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On the Overhead of Interference Alignment:

Training, Feedback, and Cooperation

Omar El Ayach, Angel Lozano, and Robert W. Heath, Jr.

Abstract

Interference alignment (IA) is a cooperative transmissionstrategy that, under some conditions,

achieves the interference channel’s maximum number of degrees of freedom. Realizing IA gains,

however, is contingent upon providing transmitters with sufficiently accurate channel knowledge. In

this paper, we study the performance of IA in multiple-inputmultiple-output systems where channel

knowledge is acquired through training and analog feedback. We design the training and feedback system

to maximize IA’s effective sum-rate: a non-asymptotic performance metric that accounts for estimation

error, training and feedback overhead, and channel selectivity. We characterize effective sum-rate with

overhead in relation to various parameters such as signal-to-noise ratio, Doppler spread, and feedback

channel quality. A main insight from our analysis is that, byproperly designing the CSI acquisition

process, IA can provide good sum-rate performance in a very wide range of fading scenarios. Another

observation from our work is that such overhead-aware analysis can help solve a number of practical

network design problems. To demonstrate the concept of overhead-aware network design, we consider

the example problem of finding the optimal number of cooperative IA users based on signal power and

mobility.

I. INTRODUCTION

Interference alignment (IA) for the multiple-input multiple-output (MIMO) interference chan-

nel is a cooperative transmission strategy that attempts tostructure interfering signals such that

they occupy a reduced dimensional space when observed at thereceivers [1], [2]. Alignment

often enables achieving the maximum number of degrees of freedom (DoF) [1], [2]. Precoding
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transmitted signals to carefully align them at the receivers, however, requires knowledge of the

interfering channels in the system, collectively known as channel state information (CSI). Perfect

CSI is assumed to be available when designing most IA algorithms [1], [3]–[5] or reporting

genie-aided IA gains. Practical systems, however, acquirereceiver CSI with the help of training

sequences or pilots [6]. Such CSI can then be shared with the transmitters via feedback. As

a result, practical CSI is imperfect and comes with an overhead signaling cost, both of which

penalize the effective data rates achieved. Realizing the gains of IA is therefore contingent upon

providing systems with sufficiently accurate CSI at a manageable overhead cost.

Several approaches have been proposed to fulfill IA’s transmit CSI requirement [7]–[9],

typically assuming perfect CSI at the receiver. The feedback strategy in [7] proposes to use

Grassmannian codebooks to compress and improve CSI feedback in single-antenna frequency ex-

tended IA systems. The feedback strategy was then extended to multiantenna frequency extended

systems in [8]. Both [7] and [8] guarantee that limited feedback preserves the number of DoF by

scaling the number of feedback bits with SNR, thus making codebooks prohibitively large [10].

To overcome the problem of scaling codebook size, and relax the reliance on frequency selectivity

for quantization, [9] proposed an analog feedback strategyfor constant MIMO interference

channels. Using analog feedback, a constant data rate gap from perfect CSI performance was

shown, as long as the SNRs on the forward and feedback links are order-wise equal. A limitation

of the analysis in [7]–[9], however, is that the number of DoFremains the primary performance

metric considered. IA’s sum-rate performance at finite SNR,especially when accounting for the

time spent on overhead signaling, has yet to be considered.

Attempts to more directly analyze or reduce overhead are limited to [11]–[14]. To analyze

the effect of overhead, [11] considers the effective numberof spatial DoF of an IA system with

training and feedback. By considering DoF, however, [11] implicitly characterizes performance

at infinitely high SNR. Alternatively, [12] reduces codebook size to limit overhead in limited

feedback IA systems by leveraging temporal correlation without providing any overhead-aware

analysis. In another line of work, information about the network topology is used to partition

users into optimally sized alignment groups [13]. In [14], IA is applied to partially connected

interference channels. User grouping and partial connectivity, however, only reduces the number

of channels that must be shared without suggesting an efficient training and feedback strategy.

In this paper, we characterize the performance of a MIMO IA system that is designed
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for perfect CSI operation yet only has access to imperfect CSI through training and analog

feedback [9], [15], [16]. Thus, the performance demonstrated in this paper constitutes a lower

bound for systems that are designed to be more robust to imperfect CSI through improved

precoding strategies such as [31] for example. We adopt a block-fading model wherein the

channel remains constant over the block length, and varies independently across blocks. In

contrast with earlier work on IA with feedback, we preciselymodel channel selectivity by

leveraging the relationship between block-fading and continuous-fading channels shown in [17].

This relationship allows us to define the concept of Doppler spread in a block fading channel

and explicitly relate the size of the coherence block to thatDoppler spread. Since both CSI

acquisition and data transmission must now occur within thelimits of a single coherence block,

the IA system is faced with a non-trivial tradeoff: too much overhead leaves little time for

payload data transmission, whereas too little overhead results in large sum-rate losses due to

poor CSI quality [17]–[21]. In this paper, we design the training and analog feedback system to

maximize IA’s effective sum-rate, a non-asymptotic performance metric that accounts for both

CSI quality and CSI acquisition overhead. CSI acquisition overhead is a fundamental concept

that was largely neglected in earlier work on IA with imperfect CSI.

We begin by giving a tractable expression for the IA sum-ratein genie-aided systems with

perfect CSI, and extend the analysis under a general model for imperfect CSI. We then specialize

our results to a system with training and analog feedback by characterizing CSI quality as a

function of system parameters such as training overhead, feedback overhead and transmit power

on both forward and reverse links. This results in a tractable expression for IA’s effective sum-

rate, which we proceed to optimize. To give a closed-form solution for the optimal effective

sum-rate, we build on the method in [17] and optimize a seriesexpansion of the objective

function. Initial results were reported in our previous work [22]. In this paper, we complete IA’s

performance analysis by analytically characterizing its maximum achievable effective sum-rate

and the corresponding optimum overhead budget. The main insights and conclusions that can

be drawn from the effective sum-rate analysis can be summarized as follows:

• Practical IA performance is not only a function of basic system parameters such as network

size and SNR, but is tightly related to quantities such as Doppler spread, and feedback

channel quality. Moreover, the dependence of both the maximum effective sum-rate, and

the corresponding optimal overhead budget, on the various system parameters can be char-
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acterized accurately.

• By properly designing the training and feedback stages, IA can be made both feasible and

beneficial in a wide range of fading scenarios, even when its relatively high overhead is

considered.

• Overhead-aware analysis is essential to the design of IA networks. As an example of this

observation, we use the overhead analysis to give simple results on the optimal number of

cooperative IA users for channels with varying levels of selectivity.

Throughout this paper, we use the following notation:A is a matrix;a is a vector;a is a

scalar;(·)∗ denotes the conjugate transpose;‖a‖ denotes the2-norm of a; |a| is the absolute

value ofa; IN is theN × N identity matrix;CN (a,A) is a complex Gaussian random vector

with meana and covariance matrixA; (a1, . . . , ak) is an ordered set;E [·] denotes expectation.

II. SYSTEM MODEL

Consider theK-user narrowband MIMO interference channel shown in Fig. 1 in which

transmitteri communicates with its paired receiveri and interferes with all other receivers,

ℓ 6= i. For simplicity of exposition, consider a homogeneous network where all transmitters are

equipped withNT antennas and all receivers withNR antennas, and each node pair communicates

via d ≤ min(NT, NR) independent spatial streams. The results can be generalized to a different

number of streams or antennas at each node, provided that IA remains feasible [23].

Assuming perfect time and frequency synchronization, the sampled baseband signal at receiver

i can be written as

yi =

√
P

d
Hi,iFisi +

∑

ℓ 6=i

√
P

d
Hi,ℓFℓsℓ + vi, (1)

where yi is the NR × 1 received signal vector,P is the transmit power,Hi,ℓ is the NR ×
NT discrete-time effective baseband channel matrix from transmitter ℓ to receiver i, Fi =
[
f1i , . . . , fdi

]
is transmitteri’s NT × d precoding matrix,si is the d × 1 transmitted symbol

vector at nodei such thatE [sis
∗
i ] = Id, and vi is a vector of i.i.d complex Gaussian noise

samples with covariance matrixσ2INR
. The channelsHi,ℓ are assumed to be independent across

users and each with i.i.dCN (0, 1) entries. Large-scale fading can be included in the system

model at the expense of a more involved exposition in SectionIV.
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The received signal attransmitter i on the feedback channel is

←−y i =

√
PF

NR
Gi,i
←−x i +

∑

ℓ 6=i

√
PF

NR
Gℓ,i
←−x ℓ +

←−v i, (2)

wherePF is the feedback power available such thatPF/P = γ, Gℓ,i is theNT × NR discrete

time feedback channel between receiverℓ and transmitteri with i.i.d CN (0, 1) entries,←−x i is

the symbol vector with unit variance entries sent by receiver i, and←−v i is a complex vector of

i.i.d circularly symmetric white Gaussian noise with covariance matrixσ2INT
. The forward and

feedback channels are assumed to be independent in the erroranalysis of Section IV, i.e., a

frequency division duplexed system or a general non-reciprocal system is assumed.

We adopt a block-fading channel model in which channels remain fixed for a period,Tframe,

but vary independently from block to block. To model the effect of channel selectivity on IA

performance, we set the block length toTframe = 1
2fD

, wherefD plays the role of the block

fading channel’seffective Doppler spread. The definition offD is motivated by the results in

[17] showing a relationship between continuous fading and block fading systems. To enable

IA over such a channel, both CSI acquisition and payload datatransmission must occur within

the coherence timeTframe, or else the CSI acquired becomes obsolete. The IA system then

encounters a well-known tension between CSI acquisition and data transmission [17]–[21], and

must allocate resources to each of the processes to optimizeoverall performance.

To account for CSI acquisition overhead, and to accurately characterize theeffective data rate

achieved by IA, we adopt the overhead model shown in Fig. 2. Inthis model, overhead signaling

consumes time resources that could otherwise be used for data transmission, i.e., CSI acquisition

penalizes effective sum-rate. For such an overhead model, the effective sum-rate (in bits/s/Hz)

can be written as [17]–[19]

R̄eff (P, TOHD) =

(
Tframe − TOHD

Tframe

)
R̄sum(P, TOHD) (3)

whereTOHD is the total time spent on training and feeding back channels, and R̄sum(P, TOHD)

is the average sum-rate in bits/s/Hz achieved by IA on the channel uses allocated for payload

transmission. Using (3), and previous insights into IA performance, we highlight the tradeoff

between overhead signaling and data transmission. Increasing overhead improves CSI quality

and in turn improvesR̄sum(P, TOHD), but the relative period over which̄Rsum(P, TOHD) can
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be achieved shrinks. A similar tension exists when loweringoverhead; less overhead allows

more channel uses for data transmission but the sum-rate perchannel use suffers due to poor

CSI quality. The objective then becomes maximizing the effective sum rate given in (3) by

optimally trading off overhead with data transmission [17]–[21]. Throughout this paper, we treat

R̄sum(P, TOHD) as an information-theoretic quantity, and thus derive mutual information-based

sum-rates achievable without errors. IA performance can also be analyzed from the perspective

of fixed-rate transmission where metrics such as bit error rate may be of interest [24].

III. I NTERFERENCEALIGNMENT: AN AVERAGE SUM-RATE ANALYSIS

This section derives the average sum-rate achieved by IA in both genie-aided networks where

channels are known perfectly, as well as practical systems where CSI is imperfect.

A. Interference Alignment with Perfect CSI

IA often achieves the full number of DoF supported by MIMO interference channels. In cases

where the full DoF cannot be guaranteed, IA has been shown to provide significant gains in high-

SNR sum-rate [3], [4], [25]. While this paper focuses on IA, even better performance could be

achieved with other precoding algorithms that seek a balance between interference minimization

and signal power maximization [3], [26], [27]. The algorithms in [3], [26], [27], however, do

not readily lend themselves to average sum-rate analysis.

To analyze IA sum-rates, we begin by examining the effectivechannels created after precoding

and combining. For tractability, we focus on IA with a simpleper-stream zero-forcing (ZF)

receiver. Recall that in the high (but finite) SNR regime, where IA is most useful, gains from

more involved receiver designs are limited. In such a system, receiveri projects its signal onto

the columns of the zero-forcing combinerWi =
[
w1

i , . . . , wm
i , . . . , wd

i

]
which gives

(wm
i )

∗yi =

√
P

d
(wm

i )
∗Hi,if

m
i smi +

√
P

d

∑

(k,ℓ)6=(i,m)

(wm
i )

∗Hi,kf
ℓ
ks

ℓ
k + (wm

i )
∗vi. (4)

At the output of these linear receiverswm
i , the conditions for perfect IA can be stated as [4]

(wm
i )

∗Hi,kf
ℓ
k = 0, ∀(k, ℓ) 6= (i,m) (5)

|(wm
i )

∗Hi,if
m
i | ≥ c > 0, ∀i,m, (6)
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where alignment is guaranteed by (5), and (6) is satisfied almost surely [1], [4].

As a result of conditions (5) and (6), the combination of IA and ZF effectively createsKd non-

interfering scalar channels. The maximum mutual information across these channels is achieved

via Gaussian signaling which yields an instantaneous sum-rate given by

Rsum =

K∑

i=1

d∑

m=1

log2

(
1 +

P
d
|(wm

i )
∗Hi,if

m
i |2

σ2

)
. (7)

To derive an expression for the average sum-rate, i.e.,R̄sum = E [Rsum], we first give the following

lemma.

Lemma 1 ( [9, Appendix A]): The effective direct channels(wm
i )

∗Hi,if
m
i are independent and

Gaussian distributed with unit variance if: (i) the precoders Fi are unitary and are generated by

an IA solution that does not consider the direct channelsHi,i, and (ii) the combinersWi are

calculated to simply zero-force inter-user and inter-stream interference.

The conditions Lemma 1 places on precoder and combiner calculation are satisfied by most IA

solutions such as [1], [3]–[5]. Hence, as a result of Lemma 1,the scalar point-to-point channels

created by the combination of IA and ZF experience Rayleigh fading. As a result, the average

sum-rate can be written in exponential integral form as [28], [29]

R̄sum(ρ) =
K∑

i=1

d∑

m=1

E

[
log2

(
1 +

P
d
|(wm

i )
∗Hi,if

m
i |2

σ2

)]
= Kd log2(e)e

1/ρE1

(
1

ρ

)
, (8)

which is written as a function of the per-stream SNR,ρ = P
dσ2 , andE1(η) =

∞∫
1

t−1e−ηtdt is an

exponential integral.

B. Interference Alignment with CSI from Training and Feedback

When the channels are not known perfectly, interference cannot be aligned perfectly. Mis-

alignment leads to “leakage interference”, which reduces the signal-to-interference-plus-noise

ratio (SINR) in the desired signal space. Moreover, imperfect knowledge of the direct channel

implies that receivers will perform mismatched decoding [30], again reducing effective SINR.

In this section, we examine the effect of imperfect CSI on theperformance of an IA system that

is optimized for perfect-CSI operation, i.e., a system thatdoes not consider CSI imperfection in

its design. Thus, the performance results demonstrated in this paper can be improved upon by

adopting precoding algorithms that are more robust to CSI errors such as [31].
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Consider an IA system in which transmitters use a common set of channel estimates as input to

an IA solution such as [1], [3]–[5], i.e., they calculate imperfect IA precoderŝFi and combiners

Ŵi. Denote the channel estimates asĤi,ℓ and the corresponding error as̃Hi,ℓ = Hi,ℓ− Ĥi,ℓ. In

this system, the IA solution satisfies

(ŵm
i )

∗Ĥi,k f̂
ℓ
k = 0, ∀(k, ℓ) 6= (i,m) (9)

∣∣∣(ŵm
i )

∗Ĥi,if̂
m
i

∣∣∣ ≥ c > 0, ∀i,m. (10)

We assume receivers obtain perfect knowledge of the combinersŴi and the imperfect effective

direct channelŝwm
i Ĥi,if̂

m
i for detection, an assumption similar to [7]–[9], [19], [32]1 whose

relaxation is a topic of future work. In general, receiver side information about the effective

channels can be acquired blindly [33] or via additional training or silent phases [16]. For such

an IA system, the received signal after projection is

(ŵm
i )

∗yi =

√
P

d
(ŵm

i )
∗Ĥi,if̂

m
i smi +

√
P

d

∑

k,ℓ

(ŵm
i )

∗H̃i,k f̂
ℓ
ks

ℓ
k + (ŵm

i )
∗vi, (11)

where we have used the fact that conditions (9) and (10) are satisfied, thus(ŵm
i )

∗Hi,k f̂
ℓ
k =

(ŵm
i )

∗(Ĥi,k + H̃i,k)f̂
ℓ
k = (ŵm

i )
∗H̃i,k f̂

ℓ
k.

Analyzing the maximum sum-rates achievable on the channel in (11) is in general difficult, as

it requires optimizing the distribution of the input symbols si for the interference channel in (11).

Recall, however, that our objective is to analyze a system optimized forperfect CSI operation, i.e.

one that does not account for CSI imperfection. This enablesmaking the following assumptions

that would be expected from a system optimized for perfect CSI operation.

Assumption 1: Transmitters use a typical Gaussian codebook made up of i.i.d. symbols to form

the symbol vectorssi. Such a signaling codebook, which was optimal for the interference free

channels created by IA with perfect CSI, may no longer be optimal now that CSI is imperfect.

Assumption 2: Receivers perform nearest neighbor decoding using the estimatesĤi,i. Nearest

neighbor decoding would again be optimal with perfect CSI. The nearest neighbor decoder, the

channel estimates and the signaling codebook together satisfy the conditions outlined in [30] for

1In fact [7], [8], [32] place a stronger assumption summarized by the receivers’ knowledge of the exact imperfect CSI known
to the transmitters. The two assumptions are functionally equivalent from the perspective of the sum-rate analysis, i.e., all that
is needed is the receivers’ knowledge ofŵ

m
i and of the scalarŝwm

i Ĥi,i f̂
m
i .
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Corollary 3.0.1 of [30] to hold with equality, meaning that the estimation error plays the role of

an additional source of Gaussian noise irrespective of its actual distribution.

Under Assumptions 1-2, and combining the results of [30] and[34], the average sum-rate

achieved can be written as

R̄sum(ρ) =

K∑

i=1

d∑

m=1

E


log2


1 +

P
d

∣∣∣(ŵm
i )

∗Ĥi,if̂
m
i

∣∣∣
2

∑
k,ℓ

E

[
P
d

∣∣∣(ŵm
i )

∗H̃i,k f̂
ℓ
k

∣∣∣
2
]
+ σ2





 (12)

where we note that the outer expectation is now only over the fading on the direct channel and

not the interference. Therefore, the leakage interferenceterms(ŵm
i )

∗H̃i,k f̂
ℓ
k indeed play the role

of independent sources of additive Gaussian noise, regardless of their distribution.

When the entries of̃Hi,k are zero-mean and uncorrelated with a variance ofσ2
H̃

, it follows that

E

[
P
d

∣∣∣(ŵm
i )

∗H̃i,k f̂
ℓ
k

∣∣∣
2
]
= P

d
σ2
H̃

, thus the denominator in (12) is simplyKPσ2
H̃
+ σ2. Moreover,

if the estimateŝHi,k are MMSE estimates ofHi,k, the entries of̂Hi,k have a variance of1−σ2
H̃

.

This results in an effective average SINR that can be writtenas

ρeff =
ρ(1− σ2

H̃
)

ρKdσ2
H̃
+ 1

, (13)

whereρ is the per-stream SNR defined in (8). If the estimated direct channelsĤi,i is Gaussian,

the average sum-rate achieved by IA with imperfect CSI is again given in exponential integral

form as

R̄sum(ρeff) = Kd log2(e)e
1/ρeffE1

(
1

ρeff

)
. (14)

To evaluate sum-rate achieved by IA, one must now characterize ρeff or equivalentlyσ2
H̃

. In

Section IV we specialize our result for a system with training and analog CSI feedback and later

optimize IA’s effective data rate with overhead in Section V.

IV. TRAINING AND ANALOG FEEDBACK

We propose to split the acquisition of CSI at the transmitterinto three main phases. First,

the transmitters train the forward channels via pilots. Second, the receivers train the feedback

channels via pilots, setting the stage for the forward transmitters to estimate the feedback

information in the next stage. Finally, the receivers feedback information about the forward



10

channels in an analog fashion, i.e., as unquantized complexsymbols. We can characterize the

CSI error introduced in the CSI acquisition phase by examining the three stages.

A. Forward and Feedback Channel Training

In the first training phase, each transmitterk sends an orthogonal pilot sequence matrixΦk,

i.e., ΦiΦ
∗
k = δikINT

, over a training periodτt [35]. Pilot orthogonality imposes the constraint

τt ≥ KNT. Each receiveri then observes theNR × τt matrix

Yi =

√
τtP

NT

K∑

k=1

Hi,kΦk +Vi, ∀i, (15)

whereVi is anNR×τt matrix of noise terms. UsingYi, receiveri calculates an MMSE estimate

of its incoming channelsHi,k ∀k given by

Ĥr
i,k =

√
τtP
NT

σ2 + τtP
NT

YiΦ
∗
k, ∀k. (16)

where the superscript(·)r emphasizes that̂Hr
i,k are the channel estimates gathered at the receiver

before they are relayed back to the transmitters and furthercorrupted. At the output of this first

training stage, the channel estimatesĤr
i,k have i.i.d.CN (0, τtP/NT

σ2+τtP/NT
) entries with corresponding

errorsH̃r
i,k ∼ CN (0, σ2

σ2+τtP/NT
).

The feedback channel training phase proceeds similarly. Namely, the receivers transmit orthog-

onal pilot sequences over a training periodτp ≥ KNR. The transmitters independently compute

MMSE estimates of their incoming channels, resulting in estimatesĜk,i ∼ CN
(
0,

τpPF
NR

σ2+
τpPF
NR

)

with corresponding error terms̃Gk,i ∼ CN
(
0, σ2

σ2+
τpPF
NR

)
.

B. Analog Feedback

After forward and feedback channel training, the receiversfeedback their channel estimates

Ĥr
i,k in an analog fashion during a feedback periodτf . This is accomplished by first post-

multiplying eachNR×KNT feedback matrix
[
Ĥr

i,1 . . . Ĥ
r
i,K

]
with a KNT× τf matrix Ψi such

that ΨiΨ
∗
k = δi,kIKNT

[9], [15]. The spreading matricesΨi orthogonalize the feedback from

different users and facilitate estimation. This orthogonality constraint requires thatτf ≥ K2NT.
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The transmittedNR × τf feedback matrix
←−
X i from receiveri can be written as [9], [15]

←−
X i =

√
τfPF

KNTNR

(
τtP/NT

σ2 + τtP/NT

)−1 [
Ĥr

i,1 . . . Ĥ
r
i,K

]
Ψi, (17)

where the leading scalar is to ensure that the average transmit power constraints are satisfied

with equality, i.e., one can verify thatE
[
trace

(←−
X i
←−
X∗

i

)]
= τfPF. We write the concatenated

KNT × τf matrix of feedback symbols observed by all transmitters as

←−
Y f =

√
τfPF

KNTNR

(
τtP/NT

σ2 + τtP/NT

)−1 K∑

i=1




Gi,1

...

Gi,K



[
Ĥr

i,1 . . . Ĥ
r
i,K

]
Ψi +V, (18)

whereV is theKNT × τf matrix of i.i.d Gaussian noise.

To simplify the performance analysis, we make the same assumption as in [9]: at the end of the

feedback phase, the transmitters cooperate by sharing their rows of the received feedback matrix
←−
Y f which enables them to form a unified estimate of the forward channelsHi,k. We refer the

reader to [9] for a discussion of this cooperative assumption and for alternative non-cooperative

approaches that are shown to perform close to this special case.

Under this cooperative assumption, the transmitters estimate Hi,k ∀k by first isolating the

feedback sent by receiveri. They post-multiply their received symbols byΨ∗
i to compute

←−
Y fΨ

∗
i =

√
τfPF

KNTNR

(
τtP/NT

σ2 + τtP/NT

)−1




Gi,1

...

Gi,K




︸ ︷︷ ︸
Gi

[
Ĥr

i,1 . . . Ĥ
r
i,K

]
+VΨ∗

i . (19)

The transmitters then compute a common linear MMSE estimateof the forward channelsHi,k ∀i, k
using their feedback channel estimatesĜi,k ∀i, k, and assuming thatKNT ≥ NR so that the

estimation problem is well posed. After a lengthy yet standard application of the orthogonality

principle and the matrix inversion lemma, the MMSE estimateis given by

Ĥi =

√
KNTNR

τfPf

(
τtP/NT

σ2 + τtP/NT

)−1 (
Ĝ∗

i Ĝi + γ1Ĝ
∗
i Ĝi + γ2INR

)−1

Ĝ∗
i

←−
Y fΨ

∗
i , (20)

where we have written (20) in terms of̂Hi =
[
Ĥi,1, . . . , Ĥi,K

]
∀i, the concatenated estimate
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of the channelsHi = [Hi,1, . . . , Hi,K] ∀i, for the sake of notational brevity. The constantsγ1

andγ2 are the MMSE regularization factors. For completeness,γ1 andγ2 are given by

γ1 =
NTσ

2

Pτt
, γ2 =

(
1 +

NTσ
2

τtP

)(
σ2KNTNR

τfPF
+

NRσ
2

σ2 + τpPF/NR

)
. (21)

In essence,γ1 captures the effect of the noise in the transmitted estimates Ĥr
i,k, while γ2 captures

the effect of the noise in the estimatesĜi,k as well as the noise observed during feedback.

Having formalized the three training and analog feedback stages, we now analyze the variance,2

σ2
H̃

, of the CSI errorHi,k − Ĥi,k, which automatically yields an estimated CSI variance of

1−σ2
H̃

. Unfortunately, writingσ2
H̃

exactly yields rather cumbersome expressions. For this reason,

we replace the variance of the MMSE estimation error by that of a zero-forcing estimator in

a manner similar to [16], [36]. This ZF simplification intuitively amounts to deriving a high

SNR result [16] and mathematically amounts to neglecting the constantsγ1 andγ2; recall that

moderately high SNR is after all the main operating region ofinterest for IA. Numerical results

in Section VI will demonstrate that the effect of this simplification is negligible.

By neglectingγ1 andγ2, and after some algebraic manipulation, we find that the error H̃i =

Hi − Ĥi at the end of the three training and feedback phases can be written as

H̃i =

√
1 +

NTσ2

τtP

[
H̃r

i +
(
Ĝ∗

i Ĝi

)−1

Ĝ∗
i

(√
1 +

NTσ2

τtP
G̃iĤ

r
i +

√
KNTNR

τpPf
VΨ∗

i

)]
. (22)

As can be seen from (22), the resulting CSI error is a combination of three terms: the first due

to forward channel estimation error̃Hr
i , the second due to feedback channel estimation error

G̃i, and the third due to feedback noise.

To derive the statistics of̃Hi, we note the following three facts about the three terms in (22):

1) The entries of̃Hr
i are uncorrelatedCN

(
0, σ2

σ2+
τtP

NT

)
variables as shown in Section IV-A.

2) Similarly, the entries of̃Gi are CN
(
0, σ2

σ2+
τpPF
NR

)
implying that G̃iĤ

r
i has independent

entries with variance equal toNRσ2

σ2+
τpPF
NR

τtPNT

σ2+τtP/NT
.

3) The entries ofV are uncorrelatedCN (0, σ2) variables and so are the elements ofVΨ∗
i

since the matrixΨi is unitary.

2We in fact derive the entire covariance matrix for the columns of Hi,k − Ĥi,k. We show that the covariance matrices are
scaled identities and thus the second order statistics of the error are entirely described by a scalar variance.



13

Combining the properties stated, the conditional covariance of each column of̃Hi denotedH̃(ℓ)
i ,

conditioned ofĜi is [9], [15]

E

(
H̃

(ℓ)
i H̃

(ℓ)∗
i |Ĝi

)
=

NTσ
2

τtP
INR

+

(
KNTNRσ

2

τfPF
+

NRσ
2

σ2 + τp
PF

NR

)(
Ĝ∗

i Ĝi

)−1

. (23)

Since the entries of the MMSE estimatêGi are Gaussian, the matrix
(
Ĝ∗

i Ĝi

)−1

has an inverse-

Wishart distribution [37]. Moreover, sincêGi has uncorrelated entries with a variance of
τpPF
NR

σ2+
τpPF
NR

,
(
Ĝ∗

i Ĝi

)−1

has a covariance matrix equal to a properly scaled identity [9], [15], [37]. Thus

marginalizing (23) overĜi, we find thatH̃i has independent columns with scaled identity

covariance matrices with diagonal entries given by

σ2
H̃
=

NTσ
2

τtP
+

σ2

(KNT −NR)PF

(
NR

2

τp
+

KNTNR

τf

(
1 +

NRσ
2

τpPF

))
. (24)

The same high SNR simplification adopted earlier to replace MMSE estimation error by ZF

estimation error, however, allows us to further simplify (24) by writing

σ2
H̃
=

NTσ
2

τtP
+

σ2

P (KNT −NR)

(
NR

2

γτp
+

KNTNR

γτf

)
, (25)

which completes the characterization of the distortion introduced by training and analog feedback.

Note: Finally, a word on applying the results of Section III to the analog feedback system

described. First, we note that the analog feedback system satisfies Assumption 2, and the

estimates yieldE

[
P
d

∣∣∣(ŵm
i )

∗H̃i,k f̂
ℓ
k

∣∣∣
2
]

= P
d
σ2
H̃

and E

[
P
d

∣∣∣(ŵm
i )

∗Ĥi,if̂
m
i

∣∣∣
2
]

= P
d
(1 − σ2

H̃
) as

needed. One subtlety though is that the fading on the feedback channel introduces non-Gaussian

terms into the estimateŝHi,i, yet (14) is only exact when the estimates are truly Gaussian. For

fairly accurate estimation, however,̂Hi,i can be well approximated by a Gaussian. Moreover, it

will be clear from the results of Section VI that the effect ofthis is negligible.

V. OPTIMIZING OVERHEAD AND EFFECTIVE SUM-RATE

Having formally quantified IA sum-rate as a function of SNR and CSI quality, and character-

ized CSI quality in terms of training and feedback resources, we redefine both the optimization
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problem and objective function as

R̄⋆
eff(P ) = max

τt,τp,τf

(
Tframe − (τt + τp + τf)

Tframe

)
R̄sum(ρeff), (26)

where we have used(·)⋆ to denote optimality. We note from (26) thatρeff depends onσ2
H̃

and

thus onτt, τp, andτf . The problem in (26) can be rewritten in a more tractable formas [19]

R̄⋆
eff(P ) = max

α
αmin≤α≤1


(1− α) max

τt, τp, τf
τt+τp+τf=αTframe

R̄sum(ρeff)


 , (27)

whereαmin = K(NT +NR +KNT)/Tframe and is dictated by the minimum number of training

and feedback symbols needed to render the estimation problems in Section IV well defined. The

inner maximization in (27) optimizes sum-rate for a fixed overhead length ofTOHD = αTframe

and the outer maximization finds the optimalα thereby completing the solution.

SinceR̄sum(ρeff) is decreasing inσ2
H̃

, the inner maximization step simplifies to

σ2⋆
H̃

= min
τt, τp, τf

NTσ
2

τtP
+

σ2

P (KNT −NR)

(
KNTNR

γτf
+

NR
2

γτp

)

s.t. τt + τp + τf = αTframe.

(28)

Although (28) is an integer problem, its continuous relaxation is convex. Applying standard

convex optimization techniques, the Lagrangian for the inner maximization is

Λ(τt, τp, τf , λ) =
NTσ

2

τtP
+

σ2

P (KNT −NR)

(
KNTNR

γτf
+

NR
2

γτp

)
+ λ (τt + τp + τf − αTframe) . (29)

Solving for the first order KKT conditions, we obtain the optimal training and feedback times

as a function of the total overhead budgetαTframe as

τt
⋆ =

√
γNT(KNT −NR)

µ
αTframe, τp

⋆ =
NR

µ
αTframe, τf

⋆ =

√
KNTNR

µ
αTframe,

whereµ =
√
γNT(KNT −NR) +NR +

√
KNTNR. After solving the problem’s continuous re-

laxation, convexity implies that for any given feasible overhead budgetαTframe simply examining

the few integer neighbors of the pointsτt⋆, τp⋆, τf⋆ yields the integer training and feedback times

that minimize CSI distortion, i.e., optimal integer training and feedback times can be found by a

simple search over the grid neighbors of the non-integer solution. Proceeding with the continuous
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relaxation, the minimum CSI distortion for an overhead budget αTframe is

σ2⋆
H̃

=
σ2
(√

KNTNR +NR +
√

γNT(KNT −NR)
)2

γP (KNT −NR)αTframe
. (30)

Having found the optimal allocation ofτt, τp, and τf for a fixed overhead budget, what

remains is to optimize the budget itself. The outer optimization in (26), however, does not admit

a closed form solution. To circumvent this problem, prior work on single user and broadcast

channels has specialized their results to the limiting highor low SNR regimes [18], [20], relied

on numerical optimization [9], or resorted to characterizing the scaling of overhead with various

system parameters based on sum-rate lower bounds [19]. To give accurate results on finite-SNR

sum-rate, we propose to optimize a series expansion of (3) with respect to the channel’s Doppler

spread around the pointfD = 0 [17]. Recall thatTframe which we have been using thus far is

related tofD by the relationshipTframe =
1

2fD
. To that end, we give the following result on the

series expansion of̄Reff(P, TOHD).

Proposition 1: The effective sum-rate achieved by IA with training and feedback expands as

R̄eff(P, TOHD) =(1− α)(1 + ρKd)

[
R̄sum(ρ)

1 + ρKd
− 2β

dα
Ṙsum(ρ)fD

+

(
2β

dα

)2 (
R̈sum(ρ)(1 + ρKd) + 2KdṘsum(ρ)

) fD
2

2

]
+O(fD

3),

(31)

where

β =

(√
KNTNR +NR +

√
γNT(KNT −NR)

)2

γ(KNT −NR)
, (32)

whereasṘsum(ρ) and R̈sum(ρ) are the first and second derivatives ofperfect CSI sum-rate,

R̄sum(ρ), which can be conveniently expressed as

Ṙsum(ρ) =
1

ρ

(
Kd log2(e)−

R̄sum(ρ)

ρ

)
, R̈sum(ρ) = − 1

ρ2

(
Kd log2(e) + Ṙsum(ρ)− 2

R̄sum(ρ)

ρ

)
. (33)

Proof: Given in Appendix A.

Thus, by expanding effective sum-rate w.r.t.fD, we have transformed the complicated non-

linear dependence of effective sum-rate on system parameters such asP , Tframe, fD, andTOHD to

a simpler polynomial dependence. The expansion in Proposition 1 can now be used to derive the
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expansion of the optimal overhead budget,α⋆, along with the performance it achieves. Relaxing

the constraint that the overhead fractionα must be rational, simply differentiating the series

expansion in Proposition 1 and equating it to zero yields theoptimal overhead budgetα⋆.

Proposition 2: The optimum overhead fractionα⋆ for an IA system with training and analog

feedback expands as

α⋆ =

√
2β(1 + ρKd)

d

Ṙsum(ρ)

R̄sum(ρ)
fD −

β

d

(
R̈sum(ρ)

Ṙsum(ρ)
(1 + ρKd) + 2Kd

)
fD +O(fD

3/2), (34)

which results in the optimal effective sum-rate

R̄⋆
eff(P ) =R̄sum(ρ)− 2

√
2β

d
(1 + ρKd)Ṙsum(ρ)R̄sum(ρ)fD +O(fD). (35)

Note that iffD is large enough thatα⋆ < αmin the optimal overhead budget must be adjusted to

αmin and the expression for̄R⋆
eff(P ) correspondingly updated.

Proof: The proof follows directly from differentiating the expansion in Proposition 1 w.r.t.

α and solving the resulting cubic polynomial for its relevantroot.

Therefore, Proposition 2 along with the solution to (28) gives the effective sum-rate-maximizing

amount of forward training, feedback channel training, andanalog feedback as simple functions

of fundamental system parameters such as SNR, Doppler spread (equivalentlyTframe), and

perfect CSI sum-rate. Numerical results in Section VI will show that the overhead expansion in

Proposition 2 is accurate for a wide range of system parameters and can thus obviate the need

for numerical overhead optimization. Furthermore, the derived results allow us to draw several

interesting insights into IA system design and performance:

1) The optimal overhead budgetα scales with
√
fD. As stated, for high enough Doppler

α⋆, must be adjusted toαmin meaning that overhead subsequently increases withfD. This

scaling behavior is in line with previous results on other single and multiuser channels.

2) The sum-rate penalty due to overhead and imperfect CSI behaves similarly, i.e., increases

with
√
fD initially and with fD at high Doppler.

3) Examining the leading term inα⋆ we note that, similarly to [17], the term(1+ρKd) Ṙsum(ρ)

R̄sum(ρ)

behaves likeKd/ loge(1 + ρ) and thus the optimal overhead budget decreases with SNR

roughly as
√

Kd/ loge(1 + ρ).

4) Since overhead decreases with SNR, a minimum overhead interval ofKNT+KNR+K2NT
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is always optimal at sufficiently high SNR. Thus, the effective number of spatial DoF

achieved by IA with the analog feedback strategy described is
(
1− KNT+KNR+K2NTNR

Tframe

)
Kd,

i.e., the DoF penalty increases linearly withfD.

5) Again examining the leading term inα⋆ we note that it increases with
√
β. Recalling

the definition ofβ in (32), we conclude that the optimal overhead budget increases with
√

P/PF. This formalizes the relationship between overhead and feedback link quality.

In addition to highlighting the dependence of overhead and effective sum-rate on various system

parameters, the derived results can provide simple answersto various network design questions.

For example, by simply comparing IA’s effective sum-rate expression to those achieved by

other transmission strategies, one can choose the optimal transmission strategy for a given

fading environment. Moreover, since overhead and channel selectivity have been shown to place

fundamental limits on the gains of cooperation in wireless network [38], the overhead-aware

analysis presented in this paper can help in determining theoptimal number of cooperative IA

users at a given level of selectivity.

Consider, as a simple example, aK-user single-stream cooperation cluster with a variable

number of antennas in which extra users are allowed to cooperate via IA if they do not incur a loss

in effective sum-rate, else the extra users are not allowed access to the propagation medium and

presumably left to transmit on a separate channel. In this model, additional cooperating users can

be incorporated into the cluster as long asI⋆K+1(P )−I⋆K(P ) > 0 where we have made cluster

size explicit in the effective sum-rate subscript. Consequently, the effective sum-rate-maximizing

cluster size becomes the smallestK such thatI⋆K+1(P ) − I⋆K(P ) < 0. Moreover, note that

minimizing overhead and maintaining IA feasibility imposes the constraintNT+NR = K+1 [23].

Thus, writingNT andNR in terms ofK, e.g.NT = ⌈(K + 1)/2⌉, the user admission rule can

be simplified to a function of onlyK, fD, SNR, andγ. To simplify the user admission rule even

further, we make the following approximations: (i) we consider the leading term in̄Reff(P, TOHD)

thus focusing on IA’s effective DoF given in the fourth observation after Proposition 2, (ii) we

assume thatNT = (K + 1)/2 and thus relax its integer constraint. Using these simplifications,

the user admission ruleI⋆K+1(P )− I⋆K(P ) > 0 simplifies to

4K3 + 15K2 + 17K + 6 <
1

fD
, (36)



18

i.e., aK-user cluster can be extended toK + 1 as long as (36) is satisfied. Interestingly, this

implies that in such single-stream IA scenarios the effective sum-rate-maximizing cluster size

grows with fD
−1/3. While the approximate admission rule is a rather simplifiedversion of

I⋆K+1(P )− I⋆K(P ) > 0, we show in Section VI that it is very accurate at predicting optimal

cluster size. Finally, we note that while we provide this example to illustrate problems that can

be solved using our analysis, the rule in (36) is by no means universal. When parameters such

as large-scale fading or uncoordinated interference are considered, both the analysis and the

admission rule must be adjusted.

VI. SIMULATION RESULTS

Consider a three-user IA cluster with two transmit antennas, two receive antennas, and one

spatial stream per user and letγ = PF

P
= 1. Fig. 3 shows the effective sum-rate achieved by

IA in systems with various levels of mobility or normalized Doppler spreads,fD. To quantify

the degradation in effective sum-rate caused by overhead and imperfect CSI, we include the

performance of a baseline genie-aided system in which CSI isboth perfect and free. Fig. 3

indicates that IA achieves good performance in a system withvehicular-levels of mobility. In fact,

if typical wireless parameters are adopted, such as a wavelength of λ = 0.15 m (corresponding

to a carrier frequency of 2 GHz), a coherence bandwidth ofWC = 300 kHz, and a normalized

Doppler given byfD = v
λWC

where v is the user’s velocity, Fig. 3 indicates that IA could

theoretically perform well even at a speed of more than160 km/hr. The rate of performance

degradation over a wider range of Doppler spread can be seen in Fig. 4. Both Figs. 3 and 4

indicate that the analytical results of Section V are very effective in optimizing the effective sum-

rate of IA systems as the resulting performance closely matches that of a numerically optimized

system. Finally, Fig. 3 indicates that the effect of the simplifying assumptions made in Section

IV is negligible since the effective sum-rate predicted by the derived rate expressions closely

matches simulated IA performance. A very slight deviation is noticed at very low SNR where

the ZF simplification in Section IV is a less accurate approximation of MMSE performance.

Fig. 5 shows the optimal overhead budget for systems with varying frame lengths and again

includes both the analytical overhead budget from Section Vas well as the result of numerically

optimizing the same system. Fig. 5 confirms thatTOHD increases with frame sizeTframe at a

rate proportional to
√
Tframe. Thus α⋆ indeed decreases with 1√

Tframe
, as shown in Fig. 6, or
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equivalently increases with
√
fD (and withfD for sufficiently high Doppler). Fig. 5 also shows

that the expansion in Proposition 2 provides an accurate characterization of IA’s effective sum-

rate-maximizing overhead budget over a wide range of SNRs and frame sizes. Fig. 7 in turn

verifies the decrease ofα⋆ with SNR, which as stated in Section V follows the relationship

α⋆ ∼
√

loge(1 + ρ)−1. To complete the characterization of overhead and effective sum-rate, Fig.

8 quantifies the deleterious effect of a weak feedback channel on overhead and effective sum-rate.

Fig. 8 also indicates that the expansion results of Section Vcould significantly underestimate

α⋆ in very weak feedback channels, though the final effect on throughput remains limited.

Finally we examine the efficiency of our overhead analysis infurther network design. We

consider the motivating example given in Section V of aK-user system for which we seek to

optimize the cooperation cluster size as a function of mobility. Fig. 9 shows the optimal cluster

size as a function ofTframe for an IA system at 35 dB SNR. Fig 10 shows the corresponding

effective sum-rate achieved. We plot the cluster size and effective sum-rate resulting from (i) an

exhaustive search over all possibleK, and (ii) the simple overhead-based user admission rule

in (36). We note that the cluster size predicted by the two methods are in close agreement, and

that the asymptotic cube-root relationship predicted in Section V between optimal cluster size

andTframe is quite accurate even for small values ofK. While the overhead-based rule tends to

underestimate cluster size for small intervals ofTframe, Fig. 10 indicates that the resulting rate

gap from optimal sizing is negligible. The same can be said about the rate loss when applying

the same overhead based rule to a system at an SNR of 10 dB and a system withγ = 10−2.

VII. CONCLUSION

We considered IA’s effective sum-rate in practical systemswhere CSI is imperfect and comes

with an associated overhead cost. We showed that training and feedback overhead can be

optimized to ensure good IA performance over a wide range of SNR and Doppler spread. We

quantified the dependence between overhead and various system parameters such as feedback link

quality. More sophisticated precoding algorithms, designed to be robust to imperfect CSI, could

further improve the demonstrated performance and thus remain a promising area for future work.

The derived results provide a formal method to gauge true IA performance vs. other transmission

strategies, and can thus highlight settings under which IA provides tangible gains. The derived

analysis can also be used for further network design as demonstrated by the motivating example
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given at the end of Section V on overhead-aware user admission and optimal network sizing.

APPENDIX A

PROOF OFPROPOSITION1

To expand effective sum-rate aroundfD = 0, we start computing its first order derivative

∂R̄eff(P, TOHD)

∂fD
= (1 − α)Ṙsum(ρ)

∂ρeff

∂fD
|fD=0 = −(1− α)Ṙsum(ρ)(1 +Kdρ)

2β

dα
(37)

where ∂ρeff
∂fD
|fD=0 is evaluated by noticing that after solving the inner maximization in (28) and

obtainingσ2
H̃

⋆ in (30) we have
∂σ2

H̃

∂fD
|fD=0 =

2β
dα

. The termṘsum(ρ) can be obtained by a standard

derivation of the exponential integral rate expression in (8) w.r.t ρ and is given directly in the

statement of Proposition 1;̈Rsum(ρ) is obtained similarly. As for the second order term, we have

∂2R̄eff(P, TOHD)

∂fD
2 = (1− α)

[
R̈sum(ρ)

(
∂ρeff

∂fD

)2

+ Ṙsum(ρ)
∂2ρeff

∂fD
2

]
|fD=0

(a)
= (1− α)


R̈sum(ρ)

(
∂ρeff

∂fD

)2

+ Ṙsum(ρ)


 ∂2ρeff

∂σ2
H̃

⋆2

(
∂σ2

H̃

⋆

∂fD

)2

+
∂ρeff

∂σ2
H̃

⋆

∂2σ2
H̃

⋆

∂fD
2




 |fD=0

(b)
= (1− α)

(
2β

dα

)2

(1 + ρKd)
(
R̈sum(ρ)(1 + ρKd) + 2KdṘsum(ρ)

)
(38)

where(a) expands∂
2ρeff
∂fD

2 for clarity and(b) is by noticing that
∂2σ2

H̃

⋆

∂fD
2 = 0 sinceσ2

H̃

⋆ is linear in

fD and otherwise replacing the values of the different variables. Combining (37) and (38) we

get the resulting second order expansion. Higher order expansions can be found if additional

accuracy is needed, however, the second order expansion is in general sufficient.
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due to both imperfect CSI and overhead and shows that the performance predicted by the analytical results presented is an
accurate representation of optimal performance.
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Fig. 5. TOHD vs. Tframe. This confirms that the optimal value ofTOHD scales with
√
Tframe as predicted, and shows that

optimizing a series expansion of the objective yields remarkably accurate results.
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Fig. 8. This figure shows the relationship betweenα⋆ and R̄⋆
eff(P ) with the feedback channel’s relative quality for a system

with Tframe = 104. Plot (a) verifies the increase of overhead with1/γ, when plot in linear scale the square root rate of increase
can be verified. Plot (b) verifies the rate of decrease of optimal effective sum-rate with feedback link quality.
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Fig. 9. Optimal Cluster Size vs.Tframe. This shows the optimal number of users to coordinate via IA which increases channels
coherence time. This also shows that comparing overhead, i.e., overhead based selection, provides accurate decisionson optimal
cluster size.
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sub-optimal overhead-only based cluster sizing.


