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On the Overhead of Interference Alignment:

Training, Feedback, and Cooperation

Omar El Ayach, Angel Lozano, and Robert W. Heath, Jr.

Abstract

Interference alignment (IA) is a cooperative transmissitrategy that, under some conditions,
achieves the interference channel's maximum number ofedsgof freedom. Realizing 1A gains,
however, is contingent upon providing transmitters witlffisiently accurate channel knowledge. In
this paper, we study the performance of IA in multiple-inputiltiple-output systems where channel
knowledge is acquired through training and analog feedbAkekdesign the training and feedback system
to maximize |A's effective sum-rate: a non-asymptotic periance metric that accounts for estimation
error, training and feedback overhead, and channel sétgctiVe characterize effective sum-rate with
overhead in relation to various parameters such as sigradise ratio, Doppler spread, and feedback
channel quality. A main insight from our analysis is that, fmpperly designing the CSI acquisition
process, IA can provide good sum-rate performance in a vég wange of fading scenarios. Another
observation from our work is that such overhead-aware aigaban help solve a number of practical
network design problems. To demonstrate the concept oheeel-aware network design, we consider
the example problem of finding the optimal number of coopezd users based on signal power and

mobility.

|. INTRODUCTION
Interference alignment (1A) for the multiple-input muliggoutput (MIMO) interference chan-
nel is a cooperative transmission strategy that attempssrirwture interfering signals such that
they occupy a reduced dimensional space when observed aedb&ers [1], [2]. Alignment
often enables achieving the maximum number of degrees efldma (DoF) [1], [2]. Precoding
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transmitted signals to carefully align them at the recaivbowever, requires knowledge of the
interfering channels in the system, collectively known aarmel state information (CSI). Perfect
CSIl is assumed to be available when designing most IA algost[1], [3]-[5] or reporting
genie-aided IA gains. Practical systems, however, acqgageiver CSI with the help of training
sequences or pilots [6]. Such CSI can then be shared withrémsrhitters via feedback. As
a result, practical CSI is imperfect and comes with an owathggnaling cost, both of which
penalize the effective data rates achieved. Realizing éivesgof IA is therefore contingent upon
providing systems with sufficiently accurate CSI at a maabatgeoverhead cost.

Several approaches have been proposed to fulfill IAs tran€&iBl requirement [7]-[9],
typically assuming perfect CSI at the receiver. The feeklbgtcategy in [7] proposes to use
Grassmannian codebooks to compress and improve CSI fdentbsiogle-antenna frequency ex-
tended IA systems. The feedback strategy was then extendedltiantenna frequency extended
systems in [8]. Both [7] and [8] guarantee that limited feadbpreserves the number of DoF by
scaling the number of feedback bits with SNR, thus makingebodks prohibitively large [10].
To overcome the problem of scaling codebook size, and rakardliance on frequency selectivity
for quantization, [9] proposed an analog feedback strafegyconstant MIMO interference
channels. Using analog feedback, a constant data rate gapgderfect CSI performance was
shown, as long as the SNRs on the forward and feedback lieksrder-wise equal. A limitation
of the analysis in [7]-[9], however, is that the number of Drefmains the primary performance
metric considered. IA's sum-rate performance at finite SB$pecially when accounting for the
time spent on overhead signaling, has yet to be considered.

Attempts to more directly analyze or reduce overhead aréddto [11]-[14]. To analyze
the effect of overhead, [11] considers the effective nundbespatial DoF of an IA system with
training and feedback. By considering DoF, however, [11plicitly characterizes performance
at infinitely high SNR. Alternatively, [12] reduces codelosize to limit overhead in limited
feedback IA systems by leveraging temporal correlatiormeit providing any overhead-aware
analysis. In another line of work, information about thewwk topology is used to partition
users into optimally sized alignment groups [13]. In [14}, ik applied to partially connected
interference channels. User grouping and partial conviggthowever, only reduces the number
of channels that must be shared without suggesting an effiti@ining and feedback strategy.

In this paper, we characterize the performance of a MIMO IAtesn that is designed



for perfect CSI operation yet only has access to imperfedt t@®ugh training and analog
feedback [9], [15], [16]. Thus, the performance demonsttan this paper constitutes a lower
bound for systems that are designed to be more robust to fegpeCSI through improved
precoding strategies such as [31] for example. We adopt ekifmling model wherein the
channel remains constant over the block length, and vandependently across blocks. In
contrast with earlier work on IA with feedback, we precisehodel channel selectivity by
leveraging the relationship between block-fading and icoous-fading channels shown in [17].
This relationship allows us to define the concept of Doppfeead in a block fading channel
and explicitly relate the size of the coherence block to thappler spread. Since both CSI
acquisition and data transmission must now occur withinlithés of a single coherence block,
the IA system is faced with a non-trivial tradeoff: too muchethead leaves little time for
payload data transmission, whereas too little overheadltses large sum-rate losses due to
poor CSI quality [17]-[21]. In this paper, we design theriag and analog feedback system to
maximize IAs effective sum-rate, a non-asymptotic performance metric that accounts foh bot
CSI quality and CSI acquisition overhead. CSI acquisitiorrbead is a fundamental concept
that was largely neglected in earlier work on IA with impetf€SlI.

We begin by giving a tractable expression for the 1A sum-iatgenie-aided systems with
perfect CSI, and extend the analysis under a general modehferfect CSIl. We then specialize
our results to a system with training and analog feedback Haracterizing CSI quality as a
function of system parameters such as training overheadptek overhead and transmit power
on both forward and reverse links. This results in a traetaxpression for I1As effective sum-
rate, which we proceed to optimize. To give a closed-fornutsmh for the optimal effective
sum-rate, we build on the method in [17] and optimize a seeigsansion of the objective
function. Initial results were reported in our previous Ww¢2?2]. In this paper, we complete 1A's
performance analysis by analytically characterizing isximum achievable effective sum-rate
and the corresponding optimum overhead budget. The maighitssand conclusions that can
be drawn from the effective sum-rate analysis can be sumapthas follows:

« Practical IA performance is not only a function of basic systparameters such as network

size and SNR, but is tightly related to quantities such aspBpspread, and feedback
channel quality. Moreover, the dependence of both the maxireffective sum-rate, and

the corresponding optimal overhead budget, on the varigsteis parameters can be char-



acterized accurately.

« By properly designing the training and feedback stages,dA lee made both feasible and
beneficial in a wide range of fading scenarios, even wheneitively high overhead is
considered.

« Overhead-aware analysis is essential to the design of IWorks. As an example of this
observation, we use the overhead analysis to give simplatsesn the optimal number of
cooperative IA users for channels with varying levels oksgVity.

Throughout this paper, we use the following notatidn:is a matrix;a is a vector;a is a

scalar;(-)* denotes the conjugate transpo$a|| denotes the-norm of a; |a| is the absolute
value ofa; Iy is the N x N identity matrix;CN (a, A) is a complex Gaussian random vector

with meana and covariance matriA; (ai,...,a) is an ordered seff [-] denotes expectation.

II. SYSTEM MODEL

Consider theK-user narrowband MIMO interference channel shown in Fig.nlwhich
transmitter; communicates with its paired receivérand interferes with all other receivers,
¢ # 1. For simplicity of exposition, consider a homogeneous o&tvwhere all transmitters are
equipped withV antennas and all receivers witfy, antennas, and each node pair communicates
via d < min(Nt, Ng) independent spatial streams. The results can be generatize different
number of streams or antennas at each node, provided thanhains feasible [23].

Assuming perfect time and frequency synchronization, #émeed baseband signal at receiver

P P
Yi =1/ EHHFZSZ + ; \/ EHZ‘,ZFZSZ + vy, (1)

wherey; is the Ny x 1 received signal vector is the transmit powerH,, is the Ny x

7 can be written as

Nt discrete-time effective baseband channel matrix fromstratier / to receiveri, F;, =

[f}, ce fid] is transmitteri’s Nt x d precoding matrixs; is the d x 1 transmitted symbol
vector at node; such thatE [s;sf] = I;, andv; is a vector of i.i.d complex Gaussian noise
samples with covariance matrikIy,. The channeldi;, are assumed to be independent across
users and each with i.i.dA(0,1) entries. Large-scale fading can be included in the system

model at the expense of a more involved exposition in Sedtion



The received signal dtansmitter i on the feedback channel is

Pr Pr
Fim iy G L G @

where Py is the feedback power available such ti&t/ P = v, G, is the Ny x Ny discrete
time feedback channel between receiveand transmitteri with i.i.d CA/(0,1) entries, % is
the symbol vector with unit variance entries sent by regeivand ¥, is a complex vector of
i.i.d circularly symmetric white Gaussian noise with caaace matrixo*In... The forward and
feedback channels are assumed to be independent in theamatyrsis of Section 1V, i.e., a
frequency division duplexed system or a general non-recgirsystem is assumed.

We adopt a block-fading channel model in which channels nerftged for a period, I}, ame,
but vary independently from block to block. To model the efffef channel selectivity on 1A
performance, we set the block length T@.... = % where fp plays the role of the block
fading channel'sffective Doppler spread. The definition of f, is motivated by the results in
[17] showing a relationship between continuous fading almtkofading systems. To enable
IA over such a channel, both CSI acquisition and payload ttatesmission must occur within
the coherence timét....., or else the CSI acquired becomes obsolete. The IA system the
encounters a well-known tension between CSI acquisiti@hdata transmission [17]-[21], and
must allocate resources to each of the processes to optoneeall performance.

To account for CSI acquisition overhead, and to accuratedyacterize theffective data rate
achieved by IA, we adopt the overhead model shown in Fig. thisxmodel, overhead signaling
consumes time resources that could otherwise be used ®trdatsmission, i.e., CSI acquisition
penalizes effective sum-rate. For such an overhead mdueleffective sum-rate (in bits/s/Hz)
can be written as [17]-[19]

D, Tramo - T D,
Reg (P, Tonp) = (%) Reum (P, Tonp) (3)
where Toyp is the total time spent on training and feeding back chanmeld R...(P, Toup)

is the average sum-rate in bits/s/Hz achieved by IA on thewmdlauses allocated for payload
transmission. Using (3), and previous insights into IA perfance, we highlight the tradeoff
between overhead signaling and data transmission. Inogeaserhead improves CSI quality

and in turn improvesi,..,(P, Toup), but the relative period over whicR,,,, (P, Toup) can



be achieved shrinks. A similar tension exists when lowewgrhead; less overhead allows
more channel uses for data transmission but the sum-ratehaemel use suffers due to poor
CSI quality. The objective then becomes maximizing the atife sum rate given in (3) by
optimally trading off overhead with data transmission HZJL]. Throughout this paper, we treat
Roun (P, Tonp) as an information-theoretic quantity, and thus derive muinformation-based
sum-rates achievable without errors. IA performance caa bé analyzed from the perspective
of fixed-rate transmission where metrics such as bit errar maay be of interest [24].

IIl. INTERFERENCEALIGNMENT: AN AVERAGE SUM-RATE ANALYSIS

This section derives the average sum-rate achieved by IAtin genie-aided networks where

channels are known perfectly, as well as practical systehesavCSI is imperfect.

A. Interference Alignment with Perfect CS

IA often achieves the full number of DoF supported by MIMQeirierence channels. In cases
where the full DoF cannot be guaranteed, IA has been showrotade significant gains in high-
SNR sume-rate [3], [4], [25]. While this paper focuses on |A&ee better performance could be
achieved with other precoding algorithms that seek a bal&etween interference minimization
and signal power maximization [3], [26], [27]. The algoritik in [3], [26], [27], however, do
not readily lend themselves to average sum-rate analysis.

To analyze IA sum-rates, we begin by examining the effeathannels created after precoding
and combining. For tractability, we focus on IA with a simgder-stream zero-forcing (ZF)
receiver. Recall that in the high (but finite) SNR regime, vehBA is most useful, gains from
more involved receiver designs are limited. In such a systegeiver: projects its signal onto

the columns of the zero-forcing combin®, = [w!, ..., w™, ..., wd] which gives

Z ? K3 7

P
(W) =y g (Wi HLA s + \/ W) Hfls, (W) Ve (@)

(zm

At the output of these linear receivews™, the conditions for perfect IA can be stated as [4]

(wi") Hixfy =0, V(k, £) # (i,m) ()

|(w!")"H, "] > ¢ >0, Vi, m, (6)



where alignment is guaranteed by (5), and (6) is satisfiedstisurely [1], [4].
As a result of conditions (5) and (6), the combination of |1Alat effectively create#d non-
interfering scalar channels. The maximum mutual infororaticross these channels is achieved

via Gaussian signaling which yields an instantaneous aiegiven by

LY | (w) H £
Rom = Z Z log, (1 + 4 = ’ . (7)

i=1 m=1

To derive an expression for the average sum-rate .8,, = E [ R.uu|, We first give the following
lemma.

Lemma 1 ([9, Appendix A]): The effective direct channe(sv!")*H, ;,f/* are independent and
Gaussian distributed with unit variance if: (i) the precsdE,; are unitary and are generated by
an IA solution that does not consider the direct chani®ls, and (ii) the combinerd¥; are
calculated to simply zero-force inter-user and interastranterference.

The conditions Lemma 1 places on precoder and combinerlatitu are satisfied by most 1A
solutions such as [1], [3]-[5]. Hence, as a result of Lemmtné&,scalar point-to-point channels
created by the combination of IA and ZF experience Rayleagting. As a result, the average

sum-rate can be written in exponential integral form as,[239]

d Po(wm™VH. fm|?
Roun(p) =Y ) E |log, <1+ g |(wi") Hi A7 )] = Kdlog,(e)e'/? B, G) (8)

2
i=1 m=1 g P

which is written as a function of the per-stream SNR- -L;, and E\ () = [ ¢~ 'e "dt is an
1

exponential integral.

B. Interference Alignment with CS from Training and Feedback

When the channels are not known perfectly, interferencenaabe aligned perfectly. Mis-
alignment leads to “leakage interference”, which redudes gignal-to-interference-plus-noise
ratio (SINR) in the desired signal space. Moreover, immtrkgmowledge of the direct channel
implies that receivers will perform mismatched decodin@][&gain reducing effective SINR.
In this section, we examine the effect of imperfect CSI onghgormance of an 1A system that
is optimized for perfect-CSI operation, i.e., a system ti@s not consider CSI imperfection in
its design. Thus, the performance results demonstratelisnpaper can be improved upon by

adopting precoding algorithms that are more robust to CRirersuch as [31].



Consider an IA system in which transmitters use a commonfsdtamnel estimates as input to
an IA solution such as [1], [3]-[5], i.e., they calculate ienfect 1A precoder@i and combiners
\/7\\71-. Denote the channel estimatesfagg and the corresponding error gE’g =H,;,— IA{M. In

this system, the IA solution satisfies

(WY H 8 =0, V(k,0) # (i,m) 9)
(WY H, £ > ¢ > 0, Vi, m. (10)

We assume receivers obtain perfect knowledge of the comﬂ/ﬁe and the imperfect effective
direct channelsﬁr?ﬁi,iflm for detection, an assumption similar to [7]-[9], [19], [32}hose
relaxation is a topic of future work. In general, receivadesinformation about the effective
channels can be acquired blindly [33] or via additionalrirag or silent phases [16]. For such

an IA system, the received signal after projection is

(W")yi = E(Wi ) H £ s 4 EZ(Wz ) H, pfs), + (W) v, (11)
"t

where we have used the fact that conditions (9) and (10) aisfied, thus(v?/gn)*HM/f\,f =
(W) (Hog + Hi)ff = (W77) Hiff.

Analyzing the maximum sum-rates achievable on the chamn@l) is in general difficult, as
it requires optimizing the distribution of the input symss) for the interference channel in (11).
Recall, however, that our objective is to analyze a systetimiged for perfect CS operation, i.e.
one that does not account for CSI imperfection. This enatlasing the following assumptions
that would be expected from a system optimized for perfedt dp@ration.

Assumption 1. Transmitters use a typical Gaussian codebook made updfayimbols to form
the symbol vectors;. Such a signaling codebook, which was optimal for the ieterice free
channels created by IA with perfect CSI, may no longer benagitinow that CSI is imperfect.

Assumption 2: Receivers perform nearest neighbor decoding using thmamsﬁi,i. Nearest
neighbor decoding would again be optimal with perfect C3le hiearest neighbor decoder, the

channel estimates and the signaling codebook togethefystie conditions outlined in [30] for

n fact [7], [8], [32] place a stronger assumption summatibg the receivers’ knowledge of the exact imperfect CSI kmow
to the transmitters. The two assumptions are functionajlyhvalent from the perspective of the sum-rate analysss, all that
is needed is the receivers’ knowledgewf* and of the scalarsv;"H; ;f]".



Corollary 3.0.1 of [30] to hold with equality, meaning thaetestimation error plays the role of
an additional source of Gaussian noise irrespective ofcitisadh distribution.
Under Assumptions 1-2, and combining the results of [30] [B8#], the average sum-rate

achieved can be written as

~ o~ |2
5|y H

— 12)
== e [2 @) Bud[] +o
it

where we note that the outer expectation is now only over aden§ on the direct channel and
not the interference. Therefore, the leakage interferdaelms(x?v?)*ﬁi7kf,§ indeed play the role
of independent sources of additive Gaussian noise, reggdlf their distribution.

When the entries oﬁi,k are zero-mean and uncorrelated with a varianoezﬁofit follows that

~ o~ 2

E {% ‘(W;”)*Hika,f) } = ga%l, thus the denominator in (12) is simply PoZ + . Moreover,

if the estimatesﬁivk are MMSE estimates dfl, ;, the entries oﬁi,k have a variance 01—0%.

This results in an effective average SINR that can be wrigten
p(l—o%)

=— 13
pKdUI%I—O—l’ (13)

Peft

wherep is the per-stream SNR defined in (8). If the estimated dirbahnelsﬁm- is Gaussian,
the average sum-rate achieved by IA with imperfect CSI isragaven in exponential integral

form as

_ 1
R (perr) = Kdlog,(e)e'/ 7 I ( ) : (14)
Peft
To evaluate sum-rate achieved by IA, one must now charaetegj; or equivalentlya%. In
Section IV we specialize our result for a system with tragnamd analog CSI feedback and later

optimize |A’s effective data rate with overhead in Section V.

V. TRAINING AND ANALOG FEEDBACK

We propose to split the acquisition of CSI at the transmiitéo three main phases. First,
the transmitters train the forward channels via pilots.oBe€g the receivers train the feedback
channels via pilots, setting the stage for the forward tratisrs to estimate the feedback

information in the next stage. Finally, the receivers fedbinformation about the forward
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channels in an analog fashion, i.e., as unquantized congyleols. We can characterize the

CSI error introduced in the CSI acquisition phase by examgirthe three stages.

A. Forward and Feedback Channel Training

In the first training phase, each transmitiesends an orthogonal pilot sequence mafpix
i.e., ®,®; = d;.In,, Over a training period; [35]. Pilot orthogonality imposes the constraint

7. > K Nt. Each receivei then observes th&y x 7, matrix

K
TP .
\/ Ny ; K PE T { (15)

whereV, is an Ny x 7, matrix of noise terms. UsinY;, receiveri calculates an MMSE estimate

of its incoming channel$d; , VE given by

TP
0, = V" v.&, Vk (16)

where the superscrigt)” emphasizes theIAﬁ;.“vk are the channel estimates gathered at the receiver

before they are relayed back to the transmitters and fudbeupted. At the output of this first

7t P/Np

m) entries with corresponding

training stage, the channel estimafégk have i.i.d.CN (0,

2

errorsf{;k ~ CN(0, =—Z5~—)-

? U2+T¢P/NT
The feedback channel training phase proceeds similaripelig the receivers transmit orthog-

onal pilot sequences over a training perigd> K Ni. The transmitters independently compute

. p PR
MMSE estimates of their incoming channels, resulting irinestesGy,; ~ CN | 0, %)
o N—R

with corresponding error terrrék,i ~CN (0 L)

9 Tp P,
2 DF
ot ——

Nr

B. Analog Feedback

After forward and feedback channel training, the receifeesiback their channel estimates
ﬁ;k in an analog fashion during a feedback perigd This is accomplished by first post-
multiplying eachNg x K Ny feedback matri><[ﬁ;”,1 HY K] with a K N¢ x 7; matrix ¥; such
that ¥, W; = 6; .Ixn, [9], [15]. The spreading matrice®; orthogonalize the feedback from
different users and facilitate estimation. This orthoditw@&onstraint requires that; > K?Nr.
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The transmittedVy x 7¢ feedback matri&i from receiveri can be written as [9], [15]

TfPF TtP/NT -t [ -~
X, = far, .\ ]\p 17
\/KNTNR 02+TtP/NT [ K an

where the leading scalar is to ensure that the average titapsmer constraints are satisfied

with equality, i.e., one can verify tha [trace (§Z§j> = 1 Pr. We write the concatenated
K Nt x 7 matrix of feedback symbols observed by all transmitters as

Gia

TfPF TtP/NT 1K . S =
Y= : o, 0. o +V 18
\/KNTNR U2+TtP/NT) ; | [ ] ey )

i, K
whereV is the K Nt x 7t matrix of i.i.d Gaussian noise.

To simplify the performance analysis, we make the same gssomas in [9]: at the end of the
feedback phase, the transmitters cooperate by sharingrtives of the received feedback matrix
?f which enables them to form a unified estimate of the forwarahoklsH; ;. We refer the
reader to [9] for a discussion of this cooperative assumpdiad for alternative non-cooperative
approaches that are shown to perform close to this specal ca

Under this cooperative assumption, the transmitters estiH; , Vk by first isolating the

feedback sent by receiver They post-multiply their received symbols ¥ to compute

G
7t Py nP/Np \ , N N
Y v — : a1 .|+ve. 19
g \/KNTNR (Uz—i-ﬁP/NT) : [%1 %K]+ i (19)

i, K
—_——
G;
The transmitters then compute a common linear MMSE estiofdtes forward channelHl; j, Vi, k
using their feedback channel estima@gk Vi, k, and assuming thak Nt > Ny so that the
estimation problem is well posed. After a lengthy yet staddgpplication of the orthogonality

principle and the matrix inversion lemma, the MMSE estiniatgiven by

N KNrNg 7nP/Ne \ "' /A, A PN 1
fi, - (GfGi G*Ci + I ) G Y, o, 20
\/ TfPf <02+TtP/NT) i +M i T 72 Ngr i + ¥y ( )

where we have written (20) in terms #f; = [IA{M, o IAL,K] Vi, the concatenated estimate
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of the channel#; = [H,,, ..., H, x| Vi, for the sake of notational brevity. The constamis
and~, are the MMSE regularization factors. For completenessand~, are given by

NTO'2 NT0'2 0'2KNTNR NR0'2
= =1 i 21
N 72 < TP P o2 17P/Ma (21)

In essencey; captures the effect of the noise in the transmitted estisrﬁgg, while ~, captures
the effect of the noise in the estimat%JC as well as the noise observed during feedback.
Having formalized the three training and analog feedbaafiest, we now analyze the variarice,

~

aI%{, of the CSI errorH,; — H;;, which automatically yields an estimated CSI variance of
1—0—%. Unfortunately, Writingo—% exactly yields rather cumbersome expressions. For thgorea
we replace the variance of the MMSE estimation error by ttisd @aero-forcing estimator in
a manner similar to [16], [36]. This ZF simplification intivély amounts to deriving a high
SNR result [16] and mathematically amounts to neglectirggdbnstantsy; and~.; recall that
moderately high SNR is after all the main operating regiomtgrest for IA. Numerical results
in Section VI will demonstrate that the effect of this sinfigktion is negligible.

By neglectingy; and~,, and after some algebraic manipulation, we find that ther difo—

H, — H, at the end of the three training and feedback phases can benwais

- Nro2 | ~ ~o~ N\l Npo? ~ ~ KNt N
H, =1+ 7 ||+ <G;‘GZ—) G 1+ G H + 2 Rygs | | (22)
P P T s

As can be seen from (22), the resulting CSI error is a comioinatf three terms: the first due

to forward channel estimation errdi’, the second due to feedback channel estimation error
G;, and the third due to feedback noise.

To derive the statistics dfl;, we note the following three facts about the three terms 2):(2

1) The entries o7 are uncorrelated\/ (O "—2> variables as shown in Section IV-A.

y o, TP
o +—N

2) Similarly, the entries ofG; are CA (0, ﬁ) implying that G;H! has independent
Nr

. . . +ANR o> Tt PN
entries with variance equal LgJQJrTZPVPF Ry 7

3) The entries ofV are uncorrelate&N(O,UQ) variables and so are the elements\oW;

since the matrix¥; is unitary.

2We in fact derive the entire covariance matrix for the colsnaf H; . — ka We show that the covariance matrices are
scaled identities and thus the second order statisticseoéttor are entirely described by a scalar variance.
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Combining the properties stated, the conditional covaeanf each column oH; denotedH'",
conditioned ofG; is [9], [15]
1 2 ()% N N 2 K Nt N; 2 N, 2 ~ o~ \ 1
E (ARG = 2Ty, + ( TR ¢ R ) (G:G) - @

P 7t Pr o2+ Tp ﬁF

~ ~ o~ -1
Since the entries of the MMSE estimdte are Gaussian, the matr( ;FGi) has an inverse-
Tp PR

Wishart distribution [37]. Moreover, sinc@i has uncorrelated entries with a variance-of&

o2t TpPF’
~ o~ \ 1
(G;*Gi> has a covariance matrix equal to a properly scaled idendity [L5], [37]. Thus
marginalizing (23) overG,, we find thatH, has independent columns with scaled identity
covariance matrices with diagonal entries given by

Nryo? 2 Ng?  KNN Ngo?
o= — 7 (R+ TR<1+ RU)).
TtP (KNT — NR)PF Tp Tt TpPF

(24)

The same high SNR simplification adopted earlier to repladdS# estimation error by ZF

estimation error, however, allows us to further simplifgDy writing

,  Nrpo? o? (NR2 N KNTNR)

% = —+ (25)
TTp VTE

H™ P ' P(KNp— Ng)
which completes the characterization of the distortioroiiticed by training and analog feedback.
Note: Finally, a word on applying the results of Section Il to theabbg feedback system
described. First, we note that the analog feedback systdisfiss Assumption 2, and the
estimates yieldE [5 )(v?/?)*ﬁi,k?,ﬁﬂ = Loz andE {P ‘( )*H“fm

= L(1 - o%) as

needed. One subtlety though is that the fading on the fe&dtizannel introduces non-Gaussian

d

terms into the estimateﬁm, yet (14) is only exact when the estimates are truly Gaussian
fairly accurate estimation, howevdﬁi,i can be well approximated by a Gaussian. Moreover, it

will be clear from the results of Section VI that the effecttbis is negligible.

V. OPTIMIZING OVERHEAD AND EFFECTIVE SUM-RATE

Having formally quantified IA sum-rate as a function of SNRI&®SI quality, and character-

ized CSI quality in terms of training and feedback resoureesredefine both the optimization
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problem and objective function as

_ T — _
:H(P) = Imax < frame (Tt + Tp * Tf)) Rsum(peff)a (26)

Tt TpTE Tframe
where we have use()* to denote optimality. We note from (26) thaty depends onr% and
thus on, 7,, and7;. The problem in (26) can be rewritten in a more tractable fas{19]

R (P) = max | (1 —a) max Reum (pett) | (27)

Tty Tp, Tf
Qmin<a<l Tt+Tp+Tf:anramc

whereay,i, = K (Nt + Ng + KNt)/Thame @nd is dictated by the minimum number of training
and feedback symbols needed to render the estimation pnehieSection IV well defined. The
inner maximization in (27) optimizes sum-rate for a fixed nead length ofloyp = aTtame
and the outer maximization finds the optimakthereby completing the solution.

Since Ry (pe) is decreasing imr%, the inner maximization step simplifies to

- , Nrpo? o? KNrNg  Ng?
OoF = min + +
T T, 1 TP P(K Nt — Ngr) VTt TTp (28)
s.t. Ty + Tp + 71 = anrame~

Although (28) is an integer problem, its continuous relepatis convex. Applying standard
convex optimization techniques, the Lagrangian for theeinmaximization is

Nro? 2 KNtNg  Ng2
A(Te, 7, 71, A) = A 7 ( rRLR
YT YTp

— ; . 29
nP | P(KNt— Ng) ) +A (47 + 7 — Thame) . (29)

Solving for the first order KKT conditions, we obtain the opél training and feedback times

as a function of the total overhead budgéf. ... as

x \/’}/NT(KNT—NR) * NR x \/KNTNR
Ty = anramca T = TO/—TframOu T = L O/—rfram()u
1%

wherey = \/yNt(K Nt — Nr) + Ng + K NrNg. After solving the problem’s continuous re-
laxation, convexity implies that for any given feasible dvead budget 7}, .., Simply examining
the few integer neighbors of the points, 7,,*, 7¢* yields the integer training and feedback times
that minimize CSI distortion, i.e., optimal integer traigiand feedback times can be found by a

simple search over the grid neighbors of the non-integertieol. Proceeding with the continuous
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relaxation, the minimum CSI distortion for an overhead keidgl}, ... IS

2
L (\/—KNTNR + Np + /A No (K Ny — NR)) "
Uﬁ B ’YP(KNT - NR>O/—rframo . ( )

Having found the optimal allocation of;, 7,, and r; for a fixed overhead budget, what
remains is to optimize the budget itself. The outer optimarain (26), however, does not admit
a closed form solution. To circumvent this problem, priorrkven single user and broadcast
channels has specialized their results to the limiting lighkow SNR regimes [18], [20], relied
on numerical optimization [9], or resorted to charactegzihe scaling of overhead with various
system parameters based on sum-rate lower bounds [19]v@&agcurate results on finite-SNR
sum-rate, we propose to optimize a series expansion of (B)respect to the channel’s Doppler
spread around the point, = 0 [17]. Recall that7},.... which we have been using thus far is
related tofp by the relationshidlf... = 2pr To that end, we give the following result on the
series expansion aR.s (P, Toup).

Proposition 1: The effective sum-rate achieved by IA with training and fesck expands as

. [ Ram(p) 28

Reﬂf(P, TOHD) :(1 - a)(l + ,OKd) m - % sum(p)fD

2B 2 f 2 (31)
+ (%) (R0 o) + 2K ) P3| + 00
where )
. (x/—KNTNR + Np + /A N2 (K Ny — NR)> -

Y(K Nt — Ngr)

WhereasRsum(p) and Rsum(p) are the first and second derivatives drfect CS sum-rate,
Rqun(p), Which can be conveniently expressed as

. 1 Rsum . 1 . Rsum
R () = (Kdlog2<e> - J) S P p—— (Kdlogg(a T Bum(p) 2ﬂ) @)
P p P p
Proof: Given in Appendix A. [ ]

Thus, by expanding effective sum-rate w.ift,, we have transformed the complicated non-
linear dependence of effective sum-rate on system parasrgieh as’, Tt..me, /D, andToup toO

a simpler polynomial dependence. The expansion in Prapositcan now be used to derive the
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expansion of the optimal overhead budget, along with the performance it achieves. Relaxing

the constraint that the overhead fractianmust be rational, simply differentiating the series

expansion in Proposition 1 and equating it to zero yieldsap&gmal overhead budget*.
Proposition 2: The optimum overhead fractiam* for an IA system with training and analog

feedback expands as

. \/w(upm Ramlp) , 6 [ Fraum(p)
d Rsum(p) b d Rsum(p)

which results in the optimal effective sum-rate

(1+ pKd) + 2Kd> fo+O0(fp*?%), (34)

_sz(P) :Rsum(p) - 2\/%(1 + pKd)Rsum(p)Rsum(p)fD + O(fD) (35)

Note that if f; is large enough thai* < a,,;, the optimal overhead budget must be adjusted to
amin @nd the expression fak*;(P) correspondingly updated.
Proof: The proof follows directly from differentiating the expams in Proposition 1 w.r.t.

« and solving the resulting cubic polynomial for its relevanot. [ |

Therefore, Proposition 2 along with the solution to (28)githe effective sum-rate-maximizing
amount of forward training, feedback channel training, andlog feedback as simple functions
of fundamental system parameters such as SNR, Dopplerdsgespivalently 7t,....), and
perfect CSI sum-rate. Numerical results in Section VI whlb® that the overhead expansion in
Proposition 2 is accurate for a wide range of system parameatad can thus obviate the need
for numerical overhead optimization. Furthermore, theveer results allow us to draw several

interesting insights into IA system design and performance

1) The optimal overhead budget scales with/fp. As stated, for high enough Doppler
«*, must be adjusted to,,;, meaning that overhead subsequently increases fyitiThis
scaling behavior is in line with previous results on otherg and multiuser channels.

2) The sum-rate penalty due to overhead and imperfect CSiMeshsimilarly, i.e., increases
with /fp initially and with fp at high Doppler.

3) Examining the leading term in* we note that, similarly to [17], the terl(ﬂ+pKd)§z§72§Z§
behaves likeK'd/log.(1 + p) and thus the optimal overhead budget decreases with SNR
roughly as\/Kd/log.(1+ p).

4) Since overhead decreases with SNR, a minimum overheaahof K Nt + K Ny +K? Nt
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is always optimal at sufficiently high SNR. Thus, the effeethnumber of spatial DoF
KNT+KNR+K2NTNR> Kd

frame

achieved by IA with the analog feedback strategy describéd -
i.e., the DoF penalty increases linearly with.

5) Again examining the leading term in* we note that it increases witk/5. Recalling
the definition of 5 in (32), we conclude that the optimal overhead budget isa®gavith

\/%. This formalizes the relationship between overhead andbfaek link quality.

In addition to highlighting the dependence of overhead dfetve sum-rate on various system
parameters, the derived results can provide simple andwes@ious network design questions.
For example, by simply comparing IAs effective sum-rategpmssion to those achieved by
other transmission strategies, one can choose the opthaasnhission strategy for a given
fading environment. Moreover, since overhead and charelettivity have been shown to place
fundamental limits on the gains of cooperation in wirelestmork [38], the overhead-aware
analysis presented in this paper can help in determininghienal number of cooperative 1A
users at a given level of selectivity.

Consider, as a simple example,/&user single-stream cooperation cluster with a variable
number of antennas in which extra users are allowed to catgeia IA if they do not incur a loss
in effective sum-rate, else the extra users are not allowedss to the propagation medium and
presumably left to transmit on a separate channel. In thidaladditional cooperating users can
be incorporated into the cluster as longZas 1 (P) —Z* x(P) > 0 where we have made cluster
size explicit in the effective sum-rate subscript. Conssdly, the effective sum-rate-maximizing
cluster size becomes the smalléstsuch thatZ*x,(P) — Z*x(P) < 0. Moreover, note that
minimizing overhead and maintaining IA feasibility impsgee constrain++Nr = K+1 [23].
Thus, writing Ny and Ng in terms of K, e.g. Nt = [(K + 1)/2], the user admission rule can
be simplified to a function of only<, fp, SNR, andy. To simplify the user admission rule even
further, we make the following approximations: (i) we catesithe leading term if ¢ (P, Tomp)
thus focusing on 1As effective DoF given in the fourth obssion after Proposition 2, (ii) we
assume thafVy = (K + 1)/2 and thus relax its integer constraint. Using these simptificis,
the user admission rulé k. ,(P) — Z*x(P) > 0 simplifies to

1
4K + 15K+ 1TK +6 < W (36)
D
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i.e., a K-user cluster can be extended &b+ 1 as long as (36) is satisfied. Interestingly, this
implies that in such single-stream IA scenarios the effecium-rate-maximizing cluster size

grows with fp~1/?

. While the approximate admission rule is a rather simplifiggsion of
T*k+1(P) — T (P) > 0, we show in Section VI that it is very accurate at predictingiroal
cluster size. Finally, we note that while we provide thisrapée to illustrate problems that can
be solved using our analysis, the rule in (36) is by no meamgetsal. When parameters such
as large-scale fading or uncoordinated interference ansidered, both the analysis and the

admission rule must be adjusted.

VI. SIMULATION RESULTS

Consider a three-user IA cluster with two transmit antenhae receive antennas, and one
spatial stream per user and let= % = 1. Fig. 3 shows the effective sum-rate achieved by
IA in systems with various levels of mobility or normalizedppler spreadsfp. To quantify
the degradation in effective sum-rate caused by overheddiraperfect CSI, we include the
performance of a baseline genie-aided system in which C®bik perfect and free. Fig. 3
indicates that IA achieves good performance in a systemweitiicular-levels of mobility. In fact,
if typical wireless parameters are adopted, such as a waybleof A = 0.15 m (corresponding

to a carrier frequency of 2 GHz), a coherence bandwidth’ef= 300 £H z, and a normalized

Doppler given by fp = o where v is the user’s velocity, Fig. 3 indicates that 1A could
theoretically perform well even at a speed of more théd km/hr. The rate of performance
degradation over a wider range of Doppler spread can be se€igi 4. Both Figs. 3 and 4
indicate that the analytical results of Section V are vefgaive in optimizing the effective sum-
rate of IA systems as the resulting performance closely Inegtthat of a numerically optimized
system. Finally, Fig. 3 indicates that the effect of the difmimg assumptions made in Section
IV is negligible since the effective sum-rate predicted hg terived rate expressions closely
matches simulated IA performance. A very slight deviatismoticed at very low SNR where
the ZF simplification in Section IV is a less accurate appration of MMSE performance.
Fig. 5 shows the optimal overhead budget for systems witliimgrframe lengths and again
includes both the analytical overhead budget from Secti@s Well as the result of numerically
optimizing the same system. Fig. 5 confirms that;p increases with frame sizé&, .., at a

rate proportional to\/7T;.me.. Thus o indeed decreases Witl3Tf1:, as shown in Fig. 6, or

rame



19

equivalently increases witkyfp (and with f, for sufficiently high Doppler). Fig. 5 also shows
that the expansion in Proposition 2 provides an accurateactaization of IA's effective sum-
rate-maximizing overhead budget over a wide range of SNRisfeame sizes. Fig. 7 in turn
verifies the decrease ei* with SNR, which as stated in Section V follows the relatiapsh
a* ~ /log,(1 + p)~L. To complete the characterization of overhead and effestim-rate, Fig.
8 guantifies the deleterious effect of a weak feedback chameverhead and effective sum-rate.
Fig. 8 also indicates that the expansion results of SectiocoMd significantly underestimate
a* in very weak feedback channels, though the final effect ocoutinput remains limited.

Finally we examine the efficiency of our overhead analysidumther network design. We
consider the motivating example given in Section V of{auser system for which we seek to
optimize the cooperation cluster size as a function of niyblrig. 9 shows the optimal cluster
size as a function of},,.,.. for an IA system at 35 dB SNR. Fig 10 shows the corresponding
effective sum-rate achieved. We plot the cluster size afet®fe sum-rate resulting from (i) an
exhaustive search over all possiblg and (i) the simple overhead-based user admission rule
in (36). We note that the cluster size predicted by the twohoett are in close agreement, and
that the asymptotic cube-root relationship predicted inti8a V between optimal cluster size
and T}..me IS quite accurate even for small values/of While the overhead-based rule tends to
underestimate cluster size for small intervalsi@f..., Fig. 10 indicates that the resulting rate
gap from optimal sizing is negligible. The same can be samlithe rate loss when applying

the same overhead based rule to a system at an SNR of 10 dB asteenswithy = 1072,

VIlI. CONCLUSION

We considered IAs effective sum-rate in practical systevhere CSI is imperfect and comes
with an associated overhead cost. We showed that traininlg feedback overhead can be
optimized to ensure good IA performance over a wide rangeNRR &nd Doppler spread. We
guantified the dependence between overhead and varioesrsgatameters such as feedback link
quality. More sophisticated precoding algorithms, des@yto be robust to imperfect CSl, could
further improve the demonstrated performance and thusineangromising area for future work.
The derived results provide a formal method to gauge truedogpmance vs. other transmission
strategies, and can thus highlight settings under whichridvigdes tangible gains. The derived

analysis can also be used for further network design as demaded by the motivating example
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given at the end of Section V on overhead-aware user admissid optimal network sizing.

APPENDIX A
PROOF OFPROPOSITION1

To expand effective sum-rate arourig = 0, we start computing its first order derivative

OReg (P, Tt . Ope .
% = (1= @) () 2 0 = (1= ) R )1 + Kidp) 3 (37)
where %’}C“ fo=0 IS evaluated by noticing that after solving the inner mazmmion in (28) and

. * Oo2 . .
obtalnlngo—ﬁI in (30) we haveﬁm:o = %. The termR,..,(p) can be obtained by a standard
derivation of the exponential integral rate expression8nw.r.t p and is given directly in the
statement of Proposition Rsum(p) is obtained similarly. As for the second order term, we have

?Reit (P, Toup)

= 1-0) | o) (L5) () 228
8fD2 = sum 0 afD sum (P afDQ fp=0
* 2 2 92 *

(@) 2 Opei\* | Ppei (995 Operr 9”05y
= (1- Rsum Rsum * ‘D=

(1= ) |fm(e) () + () it () oy | | e
(b) Qﬁ 2 . R
2-a) (o) (4 pKd) (Ram(p)(1 + pKd) + 2K dFum(p)) (38)

2,2 *

where(a) expandsﬂ for clarity and(b) is by noticing thataa;fﬂ2

= 0 sincesZ” is linear in
fp and otherwise replacing the values of the different vaesblCombining (37) and (38) we
get the resulting second order expansion. Higher orderresipas can be found if additional

accuracy is needed, however, the second order expansiorgeniral sufficient.
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Fig. 2. The overhead model adopted in which training andtfaekl consume resources that would otherwise be used for data
transmission.
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Fig. 3. Effective Sum-Rate vs. SNR for systems with difféneormalized Doppler spreads. This quantifies the loss in-sim
due to both imperfect CSI and overhead and shows that therpehce predicted by the analytical results presented is an
accurate representation of optimal performance.
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Fig. 4. Effective Sum-Rate vs. Normalized Doppler for IA t&yss at different SNR levels. This quantifies the degradaitio
sum-rate as mobility increases resulting in an increasedhead penalty.
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Fig. 5. Toup VS. Tkame- This confirms that the optimal value Gloup scales withy/Txame @s predicted, and shows that
optimizing a series expansion of the objective yields réwmlally accurate results.
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Fig. 7. «o* vs. SNR. This shows the decrease of the optimal overheadebwdth SNR. As stated in Section V, it can be
shown that the decrease is logarithmic with SNR. The figuse demonstrates that our expansion-base results are \armase,
deviating only slightly in high-SNR high-mobility scenasi.
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Fig. 8. This figure shows the relationship betweenand R} (P) with the feedback channel’s relative quality for a system
With Thame = 10*. Plot (a) verifies the increase of overhead wiifhy, when plot in linear scale the square root rate of increase
can be verified. Plot (b) verifies the rate of decrease of @itiffective sum-rate with feedback link quality.
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function of Txame When the cluster size is chosen to maximize rate. This alsmties the minimal sum-rate loss due to
sub-optimal overhead-only based cluster sizing.



