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Abstract:  Most methods of multivariate analysis rely on a measure of proximity between individual 

cases or samples to quantify inter-sample differences.  The choice of this measure is fundamental to 

the method and its subsequent results.  For example, when data are abundance counts of a set of 

species at several sampling locations, some approaches rely on the Bray-Curtis dissimilarity 

measure between samples, while other approaches rely on the chi-square distance.  A set of 

observed species abundances at a location has both size, in the form of the overall levels of the 

species counts, and shape, in the form of the relative values of the counts.  The aim of this report is 

to clarify how much the chosen proximity measure is capturing differences in size between samples 

as opposed to differences in shape.  After motivating the idea using physical morphometric data, the 

study is extended to nonnegative data in general, with special focus on abundance counts and 

biomass estimates, which are ubiquitous in ecological research. 
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Introduction 

Inherent in most methods of multivariate analysis is the definition of a particular proximity measure 

computed between multivariate vectors of observations on the samples: for example, species counts 

from a grab sample in benthic research, or from a quadrat in botanical research.  Proximity, or 

distance, is the multivariate equivalent of a difference for univariate data, and is needed to define 

equivalent concepts in multivariate space such as the variance and deviations of samples from 

hypothesized models.  The term “proximity” is used here to include measures of distance (also 

called “metrics”), which obey the mathematical axioms of distance, notably the triangle inequality, 

as well as measures of dissimilarity, which do not follow the triangle inequality.  Well-known 

examples (amongst many others – see, for example, Gower and Legendre, 1986) of these two types 

of proximity are the chi-square distance, which is the basis of simple, multiple and canonical 

correspondence analysis, and the Bray-Curtis (or Sørenson) dissimilarity, which is used widely by 

ecologists as an easily understandable way of measuring difference between multivariate samples, 

where the data are species abundances or biomass observed in a fixed area or volume.  The choice 

of proximity measure is also crucial in cluster analysis, because “closeness” of two samples 

determines their being placed in the same cluster.  Hence, for all distance-based multivariate 

methods it is essential to understand clearly in what respect samples are being measured “close” to 

one another or “far” apart according to the chosen proximity measure. 

In my experience, researchers’ choices of a proximity measure, as well as possible transformations 

of the initial data, are usually governed by their prior education, the school of thought they happen 

to follow, and the literature they are emulating, rather than an insight into the properties of the 

measure itself.   It is hoped that this report can at least clarify one crucial property of these 
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proximity measures, namely whether, and how much, they capture differences in “size” in the 

multivariate observations or differences in “shape”. 

Some simple examples serve as motivation for this study.  Consider two multivariate observation 

vectors with the same shape but different sizes (the second is twice the first), shown in Figure 1.  

Thinking of these as abundance counts of five species, or measurements of five variables all on the 

same scale (e.g. centimeters), can be helpful.   Since the shapes are identical, both the Euclidean 

distance and Bray-Curtis dissimilarity (defined below in Table 1) must be measuring only the 

difference in size.   For example, if one vector is k times the other, then the Bray-Curtis measure is 

equal to |k – 1|/(k + 1).  Hence for k = 2, Bray-Curtis = 0.33, as in Figure 1, for k = 3, Bray-Curtis = 

0.50, for k = 4, Bray-Curtis = 0.60, and so on, where the measure of difference increases as the size 

of one of the vectors increases.  If, on the other hand, two vectors of observations have the same size 

but different shapes with the values shown in Figure 2, then the Euclidean distance and Bray-Curtis 

dissimilarity turn out to have values identical to those in Figure 1, showing that the same proximity 

values can be measuring differences in pure size or in pure shape.  Once the values are converted to 

relative values in the form of so-called profiles, then any proximity measure is one of pure shape, 

equal to 0 in Figure 1, but positive in Figure 2. 

Kendall’s (1977, 1989) definitions of size and shape apply to a physical object, which is a good 

starting point as an analogy: shape is all the geometrical information that remains when location, 

scale and rotation effects are filtered out from the object, while size-and-shape is all the geometrical 

information that remains when location and rotational effects are filtered out.  In the present context 

where samples are characterized by a set of nonnegative data (e.g., a vector of species abundance 

counts) there is no question of location and rotational effects, so the vector of data inherently has  



 4

 

 

 

 

 

Figure 1: Multivariate observations on two cases (left-hand side) with the same shape 

but different sizes, summing to 15 and 30 respectively.  Both the Euclidean distance 

and Bray-Curtis dissimilarity give positive values.  If the totals are divided out to 

give profiles (right-hand side) any proximity measure gives a zero difference between 

the identical profiles.  

 

 

 

 

 

 

Figure 2: Multivariate observations on two cases (left-hand side) with different 

shapes but (almost exactly) the same size.  The Euclidean distance and Bray-Curtis 

dissimilarity have values identical to those in Figure 1, while any measure of 

difference between the profiles (right-hand side) gives a positive value. 
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size and shape.  For our purpose, size will be characterized by the absolute levels of all the values: 

some cases can have “larger size” when their values are generally higher than those of other cases, 

and some cases can have “smaller size” when their values are generally lower – what Kendall calls 

the “scale effect”.  Filtering out the size to get pure shape can be done in at least two ways: each 

vector of values can be expressed relative to its grand total, to obtain a profile of values summing to 

1 (also called a “composition”).  Alternatively, for strictly positive data, all pairwise ratios of values 

can be considered.  Both these ways of “relativizing” the data are commonly found in the literature: 

the former in all variants of correspondence analysis (see, for example, Greenacre, 2007, 2010b), 

and the latter in the log-ratio approach to compositional data analysis (see, for example, Pawlowsky-

Glahn and Buccianti, 2011).   

The idea will be illustrated first by a consideration of some morphometric data, chosen specifically 

to have uncorrelated physical size and shape components.  Then we shall extend the idea to the 

general case of nonnegative multivariate data, where correlation usually exists between size and 

shape, illustrated using abundance counts in fish ecology.  Several measures of proximity will be 

studied, including the ones already mentioned above.  

Size and shape in morphometric data 

Morphometric data serve as a concrete example of the concepts of size and shape in the context of 

proximity measures.  A subset of 200 specimens was extracted from the abalone data in the UCI 

machine learning repository (Bache and Lichman, 2013) – this reduced data set is provided as 

supplementary material.  For each abalone the database gives length (L), depth (D) and height (H), 

as well as the abalone’s weight (W).  W can be used as a surrogate for size, or alternatively the sum 

L+D+H, or (in this specific case) the product LDH, with which W is highly correlated.  The 
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interesting property of this particular data set is that, although there are shape differences, these 

differences are uncorrelated with size.  This can be demonstrated by regressing log(W) on either (i) 

the log-ratios log(L/D), log(L/H) and log(H/D), or (ii) the log-profile values, log(L/(L+D+H)),  

log(D/( L+D+H)) and log(H/( L+D+H)).  In both cases the variance explained (R2) is approximately 

0.005 (i.e. 0.5%).   Alternatively, a redundancy analysis (RDA) of the log-ratios, for example, with 

log(W) as the constraining variable, gives only 0.1% of the shape variance accounted for by the size 

variable.  This lack of correlation can be visualized in a principal component biplot of the variables 

that quantify size: W, L, D, H, and LDH, and those that quantify shape: the ratios L/D, L/H, H/D, 

and the profile values L/(L+D+H), D/(L+D+H) and H/(L+D+H), all of which are log-transformed 

(Figure 3).  The biplot, which shows how all these variables covary, clearly reveals the lack of 

correlation of W (similarly, LDH) with the shape variables (ratios and profile values).  Notice too 

that the first principal axis, identified with the size variables, accounts for over 90% of the variance, 

which shows how dominant the size component is compared to the shape component in this data set.   

A number of popular proximity measures, shown in Table 1, will be applied to these morphometric 

data.  The first two are examples of unstandardized measures of difference between the values: the 

Manhattan (or city-block, or L1) distance, and the Euclidean (or L2) distance.  Then there are three 

distances that involve standardizing the data in different ways.  The standardized Euclidean 

distance involves dividing each value by its respective standard deviation (hence the division of 

each squared term by the variance), the Gower distance divides each value by the respective width 

of its range, while the chi-square distance divides the squared term by the expected value, or 

average.  This form of the chi-square distance, applied to the raw data, has been introduced by 

Greenacre (2010a) to be able to incorporate size differences in comparing ecological samples based  
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Figure 3: Principal component biplot of weight (W), the dimensions length (L), depth 

(D) and height (H), as well as the product LDH, the ratios L/H, L/D, and H/D, and the 

profile values L/(L+D+H), D/(L+D+H) and H/(L+D+H), labeled as Lp, Dp and Hp,  all 

on a logarithmic scale.  The points L/D, Lp and Dp are almost at the origin. The first 

axis explains 92.2% of the variance, and the second 6.1%.  Individual cases are 

indicated by dots. 

 

on equal areas or equal volumes.  The usual chi-square distance formulation, inherent in 

correspondence analysis, is defined on profile values, and is thus a pure measure of shape 

differences.  The last two measures in Table 1 involve a partial attempt to relativize the values in the 

observation vectors.  The Canberra distance divides each absolute difference by its respective sum, 

whereas the Bray-Curtis dissimilarity divides the sum of absolute differences (i.e. the Manhattan 

distance) by the sum of all the values in the two observation vectors. 

The object in comparing the proximity measures is to see how much variance in each matrix of 

inter-abalone differences is explained by the quantifiers of size and shape.  The function adonis in  
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1. Manhattan (city-block) distance  

2. Euclidean distance  

3. Standardized Euclidean distance  

4. Gower distance  

5. Chi-square distance  

6. Canberra distance  

7. Bray-Curtis dissimilarity  

 

Table 1: Proximity measures to measure the differences between two sets (indexed by i and j) of 

multivariate observations on three variables L, D and H.  Standard deviation, range and mean are 

denoted by s, r and an overhead bar, respectively;  iLDH denotes Li + Di + Hi.    Measures 1 and 

2 apply as well to the log-ratios log(L/D), log(L/H), log(H/D).  All measures can be applied to the 

relative values L/LDH , D/LDH , H/LDH of the observations (i.e., profiles).  The usual 

chi-square distance applies to the profiles; when defined on the original values it is called the chi-

square of raw data (Greenacre 2010a).  The Bray-Curtis dissimilarity applied to the relative values is 

equal to the Manhattan distance divided by 2.   When these measures are applied to more than three 

variables, the summations simply extend to the full number. 
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the vegan package in R (Oksanen et al, 2013; R Core Team, 2013) is the perfect tool to enable this 

comparison.   This function takes an nn inter-individual proximity matrix as a response and any set 

of variables on the n individuals as explanatory variables.   As an explanatory variable quantifying 

size, the logarithm of weight will be used, whereas for explanatory shape variables either the set of 

profile values or the set of log-ratios will be used.    Since size and shape are uncorrelated in this 

example, any measure of proximity based on the profile values or the ratios should have near zero 

variance explained by weight.    In computing the proximity measures in Table 1, four different 

forms of the variables L, D and H will be used: the profile values, the log-ratios log(L/H), log(L/D), 

log(H/D), the original values of L, D and H, and their logarithms in appropriate cases.  The so-called 

Aitchison distance (Aitchison et al, 2000) is the Euclidean distance applied to the log-ratios – in 

general, for p variables, there would be ½ p(p–1)  log-ratios.   

Another transformation to be considered, which is a kind of standardizing transformation through 

discretization, is to code the variables into a pre-specified number of fuzzy catgories (Aşan and 

Greenacre, 2010; Greenacre, 2013).    Fuzzy coding (for an introduction, see Greenacre and 

Primicerio, 2013, chaps 3 and 19) reduces each variable to a set of nonnegative values that sum to 1, 

quantifying the “possibility” of the variable to be in each category.  Following Aşan and Greenacre 

(2011), triangular membership functions are used to map the original values to their fuzzy values, 

and the chi-square distance is applied to these values.  Since the sums of the fuzzy values for each 

variable are constant, it makes no difference if one uses the “raw” version of the chi-square distance 

or the usual “relative” version. 

For each variation of the proximity measure, Table 2 reports the variance explained by the logarithm 

of weight, describing size, and by the two alternative sets of variables describing shape, the profile  
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Variables used in                    Percentage variance explained 
proximity measure                                                                     by size         by shape     residual 
                                                                                              (log-weight)       (profile/log-ratios)  
_____________________________________________________________________________ 
profiles (L/LDH, D/LDH,     fuzzy coding (5 categories)       0.3          39.5/39.4    60.2/60.3 

              H/LDH)      fuzzy coding (3 categories)       0.2          66.9/66.6    32.9/33.2 

        chi-square (relative)       0.1          99.9/99.6      0.0/0.3 

                   Euclidean         0.1          99.9/99.7      0.0/0.2 

                Manhattan         0.0        100.0/100.0    0.0/0.0 
_____________________________________________________________________________ 
log-ratios (log(L/D), log(L/H),   fuzzy coding (5 categories)       0.1          38.7/38.7    61.2/61.2 

                 log(H/D)      fuzzy coding (3 categories)       0.1          66.3/66.0    33.6/33.9 

            Euclidean (=Aitchison)       0.1          99.6/99.9       0.3/0.0 

        Manhattan         0.0          98.2/98.5       1.8/1.5 
_____________________________________________________________________________ 
original (L, D, H)      Manhattan         90.8          2.5/2.5         6.7/6.7 

        Gower         89.4          4.1/4.1         6.5/6.5 

        Bray-Curtis         89.3          2.2/2.2         8.5/8.5 

        Euclidean         89.1          4.0/4.0         6.9/6.9 

        Canberra         87.4          4.0/4.1         8.6/8.5 

        chi-square (raw)             87.0          6.2/6.2         6.8/6.8   

        standardized Euclidean       84.0          9.4/9.4         6.6/6.6 

        fuzzy coding (3 categories)       55.1          6.3/6.3      38.6/38.6 

        fuzzy coding (5 categories)       30.2          4.9/4.9      64.9/64.9 
_____________________________________________________________________________ 
log(original) (log(L), log(H),     Manhattan         90.8          4.1/4.2        5.1/5.0 

                      log(D))      Gower         90.1          4.0/4.0        5.9/5.9 

        Bray-Curtis         89.9          2.4/2.4        7.7/7.7 

        Euclidean         85.8          9.1/9.1        5.1/5.1 

        fuzzy coding (3 categories)       54.1          6.6/6.5     39.3/39.4 

        fuzzy coding (5 categories)       30.2          4.9/4.9     64.9/64.9 
_____________________________________________________________________________ 
 
Table 2: Percentages of variance explained by log(weight), as a measure of size, and two alternative 

quantifiers of shape, the profile values or the log-ratios, for different inter-individual proximity 

measures.  The residual variances for the two alternative choices of shape variables are given in the 

last column.  The measures are applied to different variants of the three variables: the profiles 

(relative values), log-ratios, original values and log-transformed original values.   LDH is short for 

(L+D+H).  Computations are performed using function adonis in R package vegan. 
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values (values relative to their total) and the log-ratios.   For example, in the first row, when the row 

profiles are fuzzy coded into 5 categories, the variance explained by size (log-weight) is 0.3%; 

39.5% of the variance is explained by shape when the profile values are used as predictors, in which 

case the residual variance is 60.2%; or, alternatively, 39.4% is explained by shape when the log-

ratios are used as predictors, in which case the residual variance is 60.3%.   Within each of the four 

blocks of results the rows are in descending order of the first column, the variance explained by log-

weight. 

Firstly, notice that it is immaterial whether the profiles or the log-ratios are used as shape 

explanatory variables – the values in the last two columns of Table 2 are practically the same, 

varying in the first decimal in only a few cases.  

Secondly, all proximity measures computed on the pure shape variables, either the profile values or 

the log-ratios, are explained close to 0% by log-weight, as expected, since size and shape are 

uncorrelated in this data set.  With the exception of the proximity measures computed on fuzzy-

coded variables, shown in italics in Table 2 and which will be dealt with later as a special case, the 

shape variables account for close to 100% of the variance.      

Thirdly, when the original data or their log-transforms are used, the situation is the opposite: size 

explains between 84.0% and 90.8% of the variance of inter-individual proximities, depending on the 

chosen measure (again, the fuzzy-coded cases will be discussed separately below), while shape 

explains between 2.2% and 9.4%.   There is no definitive measure of size and shape variance but an 

RDA of log(L), log(D) and log(H) , constrained by log(W) and either set of shape variables 

estimates 85.8% of the variance due to size, 9.1% due to shape and a residual of 5.1%.   Notice that 

this RDA is equivalent  to the analysis of the Euclidean distances of the log-transformed data 
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reported in the third last line of Table 2.   The measures in Table 2 that come closest to these first 

two percentages are, for the original data, the chi-square distance on raw data and the standardized 

Euclidean distance.    By contrast, the Bray-Curtis dissimilarity has the smallest component of 

variance attributable to shape, only about 2% – this shows that the partial relativization of the 

absolute differences between the values by their total sums (see formula in last line of Table 1) 

under-estimates the shape component and over-estimates the size component.  In fact, the size 

component estimated by Bray-Curtis is similar to the size components measured by the Manhattan 

and Euclidean distances, which operate on unrelativized data.   

Finally in this section, we comment on the fuzzy coded versions of the variables, shown in italics in 

Table 2.  Fuzzy coding is able to manifest nonlinear relationships between the variables, and the 

more fuzzy categories used the more complex the revealed nonlinearities.  Hence, because Table 2 

is established by “regressing” the inter-individual proximities linearly on the size and shape 

variables, the variances explained for the fuzzy-coded variables are quite different from the other 

proximity measures.  For example, when the profiles or log-ratios are “fuzzified” (upper two blocks 

of Table 2), the variance explained by size is still near zero, as it should be, but the variance 

explained by shape is much lower than 100%.  And when the original data or their log-transforms 

are fuzzified (lower two blocks of Table 1), the variances explained by the size variable are much 

lower than the other proximity measures, and decrease further when the number of categories 

increases.  The residual variances are very high for all the fuzzy-coded options, corroborating the 

fact that they include nonlinear effects not captured by the linear modeling.  It would be interesting, 

in further work, to investigate the form of the nonlinear components of size and shape that the fuzzy 

coding is intrinsically capturing.  A further application of fuzzy coding, showing how nonlinear 
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relationships with explanatory variables can be visualized in a canonical correspondence analysis, is 

given by Aschan et al (2013), Greenacre (2013) and Greenacre and Primicerio (2013, chap. 19).  

Application to abundance counts 

As an example of a data set where size and shape are correlated, which is the more common 

situation in practice, consider the data on  abundance counts of 30 fish species in 89 samples from 

the Barents Sea, used by Greenacre (2013) in the context of canonical correspondence analysis (this 

data set is available as supplementary material in that article).   In contrast to the previous 

morphometric example, where shape differences are less pronounced than size differences, the 

major component of variation in this data set, as well as similar examples in community ecology, 

will be seen to be shape.  Size can be quantified by the logarithm of the total abundance counts in 

each sample and shape can be quantified by the profile values.  In an RDA of the profile values, 

with size as the constraining variable, 3.24% of the shape variance can be explained by size.  This 

figure, based on Euclidean distance between profiles, increases slightly to 3.94% when chi-square 

distances are used.    

In this example, the size and shape components cannot be separated exactly, as in the previous  

morphometric application.  There is a component of variance due to size once the shape component 

is partialled out, a component due to shape once the size component is partialled out, and a 

component that is shared by both size and shape.  Borcard, Legendre and Drapeau (1992) explain 

how to separate environmental and spatial components in a multivariate data set when there is a 

shared environmental-spatial component – here the same idea is used but applied to size and shape 

components.  
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Figure 4 shows the decomposition of variance for some selected proximity measures.  The 

compositional barcharts of the percentages have been ordered from left to right in terms of the 

percentage of size-related variance that is uncorrelated with shape (the black-shaded part).  On the 

left, the chi-square distances between samples, based on the abundance profiles and hence pure 

shape, are totally explained by the shape component (the profile values), as expected – there is thus 

no size component uncorrelated with shape.  Since shape accounts for all the variance, the 

percentage due to size that is common with the shape component is 3.94% , the same figure 

mentioned previously.   At the other extreme on the right is the Bray-Curtis dissimilarity computed 

on the original (raw) data.  This has the highest component of size, 6.60% that is uncorrelated with 

shape as well as 5.13% that is confounded with shape.  This shows once more how much the Bray- 

Curtis over-estimates the size component.  Using the Bray-Curtis on log-transformed data, however, 

 

  

 

 

 

 

 

 

 

Figure 4: Decompositions of variance, as percentages, for five different proximity 

measures in terms of, from top to bottom, (1) component of size that is unrelated to 

shape; (2) shared component of size and shape; (3) component of shape that is 

unrelated to size; (4) residual variance. 
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does moderate the size component (3.55% uncorrelated with shape, 0.77% confounded with shape, 

totaling 4.32%).  The Euclidean distances computed on log-transformed data that have not been 

relativized at all have a similar decomposition of variance, while the chi-square distances on raw 

data include a large part (8.7%) due to size that is confounded with the shape component.   This way 

of decomposing the variance is enlightening to understand how much size and shape are being taken 

into account by each proximity measure. 

 

Discussion and conclusions 

As stated in the introduction, the choice of a proximity measure is a fundamental choice in any 

multivariate data analysis, and the properties of the measure need to be fully understood.  Many 

ecologists choose the Bray-Curtis dissimilarity because it has a scale with endpoints that are easy to 

understand: 0 means exactly the same values in the two multivariate samples, and 1 (or 100%) 

means no co-presences of any species in the two samples.  But, as shown in this report, the Bray-

Curtis measure on the original data suffers from an exaggerated size component.  This can be 

mitigated by making a logarithmic transformation of the data but then Bray-Curtis’ simple definition 

becomes much less intuitive when applied to log-transforms of the data plus the obligatory 1 to cope 

with the zeros: can an ecologist, or anyone else for that matter, then really understand what 50% 

means on the scale, relative to the original data?  The usual justification for either root- or log-

transforming the data prior to computing Bray-Curtis is that the highly abundant species, with their 

larger variances, need to be reduced.   Differences between abundant species are overly contributing 

to the measure, while smaller differences between rarer species are swamped.   An alternative 

technical justification shown in this report is that overall size of the abundance values is excessively 

captured by the Bray-Curtis dissimilarity on the raw data, and its inherent relativization is clearly 



 16

not compensating enough for the size differences between samples.   For the usual situation in 

community ecology, where samples are obtained from equal areas or volumes, Greenacre (2010a) 

proposed the chi-square distance on the raw data, not the relative values as usually applied in 

canonical correspondence analysis, for example, in order to re-introduce the size component into the 

distance measure.  This alternative chi-square distance, computed by dividing squared differences 

between the raw data by their expected value, appears to behave well in terms of its size and shape 

composition.  In addition, it is advantageously a weighted Euclidean distance, with all the favorable 

properties of Euclidean metrics.   

Finally, methods such as (canonical) correspondence analysis that use the classic chi-square distance 

on relative data are clearly analyzing pure shape, and indeed most data sets in community ecology 

have a major component of shape rather than size.  But there will almost always be a part of the 

shape component that is related to size, as we have seen in the last example.  This can be quantified 

and partialled out, if necessary.  The components of size and shape as well as their common 

component can be quantified for any proximity measure applied to a particular data set, and this 

gives insight into the measure’s properties.    
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