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SUMMARY

The Polycomb repressive complex 1 (PRC1) is
required for decisions of stem cell fate. In mouse
embryonic stem cells (ESCs), two major variations
of PRC1 complex, defined by the mutually exclusive
presence of Cbx7 or RYBP, have been identified.
Here,we show that although the genomic localization
of the Cbx7- and RYBP-containing PRC1 complexes
overlaps in certain genes, it can also be mutually
exclusive. At the molecular level, Cbx7 is necessary
for recruitment of Ring1B to chromatin, whereas
RYBP enhances the PRC1 enzymatic activity. Genes
occupied by RYBP show lower levels of Ring1B and
H2AK119ub and are consequently more highly tran-
scribed than those bound by Cbx7. At the functional
level, we show that genes occupied by RYBP are
primarily involved in the regulation of metabolism
and cell-cycle progression, whereas those bound
byCbx7predominantly control early-lineagecommit-
ment of ESCs. Altogether, our results indicate that
different PRC1 subtypes establish a complex pattern
of gene regulation that regulates common and non-
overlapping aspects of ESC pluripotency and differ-
entiation.
INTRODUCTION

Polycomb group (PcG) repressor complexes (PRCs) are regula-

tors of gene expression required for embryonic stem cell (ESC)

fate decisions during development (Sauvageau and Sauvageau,

2010; Simon and Kingston, 2009). PRCs also affect the function

of certain types of adult stem cells, and their misregulation

contributes to tumorigenesis in several tissues (Piunti and

Pasini, 2011). The two major complexes, PRC1 and PRC2,

have been classified based on their composition as well as their

enzymatic activity toward specific histone residues. The core of

PRC2 is formed by the proteins Eed, Suz12, and Ezh1 and Ezh2

subunits. PRC2 deposits the histone H3 lysine 27 trimethyl

repressive mark (H3K27me3) through the Ezh1/2 histone

methyltransferase enzymes. Conversely, the canonical PRC1
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consists of one of the Cbx proteins, polyhomeotic (PHC),

PCGF, RYBP/YAF2, and a Ring1A/B E3 ligase subunit that

monoubiquitinates histone H2A at lysine 119 (H2AK119ub)

(Cao et al., 2002, 2005; Morey and Helin, 2010). Although both

complexes are biochemically distinct, they can cooperatively

establish epigenetic gene repression. In this sense, the canon-

ical model of PRC-mediated gene silencing is based on the

action of both complexes: PRC2 deposits the H3K27me3

mark, which creates a docking site for PRC1, recruiting it to

chromatin through its direct recognition of the Cbx subunit.

This two-step recruitment does not always occur; indeed, we

and others have recently shown that PRC1 can also be recruited

to chromatin in a PRC2-independent manner (Puschendorf

et al., 2008; Richly et al., 2010; Schoeftner et al., 2006;

Tavares et al., 2012).

The composition of PRC1 is highly complex. The protein fami-

lies that constitute the core of PRC1 contain several members:

Cbx (Cbx2, Cbx4, Cbx6, Cbx7, or Cbx8); Ring1A or Ring1B;

PHC (PHC1, PHC2, or PHC3); PCGF (PCGF1, PCGF2, PCGF3,

PCGF4, PCGF5, or PCGF6); and RYBP or YAF2. Each com-

bination establishes the subtype of PRC1 complexes (Gao

et al., 2012; Luis et al., 2012; Morey et al., 2012; O’Loghlen

et al., 2012). For instance, mouse ESCs contain two main types

of PRC1, which are defined by the mutually exclusive presence

of Cbx7 or RYBP (Tavares et al., 2012). Cbx7 is the predominant

PRC1-associated Cbx subunit in proliferating ESCs and requires

the H3K27me3mark to localize to chromatin and thereby silence

the expression of lineage commitment genes. Once ESCs

differentiate, other Cbx proteins, including Cbx2 and Cbx4,

replace Cbx7 within PRC1 to mediate fate choices along the

three germ layers (Morey et al., 2012). In contrast to Cbx7-

PRC1, RYBP-PRC1 does not seem to require the H3K27me3

mark to bind to chromatin in ESCs (Luis et al., 2012; Tavares

et al., 2012).

Here, we investigated the following questions about the PRC1

complexes that contain either Cbx7 or RYBP:

- What is the genome-wide localization of these two types of

PCR1 complexes?

- Is the expression of specific sets of genes differentially regu-

lated by both complexes?

- Do they exert common and/or unique biological functions?

- Do they show any interdependency for localizing to chro-

matin?

mailto:lluis.morey@crg.eu
mailto:luciano.dicroce@crg.eu
http://dx.doi.org/10.1016/j.celrep.2012.11.026
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2012.11.026&domain=pdf


r genome-wide studies indicate that RYBP-PRC1 and Cbx7-

C1 complexes target a wide range of both overlapping and
Ou

PR

specific genes to exert their biological function in ESCs. Mecha-

nistically, Cbx7 and RYBP do not depend on each other to bind

to chromatin but do require Ring1A and Ring1B for their genomic

localization. Nonetheless, even though depletion of either Cbx7

or RYBP reduced the level of H2AK119ub at target genes, only

the knockdown of Cbx7 diminished the amount of Ring1B local-

ized to chromatin. This suggests that RYBP is required to

enhance the E3 ligase activity of Ring1B rather than its genomic

binding. Surprisingly, genes bound by RYBP generally displayed

lower levels of Ring1B and H2AK119ub than those containing

Cbx7. Functional characterization indicates that RYBP target

genes predominantly regulate cellular metabolism and the M

phase of meiosis, whereas those bound by Cbx7 are strongly

repressed and are associated with cell differentiation choices

during early development.

RESULTS

RYBP-PRC1andCbx7-PRC1Co-occupyOnly aSubset of
Target Genes in Mouse ESCs
Mouse ESCs contain at least two major types of PRC1

complexes, which are defined by the mutually exclusive pres-

ence of Cbx7 and RYBP (Tavares et al., 2012). Cbx7 is the

predominant PRC1-associated Cbx subunit in ESCs, and virtu-

ally all of its target genes show Ring1B and PRC2 co-occupancy

(Morey et al., 2012). We therefore sought to determine whether

RYBP-PRC1 and Cbx7-PRC1 complexes are also mutually

exclusive or whether they colocalize at the level of chromatin.

To this end, we performed chromatin immunoprecipitation

(ChIP) of RYBP followed by massive parallel sequencing (ChIP-

seq) and compared these results to the genome-wide localiza-

tion of Cbx7, Ring1B, and the PRC2 member Suz12 (Morey

et al., 2012). We observed an overlap of RYBP peaks (3,918 in

total) with 14%, 42%, and 37% of Cbx7, Ring1B, and Suz12

peaks, respectively (false discovery rate [FDR] = 1%; p = 1 3

10�5) (Figure 1A). Moreover, although more than 90% of Cbx7

peaks contained Ring1B and Suz12, 20% were also bound by

RYBP (Figure 1A). Thus, whereas RYBP and Cbx7 display

a high level of exclusive binding to chromatin, they also colocal-

ize to a significant number of genomic regions. The extent of

these overlaps did not significantly change when we analyzed

putative target genes by focusing on an area spanning ±2.5 kb

from the ChIP-seq peak summits. In this analysis, 50% of genes

bound by RYBP contained Ring1B, and 31% (725 genes) over-

lapped with Cbx7 and PRC2 (Figures 1B and 1C). In contrast,

and as previously published, virtually every gene occupied by

Cbx7 contained Ring1B (Figure 1B). Overall, our ChIP-seq anal-

ysis allowed us to identify five types of genes according to the

occupancy of PRC1 and PRC2: those with (1) Ring1B/Cbx7/

RYBP and Suz12 (725 genes); (2) Ring1B/Cbx7/Suz12, but not

RYBP (1,527 genes); (3) Ring1B/RYBP/Suz12, but not Cbx7

(861 genes); (4) only Ring1B and Suz12 (1,694 genes); or (5)

RYBP but no Polycomb proteins (1,674) (Figure 1C).

Interestingly, the RYBP peak summits fell exactly at the

transcription start sites (TSSs), whereas on average, the peak

summits for Cbx7 are located approximately 0.5–1 kb down-
stream of the TSSs (Figure S1A). Sequential ChIP (re-ChIP)

experiments of two RYBP and Cbx7 common target genes

confirmed that the PRC1-RYBP and PRC1-Cbx7 complexes

bind to the same loci (Figure S1B).

We next analyzed the intensity of the Ring1B and Suz12 signal

at Cbx7 and RYBP peaks. Intriguingly, the level of Ring1B and

Suz12 occupancy is on average higher at Cbx7 targets than at

RYBP targets (Figure S1C). In other words, RYBP target genes

contained less Ring1B than those bound by Cbx7-Ring1B (Fig-

ure S1D). Because PRC2 binds to CpG island-containing genes,

and CpG islands are sufficient to recruit PRC2 (Ku et al., 2008;

Mendenhall et al., 2010), we next asked whether the number of

CpG islands was the underlying cause for the difference in

PRC2 content and the amount of RYBP and Cbx7 at their target

genes. Indeed, we found that 81% and 69% of total Cbx7

and RYBP peaks, respectively, contained at least one CpG

island (Figure S1E). These differences were maintained when

we focused on target genes; in this sense, whereas 98% of

Ring1B/Cbx7/RYBP cotargets contained CpG islands, this

percentage decreased to 80% in genes that have Ring1B and

RYBP, but no Cbx7 (Figure S1E). Thus, genes bound by Cbx7-

Ring1B contain on average a higher number of CpG islands

than those bound by RYBP-Ring1B.

Next, we analyzed the binding profile and the peak intensity of

the five different groups of genes reported in Figure 1C. This

detailed analysis revealed that the binding of Ring1B and

Suz12 gradually changed depending on the presence of Cbx7

and RYBP. Indeed, we observed that the binding of Ring1B/

Suz12 was highest at genes cobound by RYBP and Cbx7 (com-

pare Figure 1D with Figures 1E–1G), reduced at genes bound

by Cbx7 but not RYBP, and even lower at genes occupied by

RYBP but not Cbx7 (compare Figure 1E with Figure 1F). Genes

without significant binding for Cbx7 or RYBP contained minimal

amounts of Ring1B and Suz12 at their TSSs (Figure 1G). Addi-

tionally, we identified a cohort of genes that was only occupied

by RYBP but not by any other Polycomb proteins, suggesting

that RYBP functions at those genes independently of the PRC1

complex (Figure 1H) (Hisada et al., 2012). Thus, Cbx7 and

RYBP occupancy correlates with that of Ring1B and Suz12. A

reverse analysis further confirmed these observations. Indeed,

the Ring1B/Suz12 average peak intensity was highest at genes

co-occupied by Cbx7 and/or RYBP (Figure 1I). Notably, some

of the genes that, based on the setting of our bioinformatic anal-

ysis, appeared not to be targeted by Cbx7 and/or RYBP showed

very low amounts of Cbx7/RYBP when monitored by ChIP-

qPCR (Figure S1F).

The Biological Significance of Different Levels of
H2AK119ub at Ring1B/RYBP and Ring1B/Cbx7 Targets
We next determined whether the difference in the average

amount of Ring1B between RYBP and Cbx7 targets was re-

flected by differences in the level of its enzymatic readout, which

is the level of H2AK119ub at its target genes. We performed this

analysis by focusing on (1) genes with Ring1B/Cbx7/RYBP and

Suz12 (Figure 2A); (2) genes with Ring1B/RYBP/Suz12 but not

Cbx7 (Figure 2B); and (3) genes with Ring1B/Cbx7/Suz12 but

with either no RYBP (such as Foxd2 and GDNF) or very low

amounts of RYBP (such as Pitx2) (Figure 2C; see Experimental
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Figure 1. RYBP and Cbx7 Target Genes Are Not Mutually Exclusive in Mouse ESCs

(A) Peaks of Cbx7, Ring1B, RYBP, or Suz12, as identified by ChIP-seq in ESCs.

(B) Venn diagrams of Ring1B target genes that overlapped with Cbx7 or RYBP targets in ESCs.

(C) Venn diagrams of the overlap between target genes of Cbx7, Ring1B, RYBP, and Suz12.

(D–H) Normalized signal of the RYBP, Cbx7, Ring1B, Suz12, and IgG peaks, identified by ChIP-seq, relative to the TSS. The input reads were clustered in the

different groups selected from (C) and described at the bottom of each graph.

(I) Normalized signal of the Ring1B, Suz12, and IgG peaks, identified by ChIP-seq, relative to the TSS. The input reads were clustered in two groups of Suz12 and

Ring1B from all target genes and targets that do not have Cbx7 and RYBP.

Related to Figure S1.
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Figure 2. Cbx7 Target Genes Contain More H2AK119ub and Have Different Biological Functions than RYBP Target Genes

(A–C) UCSC screen shots of the profiles of the Ring1B, Cbx7, RYBP, H2AK119ub, and Suz12 ChIP-seq results for selected genes. The numbers at the top left of

each graph represent the number of reads for each ChIP-seq profile of the given gene.

(D) Venn diagrams of H2AK119ub target genes that overlapped with Ring1B, Cbx7, RYBP, or Suz12 targets.

(legend continued on next page)

Cell Reports 3, 60–69, January 31, 2013 ª2013 The Authors 63



Procedures). Our results indicate that the vast majority of genes

containing H2AK119ub are also occupied by Ring1B and Suz12

(Figures 2D and 2F). Interestingly, H2AK119ub was present in

only 25.7% of RYBP target genes but in 72% of Cbx7 target

genes (Figure 2D). Unexpectedly, the levels of H2AK119ub drop-

ped at the RYBP peak summit at TSSs (Figure 2E), whereas the

H2AK119ub profile perfectly correlated with high levels of

Cbx7 (Figures 2E and S2A). Interestingly, four times more genes

were co-occupied by Ring1B/Cbx7 and H2AK119ub (1,120

genes) than by Ring1B-RYPB and H2AK119ub (368 genes),

whereas 573 genes contained Ring1B/RYBP/Cbx7/Suz12 and

H2AK119ub (Figures 2F and S2B; Table S1). Together, these

data support the presence of three major types of PRC1 target

genes: a first set with Cbx7/Ring1B/H2AK119ub; a second that

contains RYBP and lower levels of Ring1B/H2AK119ub (Fig-

ure 2E; note different y axis scale); and a third set cobound by

RYBP/Cbx7/Ring1B and that also contains H2AK119ub.

We next asked whether these cohorts of genes represent

different biological functions. Gene ontology (GO) analysis

of biological function revealed that genes co-occupied by

Ring1B/Cbx7/RYBP and H2AK119ub are involved in system

development. Interestingly, genes containing RYBP/Ring1B/

H2AK119ub, but not Cbx7, have a strong association with the

Mphase of themeiotic cycle and cellularmetabolism (Figure 2G).

Conversely, genes with Cbx7/Ring1B/H2AK119ub are involved

in developmental processes and mesoderm specification,

whereas those containing RYBP/Cbx7/Ring1B/H2AK119ub

predominantly represent the ectodermal fate and, to a lesser

extent, mesoderm and endoderm fates (Figures 2G and 2H).

The three sets of PRC1 target gene subtypes not only differed

in their biological functions but also in the pathways they repre-

sented. In this sense, the KEGGS signaling pathway analysis

revealed that Cbx7/RYBP/Ring1B/H2AK119ub target genes

mainly repress Hedgehog and Wnt signaling, whereas those

belonging to the RYBP/Ring1B/H2AK119ub set regulate Wnt

and ErbB signaling genes, and those with Ring1B-Cbx7-

H2AK119ub are involved in axon guidance and its main regula-

tory pathway of Hedgehog signaling (Table S2). Altogether,

these results indicate that different combinations of PRC1 bound

at chromatin establish a complex pattern of gene expression,

each of which regulates a specific set of functions relevant to

the biology of ESCs.

PRC1-RYBP Target Genes Are More Highly Expressed
than PRC1-Cbx7 Targets
Re-ChIP experiments using Ring1B and active RNA-PolII

antibodies have indicated that Ring1B and active RNA-PolII

do not occupy the same allele, suggesting that PRC1 represses

one allele, whereas the other is highly expressed (Brookes et al.,

2012). To study the transcriptional status of the different PRC1-

RYBP and PRC1-Cbx7 genes, we analyzed available ChIP-seq
(E) Normalized signal of all H2AK119ub, Ring1B, Cbx7, and IgG peaks that were id

two groups: RYBP peaks and Cbx7 peaks.

(F) Venn diagrams of the overlap between target genes of Cbx7, Ring1B, RYBP,

(G and H) GO analysis of biological functions and tissue-related genes of genes co

Ring1B/Cbx7, or only RYBP. p Values are plotted in �log.

Related to Figure S2.
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data (Brookes et al., 2012) of the elongation form of the RNA-

PolII (RNA-PolII-S2p+) and compared it with our Ring1B, Cbx7,

and RYBP ChIP-seq data sets. Interestingly, more than twice

as many of total RYBP targets contained RNA-PolII-S2p as did

Cbx7 targets (Figure S3A), whereas about 60% of Ring1B/

RYBP and 37% of Ring1B/Cbx7 cotargets also had the elon-

gated RNA-PolII (Figure 3A); importantly, this ratio was also

maintained when H2AK119ub targets were included in the anal-

ysis (Figures S3B and S3C).

To further strengthen the proposal that Ring1B/RYBP targets

are more highly expressed than Ring1B/Cbx7 targets, we

analyzed the expression of these genes using our microarray

and RNA-seq data from ESCs. Indeed, Ring1B/RYBP cotargets

are more highly expressed on average than genes containing

Ring1B/Cbx7 or Ring1B/Cbx7/RYBP (Figures 3B and 3C).

Moreover, RYBP target genes that were not co-occupied by

any Polycomb proteins were more highly expressed than the

average expression of all genes (Figures 3C and S3D).

We then randomly selected four genes from each group

of PRC1 target genes (i.e., those containing Cbx7/RYBP/

Ring1B, Cbx7/Ring1B, or RYBP/Ring1B). In accordance with

our previous observations (Figures 3A–3C), the four selected

RYBP/Ring1B target genes were expressed to a significantly

higher degree than those containing Cbx7/RYBP/Ring1B or

Cbx7/Ring1B (Figure S3E). Interestingly, these genes were upre-

gulated when Ring1B was depleted, and this upregulation was

enhanced when both Ring1A and Ring1B were depleted

(Figure 3D).

Recruitment of RYBP and Cbx7 to Chromatin
As mentioned above, purification of RYBP- and Cbx7-associ-

ated proteins in mouse ESCs revealed a mutually exclusive

association to Ring1B-containing complexes. We have recently

shown that Ring1B, Mel18, and Suz12 are significantly, but not

completely, displaced from their target genes following Cbx7

depletion (Morey et al., 2012). We thus determined which factors

are required for recruiting the different subtypes of PRC1 to

chromatin. As shown in Figure 3E, Ring1B�/� ESCs had reduced

occupancy of both Cbx7 and RYBP, and this effect was

enhanced after double depletion of Ring1A/B. In contrast, dele-

tion of Ring1A alone did not alter the binding of either Cbx7 or

RYBP (Figures 3E and S3F; see also Morey et al., 2012).

Because our analysis identified more than 700 genes contain-

ing RYBP/Cbx7/Ring1B, we next asked whether depletion of

Cbx7 affected the binding of RYBP to its target genes, and

vice versa (Figure 4A). Interestingly, ChIP-qPCR of shared

RYBP-Cbx7 target genes revealed that depletion of Cbx7 did

not reduce RYBP occupancy at chromatin but in fact slightly

increased it, even though the overall levels of Ring1B, Mel18,

and H2AK119ub in chromatin were reduced (Figure 4B).

Re-expression of a knockdown-resistant form of Cbx7 restored
entified by ChIP-seq, relative to the TSSs. The input reads were clustered into

and H2AK119ub.

regulated by PCR1 complexes containing Ring1B/RYBP/Cbx7, Ring1B/RYBP,



Figure 3. RYBP/Ring1B Target Genes Are More Likely to Be Expressed than Cbx7/Ring1B Targets

(A) Ring1B-associated genes with either RYBP and/or Cbx7 together with RNA-PolII-S2p.

(B) Gene expression analysis of Ring1B, RYBP, and Cbx7 target genes frommicroarray data in mouse ESCs. Expression levels were divided into three categories

(see Experimental Procedures). The box plot represents the average gene expression for all the probes from the microarray.

(C)Gene expression analysis of Ring1B, RYBP, andCbx7 target genes fromRNA-seq data inmouseESCs (Brookes et al., 2012). Box plots depict genes containing

Ring1B/Cbx7/RYBP, Ring1B/Cbx7, Ring1B/RYBP, or RYBP with no PRC1/2. FPKM (fragments per kilobase of exon per million fragments mapped) values from

RNA-seq data are shown.

(legend continued on next page)
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the occupancy of chromatin factors to levels comparable to

those observed in control cells (Figure 4B). On the other hand,

ESCs depleted for RYBP showed reduced amounts of

H2AK119ub, although the recruitment of the PRC1 subunits

was not affected (Figure 4C). Although some residual RYBP

protein was still present in RYBP-depleted cells, which could in

part account for the lack of Ring1B displacement, our data are

in agreement with Ring1B ChIP analysis performed in RYBP�/�

ESCs (Hisada et al., 2012). Interestingly, we did not observe

any compensation of RYBP or Cbx7 in ESCs depleted of Cbx7

or RYBP, respectively (Figures S4A and S4B). At the functional

level, expression analysis of common Cbx7/RYBP target genes

suggested that Cbx7 at those promoters plays an important

role in maintaining gene repression (Figure 4D). The expression

levels of RYBP targets (that are not Cbx7 targets) were further

elevated upon depletion of RYBP, as previously reported in

RYBP�/� ESCs (Figure 4D; Hisada et al., 2012). We next gener-

ated ESCs depleted of Cbx7 and RYBP (dKD-ESCs) (Figures

S4C and S4D). Interestingly, dKD-ESCs expressed normal

Oct4 and Nanog mRNA and protein levels and did not display

spontaneous differentiation (Figure S4E). We then asked

whether the depletion of both Cbx7 and RYBP enhanced the

derepression of genes containing both Cbx7-Ring1B and

RYBP-PRC1 complexes. Intriguingly, HOXA7 expression, which

was not affected in cells depleted by either Cbx7 or RYBP alone,

was 4-fold upregulated in dKD-ESCs. Moreover, HOXA5 and

HOXD10 expression was strongly upregulated in dKD-ESCs,

whereas their upregulation was more modest in Cbx7- or

RYBP-depleted cells (Figure S4F). We conclude that both

PRC1 complexes can functionally cooperate to regulate specific

genes. Note that Ring1B binding was not completely displaced

from chromatin in dKD-ESCs and that the H2AK119ub levels

remained very similar to the levels found in Cbx7- or RYBP-

depleted ESCs (Figures S4G and S4H).

Overall, these data suggest that Cbx7 plays an important role

in Ring1B and Mel18 deposition at chromatin and that PRC1

binding does not depend on RYBP in proliferating ESCs.

However, RYBP is necessary for the efficient enzymatic activity

of Ring1B at target genes.

DISCUSSION

Recent data suggested that RYBP and Cbx formmutually exclu-

sive PRC1 complexes, yet a comprehensive analysis of their

genome-wide occupancy and a characterization of their molec-

ular and biological function(s) in ESCs have not yet been re-

ported. Here we demonstrate that (1) Cbx7 and RYBP occupy

specific targets but also colocalize at a significant number of

genomic regions; (2) the PRC1-Cbx7 complex largely overlaps

with H2AK119ub; (3) expression of Ring1B/RYBP target genes

is on average significantly higher than that of Ring1B/Cbx7
(D) qRT-PCR of selected genes from three gene categories in wild-type (WT) E

mouse ESCs.

(E) Cbx7 and RYBP binding is dependent on Ring1B/A. qPCR of the indicated ge

Ring1A-depleted, Ring1B KO, or Ring1B KO/siRing1A ESCs, performed with the

input material. All ChIP experiments represent the average of three independent

Related to Figure S3.
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targets; and (4) binding of other PRC1 components, such as

Mel18 and Ring1B, to chromatin mainly relies on the presence

of Cbx7, whereas the efficient enzymatic activity of PRC1

requires RYBP.

We have identified more than 700 genes targeted by PRC1-

RYBP, PRC1-Cbx7, and PRC2. The profile analysis of Cbx7

and RYBP occupancy indicates that, whereas Cbx7 peaks

were at TSSs, RYBP peaks were one to two nucleosomes

upstream. This suggests that different complexes might exert

different functions with respect to promoter regulation andmight

possess different recruiting mechanisms. This hypothesis is

further supported by the finding that 861 of the PRC1-RYBP

target genes also are bound by Suz12, whereas 331 have no

Suz12, indicating a higher level of complexity for Polycomb

recruitment than anticipated. The exact manner in which PRC1-

RYBP is recruited to chromatin is still unknown. Protein domain

analysis predicts that RYBP only possesses a single Zn finger-

RanBP2 domain. So far, this family of zinc finger domains has

only been implicated in protein-protein interactions, yet previous

data suggest that RYBP binds directly to DNA (Neira et al., 2009).

However, PRC1-RYBP could also be recruited to DNA by other

modes, such as through its direct interactions with transcription

factors and/or noncoding RNAs. Finally,Mel18 andCbx7 binding

was found to be very low at RYBP-Ring1B target genes, sug-

gesting that other highly expressed PCGF proteins, such

as NSPC1 and MBLR, might associate with RYBP-PRC1

complexes. In line with this, Tavares and colleagues have shown

that Mel18, NSP1, andMBLR are strongly associated with RYBP

in ESCs (Tavares et al., 2012). Thus, we hypothesize that a further

layer of PRC1 complexity might exist in ESCs: different RYBP-

Ring1B complexes containing specific PCGF proteins could

modulate enzymatic activities that have specific biological

functions. The presence of specific PCGF proteins within the

RYBP-Ring1B complex could modulate its enzymatic activities

and specify different biological functions.

The enzymatic activities of PRC1-RYBP and PRC1-Cbx7

complexes are still under debate. In vitro assays using recombi-

nant Ring1B/Mel18 complexes containing either RYBP or Cbx7

are both able to efficiently monoubiquitinate H2A (Tavares

et al., 2012), although recombinant PRC1-RYBP seems more

enzymatically active than PRC1 containing Cbx2 or Cbx8 (Gao

et al., 2012). Interestingly, nucleosomal arrays incubated with

recombinant PRC1 containing either RYBP or Cbx2 revealed

that the complex with RYBP compacted chromatin more effi-

ciently than the complex with Cbx2 (Gao et al., 2012). Our data

indicate that Cbx7 target genes are associated with higher levels

of H2AK119ub as compared to RYBP targets. This might

suggest that, in vivo, Cbx7 increases PRC1 activity to a greater

extent than RYBP or Cbx2; alternatively, PRC1-RYBP com-

plexes could catalyze the deposition of the H2AK119ub mark

and then be replaced by PRC1-Cbx7 complexes.
SCs, siRing1A ESCs, Ring1B knockout (KO) ESCs, and Ring1A/B-depleted

ne promoters, at the bottom of the panels, after ChIP experiments in control,

antibodies indicated in the graphs. Results are presented as a percentage of

experiments.



Figure 4. Interdependency of RYBP and Cbx7 Recruitment to Chromatin

(A) Western blot analysis of different PRC1 subunits from total cell extracts of shCTR, shCbx7, and shRYBP mouse ESCs. Tubulin was used as a loading

control.

(B) ChIP-qPCR of selected Cbx7 and RYBP target genes in shCTR, shCbx7-depleted, or 33 Flag-Cbx7 rescue ESCs. The IgG antibody was used as a negative

control. Results are presented as percentage of input material immunoprecipitated and represent an average of three independent experiments.

(legend continued on next page)
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A recent report has shown that a set of PRC1 target genes,

termed PRCa, is highly expressed (Brookes et al., 2012). Our

analysis indicates that RYBP/Ring1B target genes are more

highly expressed than those containing Cbx7 alone or those

co-occupied by Cbx7 and RYBP, suggesting that the PRC1

complex bound to PRCa genesmost likely contains RYBP rather

than Cbx7. RYBP/Ring1B targets are associated with metabolic

pathways and more involved in the M phase of meiosis than in

developmental pathways. Therefore, the differential composition

of the PRC1 complex (e.g., containing either Cbx7 or RYBP)

could determine which category of genes it regulates.

In mouse ESCs, Cbx7 is necessary for recruiting Ring1B, but

not RYBP, and for maintaining genes in a silenced state. The

observation that RYBP binding to chromatin is slightly increased

after Cbx7 depletion might indicate that, under these conditions,

compensatory mechanisms are activated to counteract the

lack of Cbx7. Interestingly, upon RYBP depletion, none of the

PRC1 subunits was displaced from chromatin, yet the levels of

H2AK119ub were slightly reduced. This indicates that the

PRC1-Cbx7 complex is recruited to chromatin independently

of RYBP but that PRC1 enzymatic activity requires RYBP to effi-

ciently ubiquitinate histone H2A in the nucleus.

EXPERIMENTAL PROCEDURES

ESC Culture and Generation of Stable Knockdown ESCs

E14Tg2A ESCs were cultured feeder free in plates coated with 0.1% of gelatin

as described previously. To produce lentiviruses containing shRNA, 293T cells

(2 3 106) were transfected with 7 mg of pLKO-shRNA (Sigma-Aldrich), 5 mg of

pCMV-VSV-G, and 6 mg of pCMVDR-8.91 plasmids. After 72 hr, ESCs were

infected overnight by reverse infection with the virus-containing media filtered

with LIF and polybrene (1 mg/ml). shCbx7 ESCs were selected 24 hr after

infection with 2 mg/ml of puromycin (Sigma-Aldrich) and shRYBP ESC with

250 mg/ml of hygromycin. To generate stable dKD-ESCs, we infected RYBP

knockdown ESCs with lentiviruses containing shRNA-Cbx7. dKD-ESCs

were cultured under 2 mg/ml of puromycin and 250 mg/ml of hygromycin.

The shRNA sequences are shown in Table S3.

ChIP and Re-ChIP Assays

ChIP was performed as described previously (Morey et al., 2012), with the

following modifications. Due to the high background of the antibodies against

RYBP (Millipore) and H2AK119ub (Cell Signaling), we modified the ChIP

experiments as follows: for RYBP, 2 ml of antibody was incubated with

500 mg of protein for 2 hr, and for H2AK119ub, 1 ml of antibody (Cell Signaling)

was incubated with 100 mg of protein for 2 hr. Immunocomplexes were recov-

ered with 30 ml of protein A bead slurry saturated with salmon sperm, washed

three times with low-salt buffer and two times with high-salt buffer. Primers

and antibodies used are listed in Table S3. For re-ChIP assays, immunoprecip-

itated DNA was eluted after the last ChIP wash with 50 ml of 10 mM DTT for

30 min at 37�C and diluted 103 with ChIP buffer; 5 mg of antibody was then

incubated with this overnight at 4�C with rotation.

ChIP-Seq Data Analyses

The millions of reads produced by ChIP-seq of RYBP, Cbx7, Ring1B, Suz12,

and H2AK119Ub were aligned with the mouse genome (version NCBIM37)
(C) ChIP-qPCR of selected Cbx7 and RYBP target genes in shCTR- or shRYBP-

presented as percentage of input material immunoprecipitated and represent an

(D) qRT-PCR of Cbx7 and RYBP target genes. Expression was normalized to th

experiments.

(E) Model depicting three types of PRC1 target genes identified in ESCs, with sp

Related to Figure S4.
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using the Bowtie (Langmead et al., 2009) tool version 0.12.7; two mismatches

were allowed within the seed alignment. Sequence tags were aligned to the

genome and then subsequently analyzed by MACS software version 1.4.1

(Zhang et al., 2008) to detect genomic regions enriched for multiple overlap-

ping DNA fragments (peaks) that we considered to be putative binding sites.

MACS estimated the FDR by comparing the peaks obtained from the samples

with those from the control samples, using the same p value cutoff (13 10�5).

Peaks with a FDR lower than 5% from Cbx7, Ring1B, Suz12, and H2AK119ub,

and lower than 1% from RYBP, were combined to detect chromosomal

regions for further analyses. Genes with a peak within the gene body, or within

2.5 kb from the TSS, were considered to be target genes. An area of 5 kb

surrounding each TSS that was associated to one or more ChIP-seq (RYBP,

Ring1B, Cbx7, Suz12, or H2AK119ub) was used to calculate the ChIP-seq

profile and the whole ChIP-seq coverage. ChIP-seq profiles around the

TSSs were generated for each IP by calculating the average coverage in

each position normalized for the total number of mapped reads with the

BED tools package (Quinlan and Hall, 2010).

ACCESSION NUMBERS

Sequencing data have been deposited into the NCBI Gene Expression

Omnibus database under accession number GSE42466.
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O’Loghlen, A., Muñoz-Cabello, A.M., Gaspar-Maia, A., Wu, H.A., Banito, A.,

Kunowska, N., Racek, T., Pemberton, H.N., Beolchi, P., Lavial, F., et al.
(2012). MicroRNA regulation of Cbx7mediates a switch of Polycomb orthologs

during ESC differentiation. Cell Stem Cell 10, 33–46.

Piunti, A., and Pasini, D. (2011). Epigenetic factors in cancer development: pol-

ycomb group proteins. Future Oncol. 7, 57–75.

Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K., Brykczynska,

U., Kolb, C., Otte, A.P., Koseki, H., Orkin, S.H., et al. (2008). PRC1 and Suv39h

specify parental asymmetry at constitutive heterochromatin in early mouse

embryos. Nat. Genet. 40, 411–420.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841–842.

Richly, H., Rocha-Viegas, L., Ribeiro, J.D., Demajo, S., Gundem, G.,

Lopez-Bigas, N., Nakagawa, T., Rospert, S., Ito, T., and Di Croce, L. (2010).

Transcriptional activation of polycomb-repressed genes by ZRF1. Nature

468, 1124–1128.

Sauvageau, M., and Sauvageau, G. (2010). Polycomb group proteins:

multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7,

299–313.

Schoeftner, S., Sengupta, A.K., Kubicek, S., Mechtler, K., Spahn, L., Koseki,

H., Jenuwein, T., and Wutz, A. (2006). Recruitment of PRC1 function at the

initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25,

3110–3122.

Simon, J.A., and Kingston, R.E. (2009). Mechanisms of polycomb gene

silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697–708.

Tavares, L., Dimitrova, E., Oxley, D., Webster, J., Poot, R., Demmers, J.,

Bezstarosti, K., Taylor, S., Ura, H., Koide, H., et al. (2012). RYBP-PRC1

complexesmediate H2A ubiquitylation at polycomb target sites independently

of PRC2 and H3K27me3. Cell 148, 664–678.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E.,

Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-

based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.
Cell Reports 3, 60–69, January 31, 2013 ª2013 The Authors 69


	RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells
	Introduction
	Results
	RYBP-PRC1 and Cbx7-PRC1 Co-occupy Only a Subset of Target Genes in Mouse ESCs
	The Biological Significance of Different Levels of H2AK119ub at Ring1B/RYBP and Ring1B/Cbx7 Targets
	PRC1-RYBP Target Genes Are More Highly Expressed than PRC1-Cbx7 Targets
	Recruitment of RYBP and Cbx7 to Chromatin

	Discussion
	Experimental Procedures
	ESC Culture and Generation of Stable Knockdown ESCs
	ChIP and Re-ChIP Assays
	ChIP-Seq Data Analyses

	Accession Numbers
	Supplemental Information
	Licensing Information
	Acknowledgments
	References


