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Abstract—In this paper, we introduce a pilot-aided multipath
channel estimator for Multiple-Input Multiple-Output (MIMO)
Orthogonal Frequency Division Multiplexing (OFDM) systems.
Typical estimation algorithms assume the number of multipath
components and delays to be known and constant, while their
amplitudes may vary in time. In this work, we focus on the
more realistic assumption that also the number of channel taps
is unknown and time-varying. The estimation problem arising
from this assumption is solved using Random Set Theory (RST),
which is a probability theory of finite sets. Due to the lack of
a closed form of the optimal filter, a Rao-Blackwellized Particle
Filter (RBPF) implementation of the channel estimator is derived.
Simulation results demonstrate the estimator effectiveness.

I. INTRODUCTION
Wireless systems employing multiple antennas at the trans-

mitter and the receiver have been shown to provide a sig-
nificant increase in the channel capacity [1]. On the other
hand, orthogonal frequency division multiplexing (OFDM) is
a technique that has attracted a lot of attention due to its sim-
ple implementation and robustness against frequency-selective
fading channels [2]. The effectiveness of the combination of
OFDM with multiple antennas has been demonstrated in [3].
However, such systems rely upon the knowledge of channel
state information (CSI) at the receiver which can be achieved
in different ways; one is based on pilot tones that contain
symbols known to the receiver, whereas the other is blind,
i.e. it does not need the transmission of known symbols
exploiting statistical information. Compared with pilot-aided,
blind channel estimation generally requires long data record
and it is typically adopted to slowly time-varying channels
and entails high complexity. In this paper, we consider rapidly
time-varying channels, so we restrict our attention to training-
based channel estimation.
Traditional channel estimation for MIMO-OFDM is addressed
under the assumption that the number of multipath components
and their delays is known and constant, while amplitudes are
time-varying. In this work, we deal with multipath channel
estimation under the more realistic assumption of an unknown
and time-varying number of paths. Here, we use Random-
Set Theory (RST) which is a probability theory defined on
collections of elements where not only each element, but
also the number of elements is random. With this theory,
Bayesian filtering equations can be derived which allow one

to determine the evolution with time of the channel estimator.
Due to the lack of an explicit solution for the Bayesian
filtering equations for Random Finite Set (RFS), algorithms
that approximate the filter equations are a fundamental issue
in RST [5]. Among all techniques, Sequential Monte Carlo
(SMC), also known as Particle Filter (PF), seems particulary
attractive providing a consistent approximation of the Bayes
filtering equation [6]. Hence, under the assumption that the
channel dynamic is conditionally linear and Gaussian (CLG),
we derived a Rao-Blackwellized particle filter (RBPF), which
is an efficient implementation of the Bayes filter [7].
The rest of this paper is organized as follows. In Section
II, we briefly overview the basic system model. In Section
III, we introduce the Bayes filtering equations and their
implementation via SMC filter. A Rao-Blackwellised particle
filter is designed in Section IV. Section V contains simulation
results.
Notation: Normal face letters denote scalar values; Lower
(upper) boldface letter are used for column vectors (matrices);
upper calligraphic letters are used for RFS; (·)H denotes
Hermitian operation; E[·] represents statistical expectation; IN

denotes the identity matrix of size N ; 0M×N denotes the
N ×M zeroes matrix; if xt are column vectors of the same
dimension ∀t = 1, . . . , T then x1:T = [x1, . . . ,xT ] ; diag(x)
stands for the diagonal matrix with the column vector x on
its diagonal; det(Σ) is the determinant of the square matrix
Σ; finally, j =

√−1 and Nc(x;μ,Σ) = 1
π det(Σ) exp{−(x−

μ)HΣ−1(x− μ)}.
II. SIGNAL MODEL AND PROBLEM STATEMENT

In this section, we briefly review the signal model for
MIMO-OFDM systems. Successively, we introduce our dy-
namic channel model based on RFS. Finally, we show that
the whole system can be described by a state-space model.

A. Observation model
We have considered a MIMO-OFDM system with N trans-

mit antennas and M receive antennas. The number of subcar-
riers is K. At each transmit antenna, an OFDM modulator
is used. The OFDM symbol that is transmitted from the
nth antenna at discrete time index t is denoted by the K-
dimensional column vector d̃n;t � [d1,n;t, . . . , dK,n;t]

T . This
vector is processed by an IFFT, and a cyclic prefix of length
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μ is added. We assume that μ ≥ Lmax − 1, where Lmax is
the maximum length of all multipath channels. After removing
the cyclic prefix at the mth receive antenna and performing
a FFT, we obtain the K-dimensional column vector ỹm;t �

[y1,m;t, . . . , yK,m;t]
T , which can be written as [4]

ỹm;t =
N∑

n=1

D̃n;tThm,n;t + z̃m;t (1)

where D̃n;t = diag(d̃n;t), hm,n;t � [a
(1)
m,n;t, . . . , a

(Lmax)
m,n;t ]T

is a Lmax-dimensional column vector representing the Lmax

length channel impulse response from the nth transmit antenna
to the mth receive antenna, z̃m;t � [z1,m;t, . . . , zK,m;t]

T is
the AWGN having power spectral density N0, i.e. z̃m;t ∼
Nc(z̃m;t;0K×1, N0IK) and T is the K×Lmax Fourier matrix
whose (k, �)th entry is defined as, {T}k,� = e−j2π(�−1) k−1

K for
k = 1, . . . , K and � = 1, . . . , Lmax.
We assume that P pilot symbols are uniformly interleaved with
data to enable channel estimation and P ≥ LmaxN . Denote
kp, for p = 1, . . . , P , the pth pilot subcarrier index. Let us
collect the signal observed onto the pilot subcarriers of themth
receive antenna at time t in the P -dimensional column vector
ym;t � [yk1;m,t, . . . , ykP ;m,t]

T . Analogously, we collect the
observations from the information subcarriers in (K − P )-
dimensional column vector yI

m;t = [ykI
1 ;m,t, . . . , ykI

K−P
;m,t]

where kI
i , for i = 1, . . . , K − P , is the ith information

subcarrier index. Thus, from (1), it follows that

Pilot : ym;t =
N∑

n=1

Dn;tFhm,n;t + zm;t (2)

Information : yI
m;t =

N∑
n=1

DI
n;tF

Ihm,n;t + zI
m;t (3)

where Dn;t = diag([dk1,n;t, . . . , dkP ,n;t]
T ),

DI
n;t = diag([dkI

1 ,n;t, . . . , dkI
K−P

,n;t]
T ), zm;t =

[zk1,m;t, . . . , zkP ,m;t]
T , zI

m;t = [zkI
1 ,m;t, . . . , zkI

K−P
,m;t]

T , F

is a P × Lmax matrix whose (p, �)th entry is defined as,
{F}p,� = e−j2π(�−1)

kp−1

K and FI is a (K−P )×Lmax matrix

whose (i, �)th entry is defined as {FI}i,� = e−j2π(�−1)
kI

i
−1

K

An alternative representation of (2) can be given as

ym;t = Athm;t + zm;t (4)

where At = [D1;tF · · ·DN ;tF] is a P × LmaxN matrix and
hm;t = [hT

m,1;t · · ·hT
m,N ;t]

T is a LmaxN -dimensional column
vector.

B. Dynamic channel model
Denote by Hm,n;t the random set representing the multipath

channel experienced by the transmission from the nth antenna
to themth antenna at discrete time t. For the sake of simplicity
we have assumed a Tapped Delay Line (TDL) channel model
where the tap delays are equispaced. The same theory could
accommodate the case of unknown and time-varying multipath
delays. We assume that the maximum number of admissible
path is Lmax. Clearly, Hm,n;t can be represented as

Hm,n;t =

Lmax⋃
�=1

H(�)
m,n;t

where H(�)
m,n;t denotes a singleton-or-empty set. Indeed,

H(�)
m,n;t = [m,n, �, a

(�)
m,n;t]

T , if the �th path from the nth
transmitting antenna to the mth receive antenna is active at
time t, otherwise H(�)

m,n;t = ∅. Notice that Hm,n;t is a random
set in the hybrid space m× n× {1, . . . , Lmax} × C.
Denoting by Sm,n;t the surviving path from epoch t − 1
to epoch t, from the nth transmission antenna to the mth
receive antenna, and by Bm,n;t the newly born paths, we have
Hm,n;t = Sm,n;t ∪ Bm,n;t. Moreover, we define the random
sets π(Hm,n;t) and π′(Hm,n;t), denoting the projection of
Hm,n;t onto m×n×{1, . . . , Lmax} and onto C, respectively:

π(Hm,n;t) =
⋃

�:H
(�)
m,n;t �=∅

{m,n, �} (5)

π′(Hm,n;t) =
⋃

�∈π(Hm,n;t)

{a(�)
m,n;t} (6)

The constraints
π(Hm,n;t−1) ∩ π(Bm,n;t) = ∅
π(Sm,n;t) ⊆ π(Hm,n;t−1)

reflect the facts that no component being active at time t−1 can
migrate to the set of new paths, and that the paths surviving
at epoch t are a subset of those active at epoch t− 1.
The conditional density of the newly born path, assuming that
new paths arise independently, can be expressed as

fBm,n;t|Hm,n;t−1
(Bm,n;t | Hm,n;t−1) = P

|Bm,n;t|
birth

×(1− Pbirth)Lmax−|Hm,n;t−1|−|Bm,n;t|

×
∏

�∈π(Bm,n;t)

f
a
(�)
m,n;t

(a
(�)
m,n;t) (7)

where Pbirth the probability that a new path arises and
f

a
(�)
m,n;t

(a
(�)
m,n;t) is the probability density function of the �th

path gain from the nth transmission antenna to the mth
receiver antenna at epoch t.
Similarly, we have

Sm,n;t =
⋃

�∈π(Hm,n;t−1)

S(�)
m,n;t (8)

with

S(�)
m,n;t =

{ ∅ with probability Pdeath

{h(�)
m,n;t} with probability 1− Pdeath

where Pdeath is the probability that an active path disappears.
It follows that the conditional density of the random set Sm,n;t

given Hm,n;t−1 can be given as

fSm,n;t|Hm,n;t−1
(Sm,n;t | Hm,n;t−1) = P

|Hm,n;t−1|−|Sm,n;t|
death

×(1− Pdeath)|Sm,n;t|
∏

�∈π(Sm,n;t)

f
a
(�)
m,n;t|a

(�)
m,n;t−1

(a
(�)
m,n;t | a(�)

m,n;t−1)

(9)

with Sm,n;t⊆Hm,n;t−1 and f
a
(�)
m,n;t|a

(�)
m,n;t−1

(a
(�)
m,n;t | a(�)

m,n;t−1)

the transition density describing the evolution of the gains of
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the surviving paths.
The transition density fHm,n;t|Hm,n;t−1

(Hm,n;t | Hm,n;t−1)
can in turn be determined through the generalized convolution
formula, yielding:

fHm,n;t|Hm,n;t−1
(Hm,n;t | Hm,n;t−1)

= fSm,n;t
(Hm,n;t ∩Hm,n;t−1|Hm,n;t−1)

×fBm,n;t
(Hm,n;t \ (Hm,n;t ∩Hm,n;t−1)|Hm,n;t−1)

Let Hm;t be

Hm;t =
N⋃

n=1

Hm,n;t (10)

We may map the random set Hm,n;t into a column vector of
dimension Lmax whose �th entry is defined as

{hm,n;t}� =

{
a
(�)
m,n;t if � ∈ π(Hm,n;t)

0 otherwise
(11)

The mapping in eq. (11) makes the RFS channel model
compatible with the model in (1). Analogously, the mapping
between Hm;t and hm;t follows straightforwardly.
C. Problem formulation
The problem under consideration can now be formulated as

follows: Given the observation model in (4) and the dynamic
channel model in Section II-B, the goal of this paper is to
derive a causal estimator for the multipath channel for MIMO-
OFDM systems. Successively, given this channel estimate,
standard data detection algorithms can be easily implemented.
While channel estimation is addressed in Secs. III-IV, next
we describe data detection once the channel state information
(CSI) has been obtained.
Let ĥm,n;t = [â

(1)
m,n;t, . . . , â

(Lmax)
m,n;t ]T for m = 1, . . . , M

and n = 1, . . . , N the channel estimates obtained from the
pilot subcarriers. It is possible to prove that the Maximum
Likelihood (ML) detection of the information symbols can be
disjoint into K − P problems, i.e. one for each information
subcarriers, as
ŝi;t = arg min

si;t

‖ri;t −Ci;tsi;t‖2, for i = 1, . . . , K − P

where
ri;t = [ykI

i
,1;t, . . . , ykI

i
,M ;t]

T

si;t = [dkI
i
,1;t, . . . , dkI

i
,N ;t]

T

ĤkI
i
,m,n;t =

Lmax∑
�=1

â
(�)
m,n;te

−j2π(kI
i−1) �−1

K

Ci;t =

⎡
⎢⎢⎣

ĤkI
i
,1,1;t . . . ĤkI

i
,1,N ;t

...
. . .

...
ĤkI

i
,M,1;t . . . ĤkI

i
,M,N ;t

⎤
⎥⎥⎦

III. BAYES RECURSIVE FILTER AND ITS IMPLEMENTATION
In the next section, we will consider the problem of sequen-

tial estimation of MIMO-OFDM multipath channel within a
Bayesian framework. Next, due to the lack of a closed form
for the optimal estimator, we present a SMC implementation
of the Bayes Recursive filter.

A. Bayes Recursive filter
Let us consider the observation model in eq. (4) relative to

the mth receive antenna and the dynamic channel model in
Sec. II-B. Consider the variable hm;t, depending by Hm;t,
to be the state that fully characterize the wireless channel
experienced by the mth receive antenna. Clearly, what we
will develop further will be repeated for all the M receive
antennas.
The best description of Hm;t based on the observation ym;1:t

relies upon the evaluation of the so called filtering distribution,
i.e. f(Hm;t|ym;1:t). The basic step to achieve it is the evalua-
tion of the one-step ahead predicted distribution via Chapman-
Kolmogorov equation given the filtering distribution at time
t− 1, i.e.

f(Hm;t|ym;1:t−1)=

∫
f(Hm;t|Hm;t−1)f(Hm;t−1|ym;1:t−1)δHm;t−1

(12)
where f(Hm;t|Hm;t−1) is the state transition distribution. The
symbol δHm;t−1 emphasize that the integral in (12) is a set
integral. After the arrival of the observation ym;t at time t,
the filtering distribution can be updated via Bayes rule as

f(Hm;t|ym;1:t) =
f(ym;t|Hm;t)f(Hm;t|ym;1:t−1)

f(ym;t|ym;1:t−1)
(13)

where f(ym;t|Hm;t) is the likelihood distribution. Equations
(12) and (13) are called Bayes Recursion (BR) and define the
so-called Bayes Recursive filter. The analytical solution to the
above equations is intractable and approximated techniques
are necessary. Next, we address the approximation of the BR
via SMC.

B. Sequential Monte Carlo approximation of the Bayes Re-
cursive filter
Among all techniques, SMC seems particulary attractive

for a RFS implementation of the BR providing a consistent
approximation of the Bayes Recursive filter [5]. The SMC
approach relies on a sample-based construction of distributions
involved in (12) and (13). Multiple particles of the state
variable are generated, each one associated with a weight
which characterizes the belief that the channel is in that state.
The filtering distribution is approximated by a set of particles
as

f(Hm;t | y1:t) ≈

R∑
r=1

w
(r)
t mHm;t

(H(r)
m;t) (14)

where mX (Y) is the ”0-1” measure, defined as follows∫
C

mX (Y)δX =

{
1, if Y ⊆ C
0, otherwise

In (14), H(r)
m;t is the rth set ”particle”, w(r)

t is its ”weight”, and
R is the total number of particles. Asymptotic convergence
properties of the SMC RFS filter has been proved in [8],
showing that, for sufficient large R, the mean-square approxi-
mation error of the SMC RFS filter is inversely proportional to
Rα, for some constant 0 < α ≤ 1, while the implementation
complexity is approximately linear with R.
Suppose to have a particle representation of the filtering
distribution at time t− 1, i.e.
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f(Hm;t−1 | y1:t−1) ≈

R∑
r=1

w
(r)
t−1mHm;t−1

(H(r)
m;t−1)

The Sequential Monte Carlo algorithm proceeds to approx-
imate the posterior distribution at time t by a new set of
weighted particles {w(r)

t ,H(r)
m;t}R

r=1.
IV. RAO-BLACKWELLIZED PARTICLE FILTER

A major drawback of SMC is that its efficiency decrease
with the dimension of the state space requiring a large number
of particles. Hence, in some application its implementation
can become prohibitive. However, the complexity can be
reduced by a procedure called Rao-Blackwellization which
is a technique for improving particle filtering by analytically
marginalizing some of the variables (linear and Gaussian) from
the joint filtering distribution. The linear part of the system
model is then estimated by a Kalman filter (KF) while the
nonlinear part is estimated by a SMC. RBPF can results in
a decrease of the variance of the SMC estimates and of the
complexity. On the other hand, Rao-Blackwellization restrict
the form of the system model, requiring a conditionally linear
Gaussian (CLG) model. Indeed, consider the dynamic channel
model in Sec. II-B under the assumption that the distributions
f

a
(�)
m,n;t

(a
(�)
m,n;t) and f

a
(�)
m,n;t|a

(�)
m,n;t−1

(a
(�)
m,n;t|a(�)

m,n;t−1) in (7)
and (9), respectively, are Gaussian.
Instead of directly evaluating the filtering distribution, i.e.
f(Hm;t|ym;1:t), we address the evaluation of the so-called
joint posterior distribution, i.e. f(Hm;1:t|ym;1:t), from which
the filtering distribution can be easily obtained. The joint
posterior distribution satisfies the following recursion

f(Hm;1:t|ym;1:t) =
f(ym;t|Hm;t)f(Hm;t|Hm;t−1)

f(ym;t|ym;1:t−1)

× f(Hm;1:t−1|ym;1:t−1)

Let us divide the random set Hm;t in two parts, according to
the definition in eqs. (5) and (6), i.e.

Hm;t =
{
π(Hm;t), π

′(Hm;t)
}

Clearly,
f(Hm;t|Hm;t−1) = f(π(Hm;t)|π(Hm;t−1))

×f(π′(Hm;t)|π(Hm;t−1:t), π
′(Hm;t−1))

Notice that π(Hm;t) is a random finite set defined on a
countable space, while π′(Hm;t), conditioned to π(Hm;t), is a
random vector whose dimension is dictated by the cardinality
of π(Hm;t). Moreover, due to the CGL hypothesis, the con-
ditional posterior distribution f(π′(Hm;1:t)|π(Hm;1:t),ym;1:t)
is analytically tractable through Kalman filtering. Hence, we
can easily marginalize out π′(Hm;1:t) from the posterior
distribution, and seek for an estimator of f

(
π(Hm;1:t)|ym;1:t

)
,

which lies in a space of reduced dimension. Suppose to have
at time t − 1 an approximation of the posterior distribution
f
(
π(Hm;1:t−1)|ym;1:t−1

)
in term of particles, i.e.

f
(
π(Hm;1:t−1)|ym;1:t−1

)
=

R∑
r=1

w
(r)
t−1mπ(Hm;1:t−1)

(
π(Hm;1:t−1)

(r)
)

When the measurement ym;t is available, the RBPF performs
the operations described in Algorithm 1 in order to determine
an approximation in term of particles of f

(
π(Hm;1:t)|ym;1:t

)
.

Algorithm 1 Generic RBPF

1: Given {w(r)
t−1, π(Hm;1:t−1)

(r)}R
r=1

for r = 1 to R

2: Sample π(Hm;t)
(r) ∼ q(·|π(Hm;1:t−1)

(r),ym;1:t)
3: Set π(Hm;1:t)

(r) � {π(Hm;1:t−1)
(r), π(Hm;t)

(r)}
4: Update the weight w̃

(r)
t =

w
(r)
t−1

f

(
ym;t|ym;1:t−1,π(Hm;1:t)

(r)
)
f

(
π(Hm;t)

(r)|π(Hm;t−1)
(r)

)
q

(
π(Hm;t)(r)|π(Hm;1:t−1)(r),ym;1:t

)
end
Normalization
for r = 1 to R

5: w
(r)
t =

�w(r)
t�

R
r′=1

�w(r′)
t

end
6: Resampling with replacement

Resampling is necessary because the variance of the particle
weights can only increase in time which will ends up in
the degeneracy problem. In practice, it has been observed
that, after a few iterations, one of the normalized importance
weights tends to 1, while the remaining weights tend to zero.
The basic idea here is to eliminate particles that have small
weights, and to concentrate on particles with large weights
whenever the degeneracy phenomenon becomes relevant (see
[9] for a review of resampling techniques).
Notice that from the particle approximation of the posterior
distribution, i.e.

f
(
π(Hm;1:t)|ym;1:t

) ≈ R∑
r=1

w
(r)
t mπ(Hm;1:t)

(
π(Hm;1:t)

(r)
)

it is straightforward to obtain the full joint posterior distribu-
tion, i.e.
f
(
π(Hm;1:t), π

′(Hm;1:t)|ym;1:t

)
=

R∑
r=1

w
(r)
t mπ(Hm;1:t),π′(Hm;1:t)

(
π(Hm;1:t)

(r), π′(Hm;1:t)
(r)

)
On-line channel estimation can be performed by maximizing
the discrete parameter filtering distribution as

̂π(Hm;t) = arg max
π(Hm;t)

f
(
π(Hm;t)|ym;1:t

)
(15)

Clearly, ̂π(Hm;t) will carry the information about the paths
that are active at time t. Given ̂π(Hm;t) the estimation of the
continuous part will be performed as

̂π′(Hm;t) = E[π′(Hm;t)|ym;1:t, π(Hm;1:t−1), ̂π(Hm;t)]

which can be evaluated by R KFs.
An important implementation issue is the design of the impor-
tance distribution q

(
π(Hm;t)|π(Hm;1:t−1)

(r),ym;1:t

)
in Algo-

rithm 1 which highly affect the SMC algorithm performance.
The optimal importance distribution, in sense of minimizing
the variance of the particle weight, is given as
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q
(
π(Hm;t)|π(Hm;1:t−1)

(r),ym;1:t

)
= f

(
π(Hm;t)|π(Hm;1:t−1)

(r),ym;1:t

)
=

f
(
ym;t|ym;1:t−1, π(Hm;1:t−1)

(r), π(Hm;t)
))

f
(
ym;t|ym;1:t−1, π(Hm;1:t−1)(r)

)
×f

(
π(Hm;t)|π(Hm;t−1)

(r)

The weights are updated as

w̃
(r)
t = w

(r)
t−1f

(
ym;t|ym;1:t−1, π(H1:t−1)

(r)
)

Clearly, the calculation of above distribution requires an addi-
tional integration stage as

f
(
ym;t|ym;1:t−1, π(Hm;1:t−1)

(r)
)

=

∫
f
(
ym;t|ym;1:t−1, π(Hm;1:t−1)

(r), π(Hm;t)
)

×f
(
π(Hm;t)|π(Hm;t−1)

(r)
)
δπ(Hm;t)

The first term in the integral can be evaluated by a Kalman
filter for each value of π(Hm;t). Moreover, since π(Hm;t) is
a countable set, the integral becomes a summation.

V. SIMULATION RESULTS
We consider a MIMO-OFDM system employing K = 64

subcarriers, with N = 2, M = 3, P = 8, and a frequency
spacing Df = 8 between two pilot subcarriers. The average
energy per symbol, σ2

s = E[|dk,n;t|2], is uniform, and a 4-
QAM modulation scheme is assumed. As to the channel, we
assume a uniform multipath delay profile, a multipath spread
smaller than the guard time, and uncorrelated path gains. The
overall channel energy is normalized to one. Consider first the
transmission of T = 50 OFDM symbols through a channel
with Lmax = 4, Pbirth = 0.05, and Pdeath = 0.05. The path
gains are assumed to follow a Gauss-Markov model as

f(a
(�)
m,n;1) = Nc(a

(�)
m,n;1; 0, σ

2
h)

f(a
(�)
m,n;t|a(�)

m,n;t−1) = Nc(a
(�)
m,n;t;λa

(�)
m,n;t−1, (1− λ2)σ2

h)

with σ2
h the average energy of one path, and λ = 0.999.

We have simulated a RBPF with optimal importance function
and R = 50, and we have compared it to the Least-Square
channel estimator in [4]. In fig. 1, we have plotted the
frequency-domain mean-square error (FMSE) defined as

FMSE =

∑K−P

i=1

∑M

m=1

∑N

n=1

∑T

t=1 |HkI
i
,m,n;t − ĤkI

i
,m,n;t|2

MNT (K − P )

versus the signal to noise ratio (SNR), defined as SNR =
σ2

s

N0
.

The pilot symbols are assumed to be phase shift orthogonal
(see [4]). Fig. 1 shows that the RBPF achieves a gain of about
6-dB at a FMSE of 10−2 with respect to the standard LS
estimator. Fig. 2 shows the Bit Error Rate (BER) using the
ML detector in (12) based on the channel estimate of the
LS and the RBPF estimators, and a ML detector assuming
Complete Channel State Information (CCSI). Using RBPF, we
can achieve a 3-dB gain at a BER of 10−4 with respect to LS,
while approaching the CCSI performance.
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Fig. 1. FMSE versus SNR.
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Fig. 2. BER versus SNR.
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