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ABSTRACT 

The genetic bases of complex traits are a challenging matter of study, given the 

complexity of the underlying regulation. High-throughput technologies enable collecting 

data about cellular traits, such as gene expression, which acts as an intermediate 

molecular layer between genotype and phenotype. In this project, we carried out a 

statistical analysis to identify loci involved in regulation of gene expression (known as 

expression quantitative trait loci - eQTL), map them on the Saccharomyces cerevisiae 

genome and quantify their contribution by estimating the proportion of expression 

variance explained by them. We have compared data from six different experimental 

conditions to study the influence played by environment in genetic control of 

expression. In addition, we also calculate the degree of connectivity of our genes under 

study with all other genes of the data set, so correlation between connectivity and 

genetic control of gene expression can be analyzed. Our results indicate that genes 

with a strong genetic regulation of their expression levels show also a large degree of 

connectivity with other genes, becoming hubs in the underlying gene regulatory 

network. Additionally, they are characterized by a very homogenous eQTL map, 

despite environmental conditions; in contrast to those genes with a very poor genetic 

regulation, which show a very variable control of gene expression. 
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INTRODUCTION  

Understanding the relationship between genotype and phenotype is very helpful for 

solving current biological problems, such as predicting disease risk in human 

population, improving productivity in farming and cattle raising, and predicting 

adaptative evolution.  

Most heritable traits show continuous phenotypic variation, mainly due to underlying 

complex genetic regulation. It is a consequence of multiple interacting loci, with 

different allelic effects depending on environmental conditions; so it is not a trivial 

problem to handle with [1].  

Genetic loci associated with quantitative heritable traits are known as quantitative 

trait loci (QTL). QTL mapping requires both phenotypic and genotypic data and it 

consists of determining if there is a statistically significant phenotypic difference among 

individuals with different genotype background. Once detected and localised, it is 

important to quantify the magnitude of such genetic effects. One of such magnitudes is 

the percentage of phenotypic variance explained by each QTL. It is important to keep 

in mind that variance explained by QTLs is often far from the percentage of the 

phenotypic variance with a genetic origin. This is known as “the missing heritability 

problem”, and is a current matter of debate in complex traits studies [2]. 

Recent technological developments in genome and transcriptome sequencing have 

enabled us to get new information about molecular intermediates between genotype 

and phenotype, which provide new insights into the genetic regulation of complex 

heritable traits. In 2002, Brem et al. [3] showed that cellular traits, such as gene 

expression, are inherited in a quantitative fashion as well, so studying genetic variants 

that affect gene expression is a good approach to increase statistical power to study 

genetic bases of complex traits, as well as to better understand underlying genetic 

regulatory mechanisms. 

 

PROBLEM APPROACH AND OBJECTIVES 

In a recent study by Tur et al. [5], where eQTLs were mapped to the yeast genome 

using data from a yeast cross published by Brem et al. [3], it was discovered that genes 

whose eQTLs explain 70% or more or their expression variance were highly connected 

in the functional network estimated from their expression profiles. 

This project aims to study expression QTL (eQTL) in the Saccharomyces cerevisiae 

genome. Starting from a first data set of expression levels from 8382 genes in five 

different environments, eQTL mapping was restricted to a limited set of genes in order 
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to do a more simple and accurate analysis. However, we introduced data from them all, 

so we are able to elucidate the degree of connectivity of those we are studying, taking 

into account all 8382. We performed our analysis in 13 genes, involved in 3 different 

cellular pathways: 7 in mating regulation, 3 in daughter cells separation and 3 in 

leucine biosynthesis. They were chosen from those identified in a recent study by Tur 

et al. [5], whose eQTLs explain 70% or more of their expression variance and are 

located in a different chromosome from the linked gene. By doing so, it is intended to (i) 

understand the architecture of genetic regulation of expression of these genes more 

accurately, (ii) elucidate the role of environment in genetic expression and (iii) study 

implications of eQTLs in different cellular pathways.  

MATERIALS AND METHODS 

Strains and expression data 

Experimental data was produced by Gagneur and colleagues [6]. They gathered 

information about expression of 8382 genes (both coding and non-coding) from an 

average of 35 individuals of S.cerevisiae in 5 different experimental conditions 

(glucose, low iron, rapamycin, ethanol and maltose). In order to be able to correlate a 

given phenotype with a determinate genotype, haploid organisms are recommended. 

So, in this kind of analysis, haploid spores from tetrads are used. This is made possible 

by doing crosses between haploid MATα and MATa strains, putting the resulting diploid 

through meiosis and sporulation, and physically dissecting the four ascospores from an 

ezimatically digested tetrad. Spores are allowed to germinate and the phenotypes of all 

segregants are determined [7]. Expression levels were estimated by tiling-array 

assays, in mid-exponential phase culture.  

Segregants used in each experimental condition were chosen randomly from an 

initial data set of 159 individuals, which were obtained from Mancera and colleagues [8] 

data. These were derived from a cross of S.cerevisiae strains S96 (MATa ho:: lys5 

gal2) and YJM789 (MAT ho::hisG lys2 gal2). 

Regarding Tur et al. data, they used gene expression information by Brem et al. [9]. 

They used a yeast cross between BY4716, an isogenic to the the lab strain S288C, 

and the wild isolate RM11-1a. 

Data availability 

Expression data used in this project were downloaded from the ArrayExpress 

repository (http://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-

1398. Genotype data were obtained from the supplementary information available in 

the electronic version of Mancera et al. paper [8] 
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Processing of genotype data 

Position of the markers in Mancera et al. data were specified in physical distances, 

but our analysis required genetic distances. So, we convert them following equivalence 

data available in Saccharomyces Genome Database (SGD, 

http://www.yeastgenome.org), where genetic distance vs. physical distances ratios for 

each chromosome are specified. 

Moreover, there were some markers with missing genotypes or which were not 

informative that were removed using R/qtl package. At the end, our analysis was 

performed with the filtered data specified in Table 1.  

eQTL mapping 

eQTL mapping was conducted by single marker regression, which considers each 

marker individually. Individuals are split into groups according to their genotypes, and 

phenotype averages of each group are compared. Given that we analyse haploid 

spores from a tetrad, individuals have only two possible genotypes, just as in a 

backcross, so we perform our analyses as a backcross. This process is carried out 

using R/qtl package. [13] 

Evidence of a QTL is measured by a LOD score: the log10 likelihood ratio comparing 

the hypothesis that there is a QTL at the marker to the hypothesis that there is no QTL 

at the marker. Larger LOD scores indicate stronger association between the marker 

and the phenotype. To assess which are statistically significant, we consider the global 

null hypothesis that there is no QTL anywhere in the genome. To test such hypothesis, 

a null distribution of the genome-wide maximum LOD scores has been derived by a 

permutation test. It consists of shuffling the phenotypes relative to the genotype data, 

getting a new data set, on which the QTL mapping method will be also applied. LOD 

score values corresponding to the top 5% of this distribution will be taken as the cutoff 

to consider a LOD score significant. Permutation tests are computationally demanding 

in R, so we ran these calculations in parallel by using packages snow and rlecuyer. 

Calculation of percentage of variance explained by eQTLs 

The proportion of variance of gene expression explained by eQTLs is calculated as 

the difference in unexplained variance between the null and alternative models, divided 

by the total phenotype variance, using the function fitqtl() from the R/qtl package. 

In cases where we got more than 1 QTL per gene, we fit a multiple QTL linear 

model using again fitqtl() to assess the significance of each QTL, given the others. 

By doing so, we are able to elucidate if some of them are tagging the same causal 

variant and discard the redundant ones. 
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Calculation of degree of connectivity 

Using each expression data set and the algorithm developed by Tur et al. [5] 

implemented in the R package qpgraph, we calculated the number of genes that are 

functionally related with each of the 13 genes we are analyzing in each experimental 

condition. This algorithm estimates the presence of a gene-gene functionally 

relationship from expression data adjusting for indirect effects. To enable this 

adjustment, q-order correlations are calculated from the entire expression data set, 

using q=75 (Brem et al.), q=23 (glucose), q=16 (low iron), q=14 (rapamycin), q=16 

(ethanol) and q=15 (maltose). From the resulting q-order correlations, a network was 

estimated by a graph with gene pairs for which the null hypothesis of no q-order 

correlation was rejected 90% or more of the times it was tested. 

Given that the number of connections we get depend on the sample size, and it is 

different for the 6 experimental conditions, we ranked them in each condition and 

calculated the percentile of genes below every observed degree of connectivity, so that 

we can compare results between different experimental conditions. 

 

RESULTS 

We performed eQTL mapping of each of the selected 13 genes with more than 70% 

of expression variance explained by their eQTL located in a different chromosome, as 

observed in Tur et al. data. It was carried out using data from 6 different eQTL 

experiments, which are described in Table 1. For each data set, we calculated the LOD 

score for determininig which markers tag the corresponding eQTL, the percentage of 

variance explained by them and the degree of connectivity of each gene with all the 

other ones in the functional network estimated from the expression data of the 

corresponding environment. 

Results obtained in eQTL mapping assay, as well as the percentage of expression 

variance due to each eQTL and connectivity analyses are plotted in Figure 1, where 

colour, shape and size of dots represent the experimental condition, number of eQTLs 

and ranking in connectivity analysis, respectively. In addition all numerical data from 

these experiments are described in detail in Table S1, on the supplementary data.  

 

 

6 

 



 

 

 

 

 

 

 

 

 

 

 

 

Most genes related to mating process have strong genetic regulation of their expression 

If we focus on those genes related with mating regulation, we can observe that 6 of 

them (STE6, STE3, BAR1, MF(ALPHA)1, AFB1 and MFA2) show a very well 

conserved genetic regulation in all experimental conditions. In the S.cerevisiae strain 

used by Brem et al., a single eQTL was detected in chromosome III, at 96.56 cM. 

Using Gagneur et al. data we also found a single eQTL in all environment conditions, 

located in chromosome III as well, at a similar position (ranging from 91.98 to 98.77 

cM). All eQTLs were detected with a remarkably high LOD score. Indeed, it is of notice 

that these 6 genes are the ones with the largest proportion of expression variance 

explained by their eQTLs: in all cases it scores 70% at least, and remarkably STE3 

scores more than 90% in all our 5 growth mediums. In addition, they all are largely 

connected with all other set of 8382 genes we have studied, given that the vast 

majority ranks at the top 5% of those with more number of connections in the 

corresponding environment. 

In contrast, gene STE2 shows great differences among the six experimental 

conditions. A single eQTL in chromosome III (96.56 cM) was reported by Tur et al. 

However, in our analysis we found  2 eQTLs in both glucose and low iron 

environments, a single one when yeast were grown in rapamycin or ethanol, and none 

of them were they were grown in maltose medium. In glucose, low iron, rapamycin and 

ethanol conditions, one eQTL in chromosome VI was detected at 57.23, 44.57, 44.23 

and 37.12 cM, respectively. Moreover, in glucose and low iron environments, another 

 
Number of 

individuals 

Number of 

phenotypes (genes) 

Number of 

markers 

Brem et al. 112 6216 1857 

GLUCOSE 46 8382 2188 

LOW IRON 33 8382 1612 

RAPAMYICIN 29 8382 1479 

ETHANOL 32 8382 1591 

MALTOSE 31 8382 1488 

Table 1 – Description of data used in our analysis. For all 6 experimental conditions, 
number of individuals, number of phenotypes available, and number of markers with available 
information are specified in corresponding columns. Brem et al. data [9] is which Tur et al. 
used in their analysis. Strains are derived from a cross of BY4716, isogenic to the lab strain 
S288C and the wild isolate RM11-1a. On the other hand, data from the other 5 environments 
are from Gagneur et al. data [6], which used S96 and YJM789 as parental strains in their 
cross. 
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eQTL was detected in chromosome III at 94.74 cM and 101.65 cM, respectively. 

Additionally, in these mediums STE2 show a high degree of connectivity. On the 

contrary, it is very low in rapamyicin, ethanol and maltose. In STE2, we didn't find so 

strong association between markers and eQTL as in previous six genes, given that 

LOD scores are notably lower, ranging from 5.1 to 6.56, and also the proportion of 

variance explained by them is more moderate: it scores between 52.01 and 82.33 %. 

Expression of genes which control daughter cells separation is homogeneous among 

different conditions 

Genes involved in daughter cells separation pathways (DSE1, SCW11 and DSE2) 

show very well conserved genetic regulation. For all three genes and all five growth 

mediums tested, a single eQTL has been detected with notably high LOD scores (5.74 

– 19.56). In all cases, it is located in chromosome II at a very similar position, in a 

range from 165.04 to 172.66 cM, just as in Brem et al. strain, which it is reported to be 

in chromosome II, at 166.9 cM. They also show homogenous percentage of expression 

variance explained by such eQTLs, which scores between 57.38 and 85.88%. 

Similarly, from a connectivity point of view, they all rank between 90% and 95% in 

corresponding environments. 

Genes which play a role in leucine biosynthesis are differently regulated depending on 

environment 

Finally, genes involved in leucine biosynthesis (BAT1, LEU1 and OAC1) show a 

very variable genetic regulation, depending on growth medium and genetic 

background. Strains used by Brem et al. were reported to have an eQTL each, 

localised in chromosome III, at 39.27cM for BAT1 and 44.34 cM for LEU1 and OAC1, 

but in our analysis we got very different results. In glucose conditions, LEU1 and OAC1 

show a single eQTL each, both in chromosome XV, at 169.86 cM and 166.39 cM, 

respectively. Proportion of variance explained by them is quite similar in both cases 

(42.44% in LEU1 and 38.68% in OAC1), as well as degree of connectivity (LEU1 ranks 

at 68.59%, and OAC1, at 51.81%). However, it is of notice that, comparing data with 

Brem et al. data, there is a notable difference in both percentage of variance (30%, at 

least) and degree of connectivity. In a maltose medium, one eQTL in chromosome VII 

(395.05 cM) is found for all three genes and, additionally, BAT1 shows a second eQTL 

in chromosome XVI (206.22 cM). Variance explained by them is around 70% both in 

BAT1 and OAC1, similar to data from Brem et al, but it scores only 41.6% in LEU1. 

Degree of connectivity is zero in both BAT1 and LEU1, and extremely low in OAC1. 
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Overall, it is observed that eQTL map pattern differs depending on the cellular 

pathway we focus on. Almost all genes involved in mating regulation, in all conditions, 

show a single eQTL in chromosome III at a very similar position. There is only a single 

exception, gene STE2, which shows high variability in its eQTL, depending on the 

environment. Genes related to daughter cells separation have a single eQTL in 

chromosome II, at almost the same position for all conditions studied. Finally, genes 

responsible for leucine biosynthesis show very variable eQTL maps. In Figure 2, 

differences between genes with different eQTL map pattern are shown. 

 

Remarkable differences in genetic control of gene expression are seen among cellular 

pathways 

If we analyze the dot distribution in Figure 1 there are some interesting features to 

highlight. The first seven genes are those involved in mating regulation, and in general, 

show quite homogenous cloud of dots: located at the top of the graphic, with similar 

shape and size. The only exception is gene STE2, the dots of which are more spread, 

with variable shapes and sizes. The following three genes are those related with 

daughter cells separation, and these do show extremely homogeneity. They are located 

Figure 1 - Proportion of genetic expression variance explained by eQTL(s). For each of 13 

genes that have been analysed, there are 6 dots plotted, corresponding to 6 different 

experimental conditions. Dot colour indicates the environment in which S. cerevisiae strains 

have been grown, dot shape reflects the number of eQTLs found, and dot size depends on the 

ranking position in the connectivity analysis. For all experimental conditions, 3 ranges have 

been established to classify the 13 genes of study: the largest dot represents those which have 

a degree of connectivity higher than 95% of other genes in the same environment, the medium 

one are for those which rank between 5% and 95%, and the smallest ones are those which rank 

at the bottom 5%. 
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at slightly lower level than the previous ones, but they all show same shapes and sizes. 

The last three genes are those involved in leucine biosynthesis, and one feature to 

highlight is that only eQTLs have been found when yeast have been grown in mediums 

rich in carbohydrates (glucose and maltose). There is an exception in BAT1, where no 

eQTLs have been found in glucose conditions, but on the other hand we found 2 of 

them in maltose environment. Brem et al. strains have been grown in minimum 

medium, which also contains hydrates of carbon. Another important feature to highlight 

is that we don’t find large points at the bottom of the figure, neither small ones at the 

top, indicating that those genes with a strong genetic regulation, given that their eQTLs 

explain a large proportion of their expression variance, are also those with a high 

degree of connectivity in the gene functional network. 

In conclusion, notable differences can be noticed among genes belonging to the 

three different pathways, not only for the percentage of expression variance explained 

by their eQTLs, but also for the pattern in their eQTL maps. In addition, there is a 

correlation between strong genetic regulation and a high degree of connectivity, in all 

cases of study. 

 

 

Figure 2 – LOD score profile along all S. cerevisiae genome. In these two panels, LOD scores for each 

marker analyzed is plotted. Panel on the left corresponds to STE3 gene, which belongs to mating regulation 

pathway, and it shows a very homogeneous eQTL map for all experimental conditions. In contrast, panel on 

the right corresponds to LEU1 gene, which belongs to leucine biosynthesis pathway and shows a very 

variable map. 

STE3 LEU1 
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DISCUSSION AND CONCLUSIONS 

The genetic bases of gene expression play an important role in gene regulation 

underlying most large-scale phenotypes. Yet, mapping and interpreting the genetic 

components of expression variance is difficult due to the fact that gene expression is a 

high-dimensional multivariate molecular phenotype. A way to approach this complexity 

is to think of genes as forming a network of functional associations with direct and 

indirect effects, some of which with a genetic origin. In Tur et al. data was observed 

that those genes with a high number of associations also showed a very strong genetic 

control of their expression. In this project, we elucidated which of these genes preserve 

such a strong genetic regulation in different environmental conditions and the 

importance of it in different cellular pathways 

The architecture of gene networks has been studied by calculating degree of 

connectivity of each gene given all the others in each corresponding environment. We 

could observe that, similar to Tur et al. analyses, those genes that are related to a 

higher number of genes also present a stronger genetic regulation of their expression. 

We could think that this may be because of the higher number of connections they 

have, but we have realised that in general, all genes have one single eQTL, two at 

maximum. So that, we have to conclude that eQTL of genes with a higher degree of 

connectivity have a stronger effect than those related with genes connected with just a 

few.  

Regarding the role of environment in the control of genetic expression, we have 

observed that in the major part of cases we have studied, genetic regulation is similar 

among all different experimental conditions, so it does not have a very strong effect in 

this subset of genes under strong genetic regulatory control. However, genes involved 

in biosynthesis of leucine aminoacid, show remarkable differences. In these cases, we 

only found genetic regulation when yeasts were grown in mediums rich in hydrates of 

carbon, like glucose and maltose, but not in ethanol, rapamycin or low iron conditions.  

Comparing data obtained from eQTL mapping in each of three cellular pathways 

analysed, it is clearly seen that cellular pathways that contain genes with a very strong 

genetic regulation, show a single eQTL in all conditions which maps at a very similar 

position in all cases, whereas those genes with a very poor genetic control of their 

expression show a very variable map of their eQTLs. So, we can conclude that cellular 

pathways where control of genetic expression is crucial possess very well conserved 

eQTLs, while those pathways in which genetic expression is not so important show 

more variable eQTLs. 
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GENE 
EXPERIMENTAL 

CONDITION 

eQTL Degrees of 
connectivity 

(Ranking within 
environment - %) 

Name 

Cellular 
pathway 

Chr Chr 
Position 

(cM) 
LOD 
score 

Variance 
explained  

(%) 

STE6 
 

Mating 
regulation 

XI 

Brem et al III 96,56 53,90 74,00 25 (99,97) 

GLUCOSE III 94,74 18,93 84,97 42 (97,98) 

LOW IRON III 98,70 15,59 88,64 41 (97,83) 

RAPAMYICIN III 96,60 10,71 81,75 38 (97,04) 

ETHANOL III 91,98 22,77 96,22 37 (97,40) 

MALTOSE III 98,77 11,56 82,03 42 (95,89) 

STE2 
 

Mating 
regulation 

VI 

Brem et al III 96,56 43,10 69,00 20 (98,58) 

GLUCOSE 
III 94,74 5,45 

63,15 24 (92,68) 
VI 57,23 6,22 

LOW IRON 
III 101,65 6,56 

82,33 13 (86,89) 
VI 44,57 5,44 

RAPAMYICIN VI 44,23 5,41 57,63 0 (0) 

ETHANOL VI 37,12 5,10 52,01 1 (0) 

MALTOSE - - - - 6 (65,77) 

STE3 
 

Mating 
regulation 

XI 

Brem et al III 96,56 43,70 74,00 23 (99,47) 

GLUCOSE III 94,74 24,21 91,14 43 (98,22) 

LOW IRON III 98,70 38,07 99,51 38 (97,18) 

RAPAMYICIN III 96,60 34,43 99,58 44 (97,84) 

ETHANOL III 91,98 29,07 98,48 40 (97,88) 

MALTOSE III 98,77 20,66 95,36 44 (96,22) 

BAR1 
 

Mating 
regulation 

IX 

Brem et al III 96,56 41,40 68,00 21 (99,01) 

GLUCOSE III 94,74 17,10 83,00 45 (98,46) 

LOW IRON III 98,70 16,25 89,65 39 (97,49) 

RAPAMYICIN III 96,60 7,64 70,27 31 (95,48) 

ETHANOL III 91,98 15,66 89,50 35 (96,91) 

MALTOSE III 98,77 11,06 80,66 41 (95,64) 

Table S1 - Results of eQTL mapping analysis. For each gene and experimental condition we analysed, it is 

reported the information of corresponding eQTL(s). It is reported the chromosome and the genetic position (in 

centimorgans) where are located, as well as the LOD score obtained in the analysis and the percentage of 

expression variance explained by them. In cases where more than one eQTL have been found, we report the 

variance explained by all together. Those situations where no eQTLs have been found are marked with dashes 

( - ). In the last column, number of connections of each gene taking into account the whole amount of 8382 is 

reported. Given that this number may be very variable depending on experimental conditions, we also report 

the ranking position of each within the corresponding environment, so they are easier to compare (e.g, a gene 

with a degree connectivity of 25 which ranks at 99% means that such gene is connected with 25 other genes 

and this connectivity is larger than the 99% of other genes in the corresponding experimental condition). 



 

 

MF(ALPHA)1 
 

Mating 
regulation 

XVI 

Brem et al III 96,56 40,80 71,00 20 (98,59) 

GLUCOSE III 94,74 23,05 90,05 41 (97,84) 

LOW IRON III 98,70 47,39 99,87 38 (97,18) 

RAPAMYICIN III 96,60 12,34 85,92 36 (96,74) 

ETHANOL III 91,98 33,69 99,22 39 (97,76) 

MALTOSE III 98,77 22,86 97,70 38 (94,81) 

AFB1 
 

Mating 
regulation 

XII 

Brem et al III 96,56 47,70 71,00 19 (98,19) 

GLUCOSE III 94,74 12,31 70,84 28 (94,16) 

LOW IRON III 98,70 18,80 92,74 34 (96,26) 

RAPAMYICIN III 96,60 12,34 85,92 23 (92,67) 

ETHANOL III 91,98 12,28 82,93 35 (96,91) 

MALTOSE III 98,77 10,18 77,95 34 (93,40) 

MFA2 
 

Mating 
regulation 

XIV 

Brem et al III 96,56 36,50 78,00 25 (99,67) 

GLUCOSE III 94,74 17,20 82,13 45 (98,47) 

LOW IRON III 98,70 22,65 95,76 39 (97,49) 

RAPAMYICIN III 96,60 5,60 58,88 24 (93,25) 

ETHANOL III 91,98 32,10 99,01 40 (97,88) 

MALTOSE III 98,77 16,06 90,80 36 (94,09) 

DSE1 
 

Daughter cells 
separation 

V 

Brem et al II 166,69 43,40 83,00 13 (94,41) 

GLUCOSE II 165,04 15,72 79,26 38 (97,12) 

LOW IRON II 168,88 11,60 80,20 23 (93,17) 

RAPAMYICIN II 172,66 7,63 70,22 21 (91,68) 

ETHANOL II 167,66 9,95 76,12 27 (94,63) 

MALTOSE II 167,99 9,66 76,17 36 (94,09) 

SCW11 
 

Daughter cells 
separation 

VII 

Brem et al II 166,69 40,00 80,00 15 (96,06) 

GLUCOSE II 165,04 19,56 85,88 39 (97,33) 

LOW IRON II 168,88 11,69 80,43 24 (93,51) 

RAPAMYICIN II 172,66 8,19 72,75 26 (93,93) 

ETHANOL II 167,66 9,70 75,23 27 (94,63) 

MALTOSE II 167,99 5,74 57,38 32 (92,68) 

DSE2 
 

Daughter cells 
separation 

VIII 

Brem et al II 166,69 37,20 78,00 10 (90,27) 

GLUCOSE II 165,04 17,02 81,80 33 (95,76) 

LOW IRON II 168,88 11,69 80,43 21 (92,46) 

RAPAMYICIN II 172,66 6,41 63,88 19 (90,54) 

ETHANOL II 167,66 7,87 67,78 21 (92,43) 

MALTOSE II 167,99 6,57 62,30 38 (94,81) 



  

 

 

 

 

 

 

 

 

 

 

 

 

OAC1 
 

Leucine 
biosynthesis 

XI 

Brem et al III 44,34 27,80 68,00 16 (96,75) 

GLUCOSE XV 166,39 4,88 38,68 4 (51,81) 

LOW IRON - - - - 4 (58,16) 

RAPAMYICIN - - - - 12 (85,21) 

ETHANOL - - - - 15 (89,10) 

MALTOSE VII 395,09 8,31 70,91 2 (26,28) 

BAT1 
 

Leucine 
biosynthesis 

VIII 

Brem et al III 39,27 28,50 70,00 18 (97,67) 

GLUCOSE - - - - 4 (51,81) 

LOW IRON - - - - 4 (58,15) 

RAPAMYICIN - - - - 3 (46,37) 

ETHANOL - - - - 0 (0) 

MALTOSE 
VII 395,09 6,58 

71,53 0 (0) 
XVI 206,22 4,01 

LEU1 
 

Leucine 
biosynthesis 

VII 

Brem et al III 44,34 34,40 76,00 21 (99,01) 

GLUCOSE XV 169,86 5,52 42,44 7 (68,59) 

LOW IRON - - - - 4 (58,16) 

RAPAMYICIN - - - - 3 (46,37) 

ETHANOL - - - - 1 (0) 

MALTOSE VII 395,09 3,63 41,67 0 (0) 
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INTRODUCTION 

The genetic bases of complex traits heritability are a challenging matter 

of study, given the complexity of genetic regulation underlying it. High-

throughput technologies enable collecting data about cellular traits, 

such as gene expression, which acts as an intermediate molecular layer 

between genotype and phenotype. In this project, we carried out a 

statistical analysis to identify loci involved in regulation of gene 

expression (known as expression quantitative trait loci - eQTL), map 

them on the Saccharomyces cerevisiae genome and quantify their 

contribution by estimating the proportion of expression variance 

explained by them. In addition, we also calculate the degree of 

connectivity of our genes under study with all other genes of the data 

set. By doing so, it is intended to: 

Understand the architecture of genetic regulation of expression of 

these genes more accurately 

Elucidate the role of environment in genetic expression 

Study implications of eQTLs in different cellular pathways  

… 

eQTL mapping 
It was conducted by single marker 

regression, using R/qtl package. Evidence of 

a QTL is measured by a LOD score, the 

larger it is, the stronger  is the association 

between the marker and the phenotype. 

We performed our analysis in 13 genes, 

involved in 3 different cellular pathways: 7 in 

mating regulation, 3 in daughter cells 

separation and 3 in leucine biosynthesis. 

They were chosen from those identified in a 

recent study by Tur et al. [5], whose eQTLs 

explain 70% or more of their expression 

variance and are located in a different 

chromosome from the linked gene 

Magnitude  

of eQTLs 
It is calculated as the difference in 

unexplained variance between the 

null and alternative models, divided 

by the total phenotype variance, 

using the function fitqtl() from 

the R/qtl package. 

 

Degree of 

connectivity 
Using each expression data set and 

the algorithm developed by Tur et al. 

implemented in the R package 

qpgraph, we calculated the number 

of genes that are functionally related 

with each of the 13 genes we are 

analyzing in each experimental 

condition.  

METHODOLOGY 

RESULTS 

In Tur et al. data was observed that those genes with a high number of associations also showed a very 

strong genetic control of their expression. In this project, we elucidated which of these genes preserve such 

a strong genetic regulation in different environmental conditions and the importance of it in different cellular 

pathways. Our main conclusions are: 

 eQTLs of those genes with a higher degree of connectivity have a stronger effect than those related with 

genes connected with just a few. 

  Environmental conditions do not influence genetic control of expression of genes involved in mating 

regulation or daughter cells separations. However, it may play a role in other subsets of genes, such as 

those involved in leucine biosynteshis. 

  Cellular pathways where control of genetic expression is crucial possess very well conserved eQTLs 

across environments, while those pathways in which genetic expression is not so important show more 

variable eQTLs. 

 

GENOTYPING 
The corresponding genotypes for expression data were obtained 

from: 

 - Mancera et al, 2008: yeast cross between S96 x YJM789 

 - Brem et al., 2005: yeast cross between BY4716 x RM11-1a 

 

EXPRESSION PROFILING 
In order to compare among different environmental conditions and 

genotype backgrounds, we used data from two sources 

 - Gagneur et al, 2013: data about yeast grown in 5 different 

mediums: glucose, low iron, rapamycin, ethanol and maltose. 

 - Brem et al, 2005: yeast grown in minimum medium. 
Proportion of genetic expression variance explained by eQTL(s). For each of 13 genes that have been analysed, there are 6 dots plotted, corresponding to 6 

different experimental conditions. Regarding the degree connectivity, 3 ranges have been established to classify the 13 genes under study: the largest dot 

represents those which have a degree of connectivity higher than 95% of other genes in the same environment, the medium one are for those which rank between 

5% and 95%, and the smallest ones are those which rank at the bottom 5%. 

LOD score profile along all S. cerevisiae genome. In these two panels, LOD scores for each marker analyzed is plotted. Panel on the left corresponds to 

STE3 gene, which belongs to mating regulation pathway, and it shows a very homogeneous eQTL map for all experimental conditions. In contrast, panel on the 

right corresponds to LEU1 gene, which belongs to leucine biosynthesis pathway and shows a very variable map. 

CONCLUSIONS 
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