption loss (< 1 dB/km) [11]. Since a conventional phased array transmits

the same information in all directions (except for varying power levels), it is possible for a sufficiently

sensitive receiver to recover information from the modulated signal.

To improve the security of information transmission, directional modulation (DM) techniques have

been considered in the past. Previous work in [12], [13] introduced a novel analog transmit architecture

for synthesizing directional information based on near-field direct antenna modulation (NFDAM). In this

approach, there is no digital baseband and data modulation happens at the antenna level. Specifically, an
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unmodulated carrier signal drives a single antenna element (or a phased array) with multiple reflectors

and switches. By varying the antenna near-field electromagnetic boundary conditions using switches, the

phase and amplitude of the antenna pattern at far-field is modulated. While carefully chosen switching

configurations produce the desired modulation symbols along an intended direction, the nature of the

resulting antenna pattern causes the constellation to appear scrambled in undesired directions. We note

that, except for [12], [13], much of the prior work on DM techniques [14]–[20] has dealt with sub-GHz

communications where small antenna arrays were employed. Recent work in [14]–[16] demonstrates a

DM technique for phased array transmitters. By modifying the phase shifts or array weights in each

antenna branch, a symbol with desired phase and amplitude can be created along a particular direction,

while at the same time purposely distorting the constellation in other directions. A closely related DM

signal synthesis technique using pattern-reconfigurable antenna elements was presented in [17]. In [18],

hopping among the antenna elements in an array produces a directional frequency/phase modulated signal.

DM for spread spectrum communication have been introduced in [19] and [20]. In these methods, the

DM signal is modulated at both baseband and antenna level. While [19] proposes a dual beam technique

to create a modulated signal using two different radiation patterns, [20] relies on switching antennas

based on the chipping sequence.

The design of DM techniques specific to mm-Wave communication can be challenging for two reasons.

First, since the carrier wavelength is small, a large number of antennas can be co-located which increases

the design space. Exploring a larger design space to find the parameters (like switch combinations in

[12], [13], phase shifts in [14] or array weights in [15]) that produce a desired constellation along an

intended direction while still enforcing a high error rate in other directions can be difficult. For instance,

the number of switch configurations to be explored for producing a desired symbol along a particular

direction increases exponentially with array size in [12]. Second, the transmission technique must be able

to steer the main beam to a desired direction while still offering directional data modulation. Prior work in

[14], [15], [18], [20] do not account for beam-steering since they focus on low frequency communications

where it may not be a requirement. The DM technique in [12] can steer the beam to an arbitrary direction

in a phased array configuration, but constellation synthesis involves search over a very large design space

which may not be practical. [17] has only restricted beam-steering capabilities and requires a separate

design procedure for every possible receiver orientation.

In this paper, we propose a low-complexity directional modulation technique - Antenna Subset Modulation

(ASM), for point-to-point secure communication. We introduce ASM as an antenna-level modulation

technique that eliminates conventional baseband circuitry and takes advantage of the full antenna array
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with limited number of RF chains. By providing a simple inter-element phase shift and driving a

different subset of antennas in each symbol interval, we show that it is possible to create a direction-

dependent modulated signal. Compared to other DM techniques [12]–[15], [17], [19] which scramble the

constellation in undesired transmission directions, we find that ASM artificially introduces randomness

in the received constellation by antenna subset selection to provide security.

We propose two antenna subset selection techniques to implement ASM in uniform linear arrays. In

the first technique, antenna subsets used for transmission are selected at random. We capture this subset

selection procedure using a simplified statistical model and show that the received symbol distribution in

undesired transmit directions can be closely approximated by a Gaussian distribution. Equipped with the

statistics of the received symbol distribution, we evaluate the average uncoded symbol error rate (SER)

achieved by ASM for K-ary PSK transmission. To overcome the large peak sidelobe level that may result

from random antenna selection, we then propose an optimized antenna subset selection procedure based on

simulated annealing. In this technique, we only choose antenna subsets that have good sidelobe properties

from a carefully constructed codebook. We perform array transmission simulations and make the following

observations: (i) ASM produces a narrow information beam-width towards the desired receiver, (ii) simple

random antenna subset selection approach provides better security against eavesdropping compared to

conventional array transmission, (iii) optimized antenna subset selection procedure offers the best array

and security performance, (iv) ASM maintains a relatively high SER independent of signal-to-noise ratio

(SNR) along undesired directions, and (v) ASM achieves better secrecy capacity compared to conventional

array transmission over a wide range of angles and SNR.

The key idea to providing secure data transmission in ASM lies in using the large number of degrees

of freedom offered by antenna arrays at mm-Wave frequencies. It worth noting that an ASM transmitter

provides security benefits while maintaining desirable properties such as fully analog transmit architecture,

beam-steering to an arbitrary direction, narrow information beam-width and a simple constellation design

procedure.

Organization: The remainder of this paper is organized as follows. In Section II, we introduce the

system model and explain the concept of ASM. Then in Section III, we discuss the constellation synthesis

procedure for ASM. In Sections IV and V, we propose two antenna subset selection techniques for

implementing ASM. In Section VI, we provide simulation results comparing the security and array

performance of ASM against conventional array transmission. Finally in Section VII, we draw some

conclusions and point out some topics of future work.

Notation: We use the following notation throughout this paper: bold lowercase a is used to denote
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column vectors, bold uppercase A is used to denote matrices, non-bold letters a,A are used to denote

scalar values and calligraphic letter A is used to denote sets. |A| denotes the cardinality of a set A. Using

this notation, |a| is the magnitude of a scalar, a∗ is the complex conjugate, aT is the vector transpose, aH

is the vector conjugate transpose or Hermitian, ak is the kth entry of vector a, [A]i,j is the scalar entry

of A in the ith row and jth column, A−1 denotes the inverse of a square matrix, |A| is the determinant

of a square matrix and IN denotes an identity matrix of size N × N . a ◦ b indicates a Hadamard

product or entrywise product of two vectors a and b of same dimension. We use the notation N (µ,P)

to denote a real Gaussian random vector with mean µ and covariance P, CN (µ, P ) to denote a complex

Gaussian distribution with mean µ and variance P , Bern(p) to denote a Bernoulli random variable with

parameter p and U(.) to denote a discrete uniform distribution. We use P to denote probability, E[.] to

denote expectation, var[.] to denote variance and ⊥⊥ to denote statistical independence between random

variables. <[.] and =[.] denote the real and imaginary parts,
(
N
M

)
denotes the binomial co-efficient, and

, denotes definition.

II. PRINCIPLE OF ANTENNA SUBSET MODULATION

In this section, we first present the system model considered in this paper. Next, we review conventional

array transmission architecture and explain its vulnerability to eavesdropping. Finally, we illustrate the

basic principle behind ASM and describe how it achieves direction-dependent data transmission.

A. System Model

For the sake of simplicity, consider a multiple input, single output (MISO) communication system with

N transmit antennas and a single receive antenna. The transmitter is equipped with M ≤ N RF chains.

The receiver’s angular location is specified by the 2-tuple (θ, φ) where θ and φ denote the elevation and

azimuth angle respectively (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). The transmitter is assumed to know the direction of

the target receiver, but does not have knowledge on the eavesdroppers location. Assuming a narrowband

channel model with perfect synchronization, after sampling the received signal along any direction (θ, φ)

at discrete-time k can be written as

y(k, θ, φ) = hH(θ, φ)x(k) + v(k) (1)

where h is a N×1 channel vector, x is the vector transmit symbol and v is the complex zero-mean additive

white Gaussian noise (AWGN) with variance N0
2 per real dimension. The use of a narrowband channel

model at mm-Wave is justified because the line-of-sight (LoS) component at these frequencies usually
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dominates over multipath components due to relatively high reflection and scattering losses from indoor

building materials [21]. Note that the channel vector (and hence, the received symbol) is a function of

the receiver’s angular location. This is because the path-lengths from the transmit antennas to the receive

antenna vary depending on the orientation of the receiver.

Directional beamforming is used to provide sufficient received signal power in mm-Wave systems.

With beamforming, x(k) = w(k)x(k) where w is the beamforming vector and x is a scalar transmit

symbol. For the LoS channel considered, the beamforming solution that maximizes the received SNR

is maximum ratio transmission (MRT). But since the channel coefficients from the transmit array to the

receiving antenna have equal magnitude (as given in (3)), MRT is equivalent to equal gain transmission

(EGT). Note that uniform amplitude weighting, such as in EGT, maximizes the directivity of the array

among all amplitude excitation patterns [22] which is desirable. Another advantage of uniform weighting

is that the feeding network is simple.

In this work, we focus on uniformly-spaced linear arrays with isotropic radiating elements; the same

approach can be applied to multidimensional periodic arrays i.e., two/three-dimensional arrays that have

their elements on an underlying regular grid. For the N -element linear array shown in Fig. 1, the radiating

elements are located along the z-axis with uniform inter-element spacing d. The corresponding position

vectors are denoted by p0,p1, . . . ,pN−1 with

pxn = pyn = 0, pzn =
(
n− N − 1

2

)
d, n = 0, 1, . . . , N − 1 (2)

where the center of the array is placed at the origin to invoke symmetry. We choose d ≤ 0.5λ to avoid

creating grating lobes. The channel vector for a receiver at far-field with elevation angle θ can then be

written as [22]

h(θ) = [ ej(
N−1

2 ) 2πd
λ

cos θ, ej(
N−1

2
−1) 2πd

λ
cos θ, . . . , e−j(

N−1
2 ) 2πd

λ
cos θ]T (3)

where the phase-shifts introduced by path-length differences are referred to the center of the array. Note

that h is a function of only θ because the linear array cannot resolve φ-direction. Next, we will apply this

channel model to conventional array transmission and ASM to understand the security aspect of these

transmission techniques.

B. Conventional Array Transmission

Fig. 2 shows the block diagram of a typical phased array transmitter where the number transmit

antennas is equal number of RF chains i.e., N = M . In this transmission scheme, the in-phase (I) and
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zp0 p2p1 p3 pN-2 pN-1
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θT

d

Steering Direction

Fig. 1. A uniform linear array with N isotropic elements.

quadrature (Q) components of the signal are modulated at baseband followed by RF up-conversion and

antenna array beamforming in the RF domain. Finally, the phase shifted signal in each branch is amplified

by a power amplifier (PA) before coupling onto the antenna.

PA

PA

PA

Coded Bits

Local Oscillator

* *

* *

I

Q

I

Q

QPSK Constellation
at Target Rx.

I-Q 
Modulator

X

* *
* *

1

2

 M
fc

QPSK Constellation
at Undesired Rx.

( θT  ,ΦT )

( θU  ,ΦU )

Undesired Rx. “sees” 
the Target Constellation

φ

φ

φ

Fig. 2. Typical Phased Array Transmitter - Illustration with QPSK Modulation.

Consider the situation depicted in Fig. 2, where the array is transmitting a complex phase-modulated

information symbol, x(k) =
√
Ese

jψ(k), to a “target” receiver using conventional baseband modulation

technique. The target receiver is oriented towards the (θT, φT) radial and an “undesired” receiver located

along the direction (θU, φU) is eavesdropping on the communication. The transmitter is assumed to know

the direction of the target receiver, but does not have knowledge on the eavesdropper’s location. By

providing a progressive inter-element phase shift, the transmitter can orient its main beam along (θT, φT)

i.e., w(k) = 1
Mh(θT) ∀k. Using (1), the symbol received along an arbitrary direction (θ, φ) in the absence
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of noise is

y(k, θ, φ) = hH(θ)w(k)
√
Ese

jψ(k)

=
√
Ese

jψ(k)

M

M−1∑
n=0

e−j(n−
M−1

2 ) 2πd
λ

cos θTej(n−
M−1

2 ) 2πd
λ

cos θ

=
√
Ese

jψ(k)

M
e−j(

M−1
2 ) 2πd

λ
(cos θ−cosθT)

M−1∑
n=0

ejn
2πd
λ

(cos θ−cos θT)

=
√
Ese

jψ(k)

M
e−j(

M−1
2 ) 2πd

λ
(cos θ−cos θT)

(
1− ejM

2πd
λ

(cos θ−cos θT)

1− ej
2πd
λ

(cos θ−cos θT)

)

=
1
M

sin
(
M(γθ−γθT)

2

)
sin
(
γθ−γθT

2

)
︸ ︷︷ ︸

a real constant for every θ

√
Ese

jψ(k)︸ ︷︷ ︸
information symbol

= ρ(θ)
√
Ese

jψ(k) (4)

where γθ is defined (and used in the sequel) as γθ , γ(θ) = 2πd
λ cos θ and ρ denotes the (real) scaling

factor for every θ. Note that ρ(θ) < ρ(θT) = 1 ∀ θ 6= θT.

In this scenario, both the target and the undesired receiver observe effectively the same information.

The constellation received in undesired transmit directions differs (from the target constellation) only

in terms of the received signal power and possibly a time delay. This is because in conventional array

transmission, the same information is transmitted in all directions with varying sidelobe levels. Therefore,

an eavesdropper with a sufficiently sensitive receiver can still recover information from the transmitted

signal as illustrated in Fig. 2.

C. Antenna Subset Modulation

1) Principle: The small carrier wavelength at mm-Wave enables the construction of phased arrays

with a large number of antenna elements. The number of RF chains, however, is still limited by cost

constraints. We leverage this possibility to suggest a transmission technique that is suitable for an analog

implementation. In an ASM transmitter, there are M RF chains as before but the number of antenna

elements N > M . A sinusoidal carrier signal drives only a subset of the antenna array after passing

through phase shifters and PA as illustrated in Fig. 3. Since there are only M RF chains, the antenna subset

used for transmission in each symbol interval contains exactly M elements. A control block determines

the phase shifts for each branch and selects the subset of M active elements using an high-speed RF

switch.
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Fig. 3. ASM Transmitter - Illustration with QPSK Modulation. The red dashed line in this figure controls the selection of an

antenna subset and provides the corresponding inter-element phase shift necessary for modulation and beam-steering.

The fundamental difference between ASM and conventional array transmission technique is that,

modulation in ASM happens in the RF domain. Specifically, the far-field radiation pattern of the array

is modulated at the symbol rate to communicate information. In each symbol duration, the control block

synthesizes an array by selecting a subset of M antenna elements. The antenna subset chosen defines the

array geometry and an associated far-field radiation pattern. Since the set of antennas used for transmission

is changed from one symbol to the next, the far-field pattern of the array appears to be modulated at

the symbol transmission rate. It is worth noting here that the changing radiation pattern of the array

provides the security benefit of ASM. In the absence of any multipath, the far-field array pattern (along

a particular radial) can be interpreted as a complex symbol on the I-Q plane.

Modulation of information bits to symbols and beam-steering is achieved by phase shifting the active

elements in the synthesized array. By providing a phase offset besides the progressive inter-element phase

shift (for beam-steering), ASM can produce the desired phase of each symbol in a constant-envelope

modulation scheme along the target radial. Using the proposed system model, we can mathematically

express the signal synthesis in ASM. Since there is no complex-baseband modulation involved, x(k) =

1 ∀k denoting the unmodulated carrier signal. The effect of data modulation, beam-steering and antenna
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subset selection operations at time k are succinctly represented by the beamforming vector w(k).

w(k) =

(√
Ese

jψ(k)

M

)
[b(k) ◦ h(θT)] (5)

where b is an N × 1 vector with bi = {0, 1} and
∑N

i=0 bi = M . The binary vector b(k) thus encodes

the M -element antenna subset picked for transmitting the kth symbol. The positions with ones indicate

active antenna elements while zeros indicate unused elements. Let B denotes the set of all such binary

vectors b. In the absence of receiver noise, the received symbol can be expressed using (1) as

y(k, θ, φ) = hH(θ)w(k)

=
1
M

hH(θ)[b(k) ◦ h(θT)]︸ ︷︷ ︸
a complex scalar

depending on θ and b(k)

√
Ese

jψ(k)︸ ︷︷ ︸
information symbol

= ρ(θ,b(k))
√
Ese

jψ(k) (6)

for some b(k) ∈ B. Note that the scaling factor ρ in (6) is complex for every θ 6= θT and changes with

time index k.

2) Secure Data Transmission: In addition to providing directional information to the target receiver,

ASM sends misinformation in all undesired directions. This makes it difficult for an eavesdropper to

decode any useful information even in the absence of receiver noise.

Suppose that the active element subset, b, is chosen at random from the set B for each symbol

transmission. The received signal along any radial is the superposition of signals radiated by each antenna

element. Because of transmit beamforming along the target direction, the various (phase shifted) signal

replicas add coherently in the far-field along the main lobe direction i.e., y(k, θT, φT) =
√
Ese

jψ(k) since

ρ(θT,b(k)) = 1 ∀ b(k) ∈ B. This constitutes creating an undistorted constellation at the target receiver.

But, outside of a narrow solid cone centered about the target radial (say along (θU, φU)), the signals add

up misaligned in phase. Depending on the antenna subset chosen, the desired modulation symbol appears

scaled and rotated for an undesired receiver. This creates a distorted constellation CU that is very different

from the target constellation CT as shown in Fig. 3. The constellation in unintended transmit directions

appears “effectively” random because of the random choice of antenna subset for each transmission.

Unlike scrambling the desired constellation in unwanted directions [12], [14], [19], ASM synthesizes a

multi-point constellation to confuse undesired receivers. The additional constellation points introduced

can equivalently be thought as being generated by the changing far-field pattern along the sidelobes

because of random antenna subset selection. Thus, while switching the active element subset does not
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alter the constellation along the main response axis of the array, the received symbols are distorted in

both phase and amplitude for undesired receivers along the sidelobes.

III. ASM CONSTELLATION SYNTHESIS

In this section, we first formulate far-field pattern synthesis for thinned arrays and then make the

connection to constellation design for ASM.

A. Far-field Pattern Synthesis

Consider a linear array with Nt = N isotropic radiating elements spaced d apart along the z-axis as

described in Fig. 1. For a plane wave propagating along an arbitrary direction k, the far-field radiation

pattern can be expressed as [22]

F (k) =
N−1∑
n=0

wne
jkTpn

=
N−1∑
n=0

wne
j(n−N−1

2 ) 2πd
λ

cos θ (7)

where wn is the complex excitation co-efficient of the nth element and λ is the wavelength corre-

sponding to a carrier frequency fc. The second equality in (7) is obtained by substituting for k using

k = (kx, ky, kz) = 2π
λ (sinθ cosφ, sinθ sinφ, cosθ).

By applying a time-varying excitation to each element, the far-field array pattern can be modulated.

Using (7), we can represent the time-varying far-field pattern as

F (t, θ) =
N−1∑
n=0

wn(t)ej(n−
N−1

2 ) 2πd
λ

cos θ. (8)

In ASM, only a subset of M(< N) antenna elements is selected for use during each symbol trans-

mission. This process of selectively turning on or equivalently, turning off certain elements in an array

is called array thinning and the array thus synthesized is referred to as a thinned array. The fraction of

active elements, MN , is called the thinning percentage. An example of a thinned array is illustrated in Fig.

4.

The M active elements of the thinned array are excited by complex constant-modulus (uniform

amplitude) weights. If T denotes the symbol duration, the excitation coefficient for the nth element

while transmitting the kth symbol, (k − 1)T < t ≤ kT , is expressed as

wn(k) =

 αejϕn(k) n ∈ I(k)

0 n /∈ I(k)
(9)
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Fig. 4. An example of a thinned linear array.

where k is the discrete-time index, α is a real constant that controls signal energy, ϕn(k) is the phase

shift applied to the nth antenna element and I(k) denotes the set of M antennas used for transmitting

the kth symbol. The set I(k) encodes the location of the active elements for time index k. An antenna

element in the array is considered selected or active if and only if its position index is present in the set

I. Also, the cardinality of this set must be equal to M to enforce the constraint on the total number of

active elements. Thus, for a given inter-element spacing d, I(k) completely characterizes the resulting

spatially non-uniform array. Mathematically,

I(k) ⊂ {0, 1, . . . , N − 1}, |I(k)| = M ∀k. (10)

In the absence of mutual coupling effects, using (9) in (8) we have,

F (k, θ) =
∑

n ∈ I(k)

αejϕn(k)ej(n−
N−1

2 ) 2πd
λ

cos θ. (11)

Equation (11) expresses the far-field pattern of the synthesized linear array as a function of direction and

time index. As an example, the synthesized far-field radiation pattern for a N = 12 element linear array

with d = 0.5λ and M = 9 active elements is shown in Fig. 5. In our notation, the set of active elements

for this example is denoted by I(k) = {1, 2, 4, 5, 6, 7, 8, 9, 11}.

B. Constellation Design

ASM can be used to produce the desired phase of each symbol in a constant-envelope modulation

scheme. The use of constant envelope signals in ASM accounts for two characteristics that sharply

distinguish mm-Wave communication from sub-GHz wireless technologies. First, the availability of large

spectral space at mm-Wave frequencies has promoted the use of low modulation techniques that have

low spectral efficiency such as K-ary PSK. Second, the use of constant envelope signals minimizes
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Fig. 5. Far-field magnitude squared radiation pattern of a thinned linear array steered to θT = 60◦. Thinning pattern is

represented by a binary vector.

the linearity requirement on the PA and provides high power-efficiency by operating near the saturation

region. Also, modulation schemes such as multi-level QAM are challenging to implement at mm-Wave

mainly because of their sensitivity to the relatively high phase noise [9]. Nevertheless, ASM can still use

a highly efficient switching PA to transmit non-constant envelope modulated signals. But we defer this

extension to future work.

Data modulation in ASM is based solely on the active element phase shifts. Since EGT also involves

configuring phase shifts in each branch, we will perform modulation and beam-steering operations jointly.

Suppose that the desired modulation symbol to be synthesized at time k has magnitude and phase given

by
√
Es and ψ(k) respectively. Equivalently, we require the far-field pattern produced along θT to equal

the desired modulation symbol i.e., F (k, θT) =
√
Ese

jψ(k).

First, we identify the set of phase shifts to perform beam-steering towards the target receiver. It is well

known that by applying a simple progressive inter-element phase shift, it is possible to steer the main

response axis of an N -element uniform linear array to an arbitrary direction. The phase shift applied to

the nth element to achieve beam-steering towards the θT direction is given by [22]

δn = −
(
n− N − 1

2

)
2πd
λ

cos θT, n = 0, 1, . . . , N − 1 (12)

where the phase shift is referred to the center of the array to invoke symmetry. For a thinned linear

array where only a subset of M elements are active, the inter-element phase shifts needed to perform
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beam-steering are still given by (12). In this case, however, n takes values only from the active element

subset I(k). Hence, the beam-steering vector changes depending on the active element subset chosen for

symbol transmission.

Substituting ϕn(k) = δn in (11) and using (12),

F (k, θT) =
∑

n ∈ I(k)

αe−j(n−
N−1

2 ) 2πd
λ

cos θTej(n−
N−1

2 ) 2πd
λ

cos θT

= Mα. (13)

The array response in (13), or equivalently, the modulation symbol produced at far-field along the target

radial is real (has only an in-phase component) with magnitude Mα. To produce the desired magnitude,
√
Es, the scaling factor α is chosen to be

α =
√
Es

M
. (14)

Next, to obtain a symbol with the desired phase, ψ(k), the beam-steering vector has to be rotated by

the same amount. Note that any phase rotation on the steering vector does not alter the beamforming

characteristics of the array. Thus, the inter-element phase shift to be provided on each branch to produce

the desired complex symbol along θT direction is given by

ϕn(k) = ψ(k) + δn

= ψ(k)−
(
n− N − 1

2

)
2πd
λ

cos θT, n ∈ I(k). (15)

Finally, using (14) and (15) in (11), the far-field pattern of the array along θT is

F (k, θT) =
∑

n ∈ I(k)

αej(ψ(k)−(n−N−1
2 ) 2πd

λ
cos θT)ej(n−

N−1
2 ) 2πd

λ
cos θT

=
√
Ese

jψ(k). (16)

It is critical to recognize that the signals from each antenna element add up with perfect alignment

along the mainlobe direction to produce the desired symbol at far-field irrespective of the antenna subset

picked i.e., any randomness in the choice of antenna subset I(k) disappears along θ = θT. Thus, by

appropriately varying the inter-element phase shifts, ASM can produce the phase of each symbol in a

constant-envelope modulation scheme.

Notice that only the inter-element phase shift needs to be changed to transmit along an arbitrary

direction. This makes the constellation design procedure in ASM much simpler compared to other DM

techniques such as [12], [14], [23] where one must typically run an optimization algorithm to identify
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the right set of weights, phase shifts or switching combinations required to produce a desired modulation

symbol for each target direction. Moreover, these directional transmission methods may suffer from

symbol approximation errors with respect to a true constellation point whereas the symbols synthesized

by ASM are exact along any target radial. In the next section, we demonstrate how ASM achieves secure

transmission using a simple antenna subset selection technique.

IV. ASM FOR SECURE COMMUNICATION

This section describes the security aspect of ASM. It is assumed that the location of the eavesdropper

is unknown to the transmitter. If the antenna subset used for each transmission is chosen independently

at random, it is shown that outside of a solid cone centered towards the target, the modulation symbol

synthesized by ASM appears effectively “random” and can be well-approximated by a two-dimensional

Gaussian distribution as the number of antennas become large.

A. Random Antenna Subset Selection

Random Antenna Subset Selection (RASS) is a simple antenna subset selection technique for ASM.

In this technique, we select a set of M antenna elements (out of N ) to be independently at random for

each symbol transmission. Therefore, the antenna subset chosen for transmitting a particular symbol is

equally likely to be picked from the set of all possible subsets containing M active elements. This random

selection of antenna subsets modifies the array geometry and hence the associated far-field pattern. While

the signals from each antenna element add coherently along the main lobe direction independent of the

antenna subset picked (see (16)), they add up misaligned in phase and constitute signal defocussing along

any sidelobe direction. The resultant is a cluster of points being transmitted in unwanted directions even

when the same transmit symbol is communicated along the target direction. Thus, a one-to-many bit-

symbol mapping is created in all undesired directions, rendering it difficult to demodulate information for

a receiver off the target angle. The presence of receiver noise only makes it more difficult to demodulate

information as the variance of the received symbol is now increased compared to the noiseless case.

An example illustrating the randomization of a transmit symbol in an undesired direction is shown in

Fig. 6. The choice of an antenna subset defines an array geometry and the associated far-field radiation

pattern. Since the antenna subsets used for transmission are picked at random, the arrays synthesized

using RASS have a larger sidelobe level on average. Nevertheless, RASS technique yields itself to a

simplified statistical analysis and provides the basic intuition behind secure transmission using ASM. In
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Fig. 6. Received constellation as it appears to an undesired and desired receiver when using RASS in ASM to transmit the

symbol 1 + j0 repeatedly. The parameters of the randomly synthesized array are N = 20, M = 12 and θT = 45◦.

Section V we propose an optimized antenna subset selection technique that achieves improved sidelobe

level and error rate performance.

B. Statistical Model and Analysis

Consider an N -element linear array with inter-element spacing d communicating a K-ary PSK signal

to the target. The constellation has an average symbol energy Es and each symbol is equally likely to

be picked. The modulation symbols are represented by

s` =
√
Es e

j`2π/K , ` = 0, 1, . . . ,K − 1. (17)

Let θT denote the target orientation and Ω denote the angular region outside of a solid cone around

the target radial where the signals add incoherently i.e., Ω , {(θ, φ) : θ /∈ (θT − ζ, θT + ζ)} for

some small value ζ > 0 (usually ζ ≈ distance to the first null). Since the antenna elements in the

array are picked independently at random for every symbol transmission, we can model each element

as an independent derived Bernoulli random variable with parameter p denoting the probability of

element selection. Choosing p = M
N , the thinning ratio, ensures that the arrays synthesized have M

active elements asymptotically. The far-field pattern of the array F (k, θ) is then modeled as a sum of

N independent complex random variables (for each k) whose first- and second-order statistics can be

derived analytically. We will then use this statistics to approximate the uncoded SER (hereafter referred
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to as simply SER) produced by randomized antenna selection technique. While the proposed statistical

model closely approximates the far-field pattern of the actual array synthesized by RASS for θ ∈ Ω, the

approximation may not be accurate inside the solid cone. This is because inside the cone, the signals from

different antennas add constructively. Thereby, any randomness introduced by antenna subset selection

disappears and the constellation produced approaches CT, which is far from random.

Let Xn(k) be a complex random variable denoting the weighting coefficient on the nth antenna element

when transmitting the kth symbol. We can express Xn(k) as a product of two independent random

variables Yn(k) and Zn i.e.,

Xn(k) = Yn(k)Zn (18)

where Yn(k) - models randomness in transmit symbol selection, Zn - models randomness in antenna

element selection. According to the proposed statistical model, Yn(k) and Zn are distributed as follows:

Yn(k) = αejδnejψ(k), n = 0, 1, . . . , N − 1, (19)

ψ(k) ∼ U
(

1
K

)
∀k i.e., P

(
ψ(k) = `

2π
K

)
=

1
K

` = 0, 1, . . . ,K − 1, (20)

Zn ∼ Bern
(
M

N

)
=

 1 w.p. M
N

0 w.p. 1− M
N

n = 0, 1, . . . , N − 1 (21)

where δn and α are defined previously in (12) and (14) respectively. By construction, Zi ⊥⊥ Zj if

i 6= j, ∀i, j ∈ {0, 1, . . . , N − 1} and Yn(i) ⊥⊥ Yn(j) if i 6= j. Therefore, Yn(k) is non-random for any

given symbol index k, but can take values independently (based on the distribution of ψ(k)) from one

symbol transmission to the next. Rewriting Xn(k) in terms of Yn(k) using (18) and (21),

Xn(k) =

 Yn(k) w.p. M
N

0 w.p. 1− M
N

(22)

Analogous to equation (11), an approximate stochastic model for the far-field pattern of a thinned array

synthesized using RASS can be written as

F̃ (k, θ) =
N−1∑
n=0

Xn(k)ej(n−
N−1

2 ) 2πd
λ

cos θ (23)

where the ∼ differentiates the stochastic model from the true far-field pattern F (k, θ) produced by RASS.

For any given k, (23) is a weighted sum of N independent and identically distributed (i.i.d.) complex

random variables. In view of central limit theorem, this sum can be closely approximated by a complex

Gaussian distribution, for N large enough i.e., F̃ (k, θ) ∼ CN (µ̃(k, θ), P̃ (k, θ)). Equivalently, the real
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(in-phase) and imaginary (quadrature) part of F̃ (k, θ) can be stacked to form a two-dimensional real

Gaussian vector f̃(k, θ)

f̃(k, θ) =

<[F̃ (k, θ)]

=[F̃ (k, θ)]

 ∼ N (µ̃(k, θ), P̃(k, θ)) (24)

where µ̃(k, θ) ∈ R2×1 and P̃(k, θ) ∈ R2×2 denote the mean and covariance of the two-dimensional real

Gaussian distribution. Note that the parameters of the distribution depend on the observation angle θ

and implicitly on the transmit symbol through time index k. The normal approximation improves as N

increases and is better when the thinning ratio M
N is not too close to 0 or 1. Fig. 7 depicts the goodness

of a Gaussian fit to the empirical distribution of the I and Q components produced by RASS along an

undesired transmit direction. In this example, the main response axis of a 35-element linear array was

steered towards θT = 36◦. A histogram of the I and Q components of the received symbol along θ = 10◦

is shown.
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Fig. 7. Histogram of the I and Q components of the symbol received along an undesired direction when using RASS. The

corresponding Gaussian fits are overlaid.

To analyze the average SER for ASM under RASS, we only need a statistical description of the

received symbol cluster (as a function of direction) when transmitting an arbitrary symbol to the target.

Therefore, for SER analysis we remove any randomness in transmit symbol selection i.e., Yn(k) = Yn =
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αejδnejψ,∀k and focus on characterizing the distribution of the received symbol using our statistical model

(23). To emphasize this assumption and simplify notation, we will drop the dependence of Xn, F̃ , f̃ and

associated model statistics on the symbol index k.

Since the received symbol is approximately Gaussian distributed in undesired transmit directions, we

only need the mean and covariance to characterize its distribution. Taking the expectation on both sides

of (23) and using the definitions in (12) and (14), the complex mean is given by

µ̃(θ) , E[F̃ (θ)] = E

[
N−1∑
n=0

Xne
j(n−N−1

2 ) 2πd
λ

cosθ

]

=
N−1∑
n=0

E[Xn]ej(n−
N−1

2 ) 2πd
λ

cos θ

=
N−1∑
n=0

αejψejδn
(
M

N

)
ej(n−

N−1
2 ) 2πd

λ
cos θ

=
√
Ese

jψ

N

N−1∑
n=0

e−j(n−
N−1

2 ) 2πd
λ

cos θTej(n−
N−1

2 ) 2πd
λ

cos θ

=
√
Ese

jψ

N
e−j(

N−1
2 ) 2πd

λ
(cos θ−cosθT)

N−1∑
n=0

ejn
2πd
λ

(cos θ−cos θT)

=
√
Ese

jψ

N
e−j(

N−1
2 ) 2πd

λ
(cos θ−cos θT)

(
1− ejN

2πd
λ

(cos θ−cos θT)

1− ej
2πd
λ

(cos θ−cos θT)

)

=
√
Ese

jψ

N

sin
(
N 2πd

λ
(cos θ−cos θT)

2

)
sin
( 2πd

λ
(cos θ−cos θT)

2

)


=
1
N

sin
(
N(γθ−γθT )

2

)
sin
(
γθ−γθT

2

) √
Ese

jψ. (25)

Using (25), we can express µ̃(θ) as

µ̃(θ) , E[f̃(θ)] =

<[µ̃(θ)]

=[µ̃(θ)]



=



√
Es

N

 sin
„
N(γθ−γθT

)

2

«
sin

“ γθ−γθT
2

”
 cos ψ

√
Es

N

 sin
„
N(γθ−γθT

)

2

«
sin

“ γθ−γθT
2

”
 sin ψ

 . (26)

From (25), we see that the mean of F̃ (θ) is a function of the transmit symbol
√
Ese

jψ for any observation

angle and decays to zero in an oscillatory manner as we move away from the target.
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To derive the covariance matrix of f̃(θ) we decompose F̃ (θ) into its real and imaginary parts. The

real part of F̃ (θ) can be expressed as

f̃1(θ) , <[F̃ (θ)] =
F̃ (θ) + F̃ ∗(θ)

2

=
1
2

N−1∑
n=0

(
Xne

j(n−N−1
2 )γθ +X∗ne

−j(n−N−1
2 )γθ

)

=
1
2

N−1∑
n=0

(
YnZne

j(n−N−1
2 )γθ + Y ∗nZ

∗
ne
−j(n−N−1

2 )γθ
)
. (27)

Noting that Zn is real, Yn is deterministic and using (19) in (27), we have

f̃1(θ) =
1
2

N−1∑
n=0

αZn

(
ej(ψ+(n−N−1

2 )(γθ−γθT)) + e−j(ψ+(n−N−1
2 )(γθ−γθT))

)

=
N−1∑
n=0

αZncos
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
. (28)

Similarly, we can express the imaginary part of F̃ (θ) as

f̃2(θ) , =[F̃ (θ)] =
N−1∑
n=0

αZnsin
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
. (29)

We first find [P̃(θ)]1,1 - the variance of the real component of the received symbol under our stochastic

model. From (28), we see that the variance of the <[F̃ (θ)] is simply the variance of a weighted sum of

N independent Bernoulli random variables and is given by

[P̃(θ)]1,1 , var[f̃1(θ)] = var

[
N−1∑
n=0

αZncos
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)]

= α2
N−1∑
n=0

var [Zn] cos2

(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)

=
Es

NM

(
1− M

N

)N−1∑
n=0

cos2

(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
(30)

where we have substituted for α from (14) and used the fact that Zn ∼ Bern
(
M
N

)
. Using trigonometric

identities we can simplify the summation in (30) as
N−1∑
n=0

cos2

(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
=

1
2

(
N + cos (2ψ)

sin (N (γθ − γθT))
sin (γθ − γθT)

)
. (31)

Thus, the variance of the real component of the received symbol is

[P̃(θ)]1,1 =
Es

2NM

(
1− M

N

)(
N + cos (2ψ)

sin (N (γθ − γθT))
sin (γθ − γθT)

)
. (32)
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A similar analysis on the imaginary component of the received symbol (29) yields

[P̃(θ)]2,2 =
Es

2NM

(
1− M

N

)(
N − cos (2ψ)

sin (N (γθ − γθT))
sin (γθ − γθT)

)
. (33)

It is important to note that the variance of the real and imaginary components of F̃ (θ) exhibit oscillatory

behavior and depend on the transmitted symbol like the mean. However, the total variance P̃ (θ) is a

constant (independent of the observation angle θ) for a given array configuration. Using (32) and (33),

P̃ (θ) , var[F̃ (θ)] = [P̃(θ)]1,1 + [P̃(θ)]2,2

=
Es

M

(
1− M

N

)
. (34)

There are some interesting observations that can be made from (32), (33), and (34). First, when M = N

the thinned array degenerates to a uniform array and there is no randomness in the received symbol in

any direction. This is indicated by the individual variances of the I and Q components going zero for

all transmit angles θ. Second, for a fixed M , adding more antennas to the array (thereby reducing the

thinning ratio M
N ) increases the total variance. An increase in the variance of the received symbol in

undesired directions is helpful because it increases randomness in the constellation and thereby provides

more security. Also, increasing the total number of antenna elements in the array increases the effective

aperture size which enables the randomly synthesized thinned array to have a reduced main lobe width

compared to a uniform array with M elements. This leads to a narrow information beam-width towards

the target receiver which is desirable.

Next, we compute the covariance between the real and imaginary components of the received symbol

as a function of direction using our statistical model. The covariance between f̃1(θ) and f̃2(θ) is defined

as

[P̃(θ)]1,2 = [P̃(θ)]2,1 , E[f̃1(θ)f̃2(θ)]− E[f̃1(θ)]E[f̃2(θ)]

= E[f̃1(θ)f̃2(θ)]− µ̃1(θ)µ̃2(θ). (35)

Using (28) and (29), we can express the first term in (35) as

E[f̃1(θ)f̃2(θ)] = E

"
N−1X
m,n=0

α2ZmZncos
„
ψ +

„
m− N − 1

2

«
(γθ − γθT)

«
sin
„
ψ +

„
n− N − 1

2

«
(γθ − γθT)

«#

= α2

(
N−1X
n=0

E[Z2
n]cos

„
ψ +

„
n− N − 1

2

«
(γθ − γθT)

«
sin
„
ψ +

„
n− N − 1

2

«
(γθ − γθT)

«

+

N−1X
m,n=0
m 6=n

E[ZmZn]cos
„
ψ +

„
m− N − 1

2

«
(γθ − γθT)

«
sin
„
ψ +

„
n− N − 1

2

«
(γθ − γθT)

«9>=>; . (36)
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Since Zm ⊥⊥ Zn, ∀m 6= n, E[ZmZn] = E[Zm]E[Zn] =
(
M
N

)2, equation (36) becomes

E[f̃1(θ)f̃2(θ)] =
α2M

N

{
N−1∑
n=0

cos
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
sin
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)}

+
α2M2

N2


N−1∑
m,n=0
m 6=n

cos
(
ψ +

(
m− N − 1

2

)
(γθ − γθT)

)
sin
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

) .

(37)

Again, using trigonometric identities we can simplify the two parenthetical expressions in (37) as follows:
N−1∑
n=0

cos
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
sin
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)
=

1
2

sin (N(γθ − γθT))
sin (γθ − γθT)

sin (2ψ) , (38)

N−1∑
m,n=0
m 6=n

cos
(
ψ +

(
m− N − 1

2

)
(γθ − γθT)

)
sin
(
ψ +

(
n− N − 1

2

)
(γθ − γθT)

)

=
sin
(
N(γθ−γθT )

2

)
sin
(
γθ−γθT

2

) sin
(

(N−1)(γθ−γθT)
2

)
sin (γθ − γθT)

sin (2ψ) . (39)

Substituting for α from (14) and using (38), (39) in (37) we have

E[f̃1(θ)f̃2(θ)] =
Es

2MN

sin (N(γθ − γθT))
sin (γθ − γθT)

sin (2ψ)

+
Es

N2

sin
(
N(γθ−γθT )

2

)
sin
(
γθ−γθT

2

) sin
(

(N−1)(γθ−γθT )

2

)
sin (γθ − γθT)

sin (2ψ) . (40)

Using (26), the product of the means is

µ̃1(θ)µ̃2(θ) =
Es

2N2

sin
(
N(γθ−γθT )

2

)
sin

(
γθ−γθT

2

)
2

sin (2ψ) . (41)

Finally, substituting equations (40) and (41) in (35), we arrive at the expression for the covariance between

the real and imaginary parts as

[P̃(θ)]1,2 = [P̃(θ)]2,1 =
Es

2MN

(
1− M

N

)
sin (N(γθ − γθT))

sin (γθ − γθT)
sin (2ψ) . (42)

Thus, from (42) we see that the artificial randomness introduced in the real and imaginary components

of the received symbol along undesired transmit directions may be correlated depending on the transmit

symbol and observation angle. However, the magnitude of the correlation is usually small (< 0.1) in

most directions.
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Equations (26), (32), (33), and (42), are the parameters of the Gaussian approximation to the received

symbol distribution in undesired transmission directions in the absence of noise. The situation where we

have zero-mean AWGN at the receiver is easy to incorporate as it modifies only the covariance P̃(θ).

If N0 denotes the total noise variance, the mean and covariance of the received symbol in undesired

directions is given by

µ̃N(θ) = µ̃(θ), (43)

P̃N(θ) = P̃(θ) +
N0

2
I2. (44)

It is worth noting that the Gaussian approximation statistics derived to model the received symbol

distribution is accurate only in the angular region outside the target cone i.e., when θ ∈ Ω.

C. Secure Communication Link

Equipped with the necessary statistics of the Gaussian approximation to the received symbol, we now

analyze the error rates provided by ASM under RASS. For computing the average SER, we first consider

the case when there is no receiver noise and assume optimal maximum-likelihood (ML) detection by the

eavesdropper. Analyzing the average SER in a noiseless setting is important because it helps quantify the

level of security inherent to the modulation technique. Also note that, conventional array transmission

cannot guarantee any security benefits in this scenario because an eavesdropper with a sufficiently sensitive

receiver can still potentially demodulate information.

The method for computing the average SER achieved by RASS, is similar to the one used for

deriving the error rates for conventional digital modulation schemes [24]. The only difference here is

that the zero-mean AWGN model for receiver noise must now replaced with a statistical model for the

randomness introduced by antenna subset selection (discussed in the previous subsection). For a K-ary

PSK modulation, the modulation symbols are represented by sl for l = 0, 1, . . . ,K − 1 as in (17). As

discussed previously, the received symbol in undesired transmit directions can be approximated by a

two-dimensional real Gaussian distribution. From the model statistics (equations (26), (32), (33), and

(42)), we see that the parameters of the received distribution depend on the transmit symbol sl unlike

the zero-mean AWGN model assumption. To emphasize this dependence explicitly, we will use µ̃l(θ)

and P̃l(θ) to denote the mean and covariance of the received symbol respectively.

Under ML detection, a received symbol is declared to be in error if it falls outside the Voronoi region

of the actual symbol transmitted along θT. Assuming each symbol is equally likely, the average SER
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according to our statistical model for the received symbol distribution can be expressed as

Ps(θ) = 1− 1
M

K−1∑
`=0

∫
Λ`

1

2π|P̃`(θ)|
1
2

exp
{
−1

2
(z− µ̃`(θ))

T P̃`(θ)−1 (z− µ̃`(θ))
}

dz (45)

where Λ` is the Voronoi region associated with the modulation symbol s` and P̃`(θ) > 0. When K = 4

i.e., for QPSK modulation, (45) can be simplified by using symmetry and invoking the fact that P̃l(θ) is

diagonal. However, since there are no closed form expressions for (45) when K > 4, we have to perform

a numerical integration to compute the average SER. Note that the above expression for SER represents

the irreducible error rate achieved by RASS. The presence of noise only increases the average SER.

Fig. 8 shows the SER achieved using RASS when transmitting a QPSK constellation. We see that

the statistical approximation using (45) is close to the average SER from simulations even for moderate

values of N . For the case when there is zero-mean AWGN at the receiver, the average SER can be

computed again using (45), but with the modified mean and covariance parameters from (43), (44).
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Fig. 8. Comparison of the average SER for RASS from simulation and the statistical approximation for a linear array steered

to θT = 45◦.

One can also quantify the degree of transmission security, in an information-theoretic sense, using

the notion of secrecy capacity. The secrecy capacity of a channel is the maximum transmission rate at
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which information can be communicated reliably and securely. In [25], it was shown that for a Gaussian

wire-tap channel the secrecy capacity, denoted by CS, is the difference between the capacity of the main

and wire-tap channels. Adopting this definition, we calculate the secrecy capacity for both conventional

array transmission and ASM. Since there is no closed form expression for the channel capacity (as a

function of the received SNR) when using a finite-alphabet constellation, we have to numerically evaluate

the channel capacity. Denoting the target and undesired receiver’s capacity by CT and CU respectively,

we have

CS , CT − CU. (46)

For the case of QPSK transmission considered in the previous example, the secrecy capacity as given by

(46) is

CS(θ) = Cqpsk(SNR(θT))− Cqpsk(SNR(θ)) (47)

where Cqpsk(.) denotes the AWGN channel capacity when using QPSK signaling. Since the received SNR

depends on the observation angle, CS is a function of θ for a fixed transmit symbol energy.

We need to find the average received SNR for the two transmission schemes to calculate the secrecy

capacity. For conventional array transmission, the signal power can be calculated simply using the far-

field radiation pattern of a uniform linear array [22]. Using (4), the received SNR assuming rectangular

pulse-shaping is

SNR(θ) =
(
Es

2N0

) 1
M

sin
(
M(γθ−γθT)

2

)
sin
(
γθ−γθT

2

)


2

. (48)

Note that SNR(θT) = Es
2N0

, as expected.

For ASM transmission, the SNR at the target receiver’s location is the same as that of conventional

array transmission since the constellation is undistorted in this direction. To calculate the SNR along

undesired transmit directions, we will make use of the Gaussian approximation to the received symbol

distribution. Specifically, the square of the mean of the received symbol distribution (µ̃N(θ)) from (43))

for every angle is a measure of the average symbol energy in that direction. The noise variance (in

undesired directions) is composed of two components: 1) receiver thermal noise and, 2) artificial noise

introduced by RASS. Since the artificial noise is uncorrelated with the receiver thermal noise, the effective

noise covariance is the sum of individual covariances (P̃N(θ) from (44)).
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For QPSK modulation, the noise introduced by ASM has zero-mean and uncorrelated real and imag-

inary components i.e., [P̃]1,2 = [P̃]2,1 = 0. Therefore, the effect of artificial noise can be modeled as

complex zero-mean AWGN with modified variance parameter given by

P̃N = 2N0 +
Es

M

(
1− M

N

)
. (49)

If µ̃N denotes the mean of the received complex symbol, the average received SNR for ASM can be

expressed as

SNR(θ) =
|µ̃N|2

2N0 + Es
M

(
1− M

N

)
=

(
Es

2N0 + Es
M

(
1− M

N

))
 1
N

sin
(
N(γθ−γθT)

2

)
sin
(
γθ−γθT

2

)


2

∀ θ ∈ Ω. (50)

A numerical example comparing secrecy capacity of ASM and conventional array transmission is pre-

sented in Section VI.

Thus, we see that using RASS in ASM synthesizes a constellation that is a function of direction. While

the constellation for the intended receiver is not affected by the random choice of antenna subset, the

undesired receiver sees an effectively random constellation because of mis-aligned signal addition. This

enables ASM establish a secure communication link to the target receiver. In the next section, we propose

an optimized antenna subset selection technique that offers better security and array performance.

V. OPTIMIZED ANTENNA SUBSET SELECTION

When randomized antenna subset selection technique is employed in ASM, every possible antenna

subset (with a fixed number of active elements) is equally probable to be used. Though the spatially non-

uniform arrays these subsets correspond to have a similar main lobe performance, the sidelobes behave

very differently which is explained simply by virtue of the resulting active element array geometry. The

large sidelobe levels produced by RASS may be a source of interference to other receivers which is

not desirable. Therefore, we seek to create a codebook of antenna subsets that possess good sidelobe

characteristics and choose an antenna subset at random only from this collection for each symbol

transmission. Note that since the set of all antenna subsets are equivalent along the main lobe direction,

restricting the set of possibilities to a smaller set does not affect our ability to communicate information

to the desired receiver. In this section, we will develop an optimized antenna subset selection technique

based on simulated annealing algorithm to achieve this goal.
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A. Thinned Array Pattern Synthesis

The problem of synthesizing thinned arrays with some desirable characteristics such as low main lobe

width, good sidelobe behavior, null-steering capability etc. is a combinatorial optimization problem and

has been studied extensively in the past [26]–[34]. The effect of thinning on the array gain and main

lobe width is predictable. However, it is hard to characterize the effect of thinning on peak sidelobe level

performance because it depends on both the location and number of active elements. Unfortunately, there

are no closed-form synthesis techniques to synthesize a thinned array with certain sidelobe behavior. For

an array N -element array, the number of subsets with exactly M(< N) active elements is(
N

M

)
=

N !
(N −M)!M !

. (51)

Even for moderate values of N and M , the number of possible subsets can be large. For example,

when N = 64 and M = 32,
(
N
M

)
∼ 1018. Clearly, an exhaustive search over the entire space to find

arrays with good sidelobe behavior is impractical. Therefore, heuristic optimization techniques based on

simulated annealing, genetic algorithms and its variants have been proposed to find near-optimal solutions

to the array thinning problem [26]–[34]. Since simulated annealing based methods have been reported

[35] achieve best array performance compared to other techniques, we will use it to develop an efficient

optimization algorithm for antenna subset selection.

B. Optimized Antenna Subset Selection using Simulated Annealing

Simulated annealing [36], [37] is a probabilistic iterative algorithm for finding good approximate

solutions to the global optimum of a function in a large search space. It emulates the physical process

of annealing whereby heating and controlled cooling of a substance results in a molecular configuration

with lower internal energy compared to the initial state.

For optimized antenna subset selection, we seek to build a codebook B consisting of antenna subsets

that correspond to non-uniform arrays with lower peak sidelobe levels. The constraint on the optimization

is that the number of active elements, M , in the thinned array is fixed. Since we have a large number

of possible antenna subsets, we can hope to find a good collection that exhibit the desirable array

characteristics. The simulated annealing algorithm as applied to the antenna subset selection problem is

illustrated below using pseudo code.
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Algorithm Simulated Annealing
1: procedure ANTENNA SUBSET SELECTION (M,N )

2: Initialize(b0, T0, iter count) . bi is the thinning pattern rep. as a binary vector

3: for i = 1 to iter count do

4: Ti = βTi−1 ensure β < 1 . Exponential cooling schedule

5: b∗ = swap(bi−1) . Perturb bi−1 by swapping the loc. of a 0 and 1 at random

6: ∆E = E(b∗)− E(bi−1) . Compute the change in cost ∆E

7: if ∆E < 0 or exp
[
−∆E

Ti

]
> rand[0, 1]2 then

8: bi = b∗ . Probabilistically accept the new solution if ∆E ≥ 0

9: else

10: bi = bi−1 . Try another perturbation

11: end if

12: end for

13: end procedure

The simulated annealing algorithm retains only one array solution (and an associated temperature) at

any instant. At the beginning, the algorithm is initialized with a random array configuration containing

M active elements. Then, at every iteration we perturb the array solution from the previous iteration. By

allowing perturbations that only swap the location of an “on” element for an “off” element we ensure

that the number of active elements in the array is M at each iteration. If the perturbed solution results in

lowering the cost function E we accept it and move to the next iteration. Otherwise, we probabilistically

accept the perturbed solution and this acceptance probability decreases as the temperature goes down.

The replacement of better solutions by worser ones at higher temperatures ensures that the algorithm

does not gets stuck in a local optimum. After a sufficient number of iterations the algorithm converges

to a near-optimal solution that has a lower cost.

The performance of any simulated annealing algorithm depends heavily on the choice of cost function

and cooling schedule used. In this work, an exponential cooling schedule is used since it produced the

best results. The algorithm seeks to minimize a cost function which is the maximum magnitude squared

of the sidelobe level in dB scale. Mathematically,

E , max |SLL|2dB = max
(θ,φ)∈Ω

20 log10 |F (θ, φ)| (52)

2rand[0,1] generates a number uniformly distributed on the interval[0,1].
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where SLL abbreviates sidelobe level of the array, F is the far-field radiation pattern of the array, and Ω

denotes the angular region outside the location of the first null. As long as the number of possible subsets

is large, we can get a sufficient collection of array configurations with similar sidelobe properties after

multiple runs of the algorithm. The random initialization and the probabilistic nature of the simulated

annealing algorithm ensures that we do not converge to the same local optimum after each run. The

arrays thus synthesized are stacked to form the codebook B that the transmitter will use to pick antenna

subsets for each transmission.

Reducing the peak sidelobe level not only leads to better array performance compared to RASS but

can also benefit us in terms of transmission security. While the magnitude of the received symbols in

undesired directions (which is equal to the sidelobe level of the array’s radiation pattern) is now lower,

the randomization in phase caused by antenna subset selection is still maintained by using a large enough

codebook. Therefore, the resulting symbol distribution in undesired directions has a mean closer to zero

and hence is more susceptible to symbol errors.

It is important to observe that for a given array configuration, the codebook is constructed only once

and is independent of the target direction i.e., the antenna subset to be used is chosen at random from the

same codebook irrespective of the desired receiver’s orientation. This keeps the antenna subset selection

procedure in ASM simple. It is also possible to construct a similar codebook of antenna subsets that have

other desirable properties such as null-steering towards an interferer or jammer, sidelobe cancellation etc.

by appropriately modifying the cost function (52). The next section presents simulation results illustrating

the better SER and sidelobe performance offered by optimized antenna subset selection in ASM.

VI. SIMULATION RESULTS

In this section, we present and discuss some numerical examples illustrating constellation synthesis,

array performance and transmission security of ASM. Linear antenna arrays with omnidirectional elements

were considered for the study. The parameters of the array for each simulation study are overlaid on the

corresponding plots.

A. Constellation Synthesis Results

First, we show the constellation synthesized by ASM when using the proposed antenna subset selection

techniques (discussed in Sections IV and V) to transmit a QPSK modulated signal. As is evident from Fig.

9, the constellation produced by ASM along the target direction is exact. However along an undesired

transmit direction, the received symbols appear to be randomly distributed. Notice that the received
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symbol cluster has a lower magnitude when using optimized antenna subset selection compared to

RASS. This is a consequence of choosing only antenna subsets that have reduced sidelobe level from

a carefully constructed codebook. Also shown in Fig. 9 is the constellation produced by conventional

array transmission in these directions. Although the magnitude of the received symbol produced by a

conventional array is lower compared to ASM, the constellation is still separated enough for a sensitive

receiver to demodulate information.
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Fig. 9. Comparison of the constellation produced by ASM and conventional array along intended and undesired directions.

B. Array Performance Results

Here we compare the array performance of the two antenna subset selection techniques. Fig. 10 depicts

the magnitude squared radiation pattern of a randomly thinned array and an array synthesized using

simulated annealing algorithm discussed in the previous section. The optimized array exhibits a lower

peak sidelobe level as expected. The reduction in sidelobe level comes with a small increase in the main-

lobe width which can be observed from Fig. 10. However, both arrays possess a narrower main-lobe

width compared to a conventional array (with the same number of active elements) even when the array

is steered away from broadside.
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Fig. 10. Far-field radiation pattern for arrays synthesized by the proposed antenna subset selection techniques. The peak sidelobe

level of the randomly thinned array and algorithmically optimized array shown are -10.4 dB and −14.7 dB respectively.

A histogram of the resulting peak sidelobe levels while using the two antenna subset selection tech-

niques is shown in Fig. 11. Note that the sidelobe behavior of the optimized array is better compared to

a conventional array which has a fixed peak sidelobe level ≈ −13.5 dB when steered to broadside [22].

C. Transmission Security Results

In this section, we demonstrate using simulation examples that ASM can achieve a low SER in a

narrow beam-width around the target angle, while enforcing a high SER in undesired directions. The

simulation setup is as follows. Consider a standard linear array with N = 35 antenna elements of which

only M = 20 are active at any time. The array is beamformed to the target along θT = 36◦. First, the

simulated annealing algorithm was run to construct a codebook of thinned arrays that are optimized for

minimum sidelobe level. In this example, the size of the codebook was chosen to be 500. Note that

the codebook size need not be very large. Randomly selecting from a collection of a few hundred of

optimized antenna subsets is sufficient to create a complete randomization in both amplitude and phase

of the received symbol along undesired directions. For the simulation study, approximately 107 QPSK-

modulated symbols were transmitted for each angle (in 0.5◦ increments). During symbol transmission,

one among the 500 antenna subsets was selected at random and used. Zero-mean AWGN was added to

the received symbol in all directions and the symbol error rates were calculated assuming ML decoding
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at the receiver. A similar simulation methodology was adopted to compute the average SER of ASM

under randomized antenna subset selection technique. But, this time the antenna subsets were selected

independently at random from
(

35
20

)
∼ 109 possible array configurations. Fig. 12 illustrates the SER

performance of ASM under the two subset selection techniques.

To compare the SER performance of ASM with conventional array transmission we consider a uniform

linear array with the same number of active elements. The main response axis of the array is steered

towards the target and employs traditional baseband modulation. Since a conventional array transmits

the same constellation in all directions, the average SER can be calculated by using the symbol error

probability expression for the modulation scheme employed. The exact symbol error probability for QPSK

signaling considered in this example, and in general for K-ary PSK, in a zero-mean AWGN channel can

be computed using [38]

Ps(θ) = F

(
1,
√

2Es

N0
, cot

π

K

)
(53)

where F is the cumulative distribution function of the non-central t-distribution and Es is the received

symbol energy which is equal to the squared magnitude of the far-field radiation pattern of the array.

The average SER for conventional array transmission is thus computed using (53) and is shown in Fig.

12. It is confirmed that ASM under both antenna subset selection techniques achieves a higher SER

compared to conventional array transmission in unwanted directions. Moreover, it produces a narrow
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θT = 36◦.

information beam-width around the target angle and the error rates rise steeply to a higher value outside

this narrow region. One can also see that optimized antenna subset selection has better a transmission

security compared to randomized antenna subset selection. This can be explained by the fact that the

former technique synthesized modulation symbols whose mean was closer to zero, thus making it more

difficult to distinguish the actual transmitted symbol in undesirable directions. It is worth noting that

ASM achieves the aforementioned security benefits with no additional transmit power requirement unlike

other DM techniques [14], [15] which trade-off security for a small increase in transmission power.

Next, we present simulation results on the average SER performance versus SNR of ASM for an

eavesdropper and compare it against conventional array transmission in Fig 13. For this simulation

experiment, a 12-element array with 9 active elements was considered and RASS was employed in

ASM. When the target receiver was located along θT = 45◦, two angular locations were considered

for the eavesdropper: Scenario (a) θa = θT + 10◦ = 55◦, and Scenario (b) θb = θT + 122◦ = 167◦.

Scenario (a) depicts the situation where the angular location of the eavesdropper is close to the target

while scenario (b) is when the eavesdropper is far away from the target angle. In both situations, ASM

under randomized antenna subset selection is shown to outperform conventional array transmission. Even

as the SNR increases, ASM maintains a high SER while for a conventional array the average error rate
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falls off exponentially with SNR.
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the target angle - along θb = 167◦.

Finally, we show the improved secrecy capacity performance of ASM in Fig. 14. Equations (47), (48)

and (50) were used to evaluate the secrecy capacity of conventional array transmission and ASM under

QPSK modulation. As shown in Fig 14, ASM achieves better secrecy capacity compared to conventional

array transmission which has multiple transmit angles where the secrecy capacity is low. Another desirable

characteristic of ASM which is evident from the plot is the ability to create a communication link with

secrecy capacity close to the actual capacity without eavesdropping (in this case, 2 bits/s/Hz) over a wide

range of angles. Moreover, the secrecy capacity of ASM is non-zero even as SNR →∞ because of the

irreducible artificial noise inherent to the transmission technique.

VII. CONCLUSION

In this paper, Antenna Subset Modulation (ASM) was proposed to take advantage of massive antenna

arrays at mm-Wave frequencies. In ASM, the far-field pattern of the array was modulated at the symbol

rate to achieve direction-dependent data transmission. Unlike other directional modulation techniques that

scramble the desired constellation in unwanted directions, ASM has been shown to provide security by
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introducing additional points in the constellation that appear effectively random to an undesired receiver.

A simple constellation design procedure involving the calculation of progressive inter-element phase shifts

was described. Two different antenna subset selection techniques were proposed for implementing ASM:

(i) Random antenna subset selection, and (ii) Optimized antenna subset selection. In the first technique,

the antenna subset to be used for transmission was selected independently at random. A statistical model

that closely approximates this subset selection technique was discussed. To overcome the problem of large

peak sidelobe level associated with random antenna subset selection, an optimized antenna subset selection

technique was then proposed based on simulated annealing algorithm. Finally, simulation examples were

used to compare and validate the security benefits of ASM against conventional array transmission. It was

concluded that ASM achieves a narrow information beam-width in the desired direction and a high SER

in undesired directions under both subset selection techniques. The optimized antenna subset selection

was found to improve the array performance and provided the best security benefits.

Future work will involve an extension of the analysis and results presented to multidimensional periodic

arrays followed by a demonstration of the proposed approach. Including the synthesis of non-constant

envelope-modulated signals in ASM is one possibility. This can be accomplished by choosing antenna

subsets with a variable number of active elements to control the amplitude or by employing non-uniform

amplitude tapering. Incorporating multi-directional data transmission in ASM using array partitioning

techniques is also an interesting research problem that merits further study.
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