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Distortion Control for Delay-Sensitive Sources
Azadeh Faridi, Member, IEEE, and Anthony Ephremides, Fellow, IEEE

Abstract—We investigate the problem of finding minimum-dis-
tortion policies for streaming delay-sensitive but distortion-tol-
erant data. We consider cross-layer approaches which exploit the
coupling between presentation and transport layers. We make
the natural assumption that the distortion function is convex
and decreasing. We focus on a single source-destination pair
and analytically find the optimum transmission policy when the
transmission is done over an error-free channel. This optimum
policy turns out to be independent of the exact form of the convex
and decreasing distortion function. Then, for a packet-erasure
channel, we analytically find the optimum open-loop transmission
policy, which is also independent of the form of the convex distor-
tion function. We then find computationally efficient closed-loop
heuristic policies and show, through numerical evaluation, that
they outperform the open-loop policy and have near optimal
performance.

Index Terms—Delay-sensitive, distortion, scheduling, source-
coding, streaming.

I. INTRODUCTION

I N communication networks, traditionally, the source en-
coding is done independently of the network conditions.

In the classical network architecture, the source symbols are
encoded in the presentation layer, while the transport layer
takes care of providing error-free transmission by the use of
channel coding or retransmissions. Packets traveling through
the network may fail to be correctly received due to various
reasons, such as buffer overflows or wireless fades. Such losses
are often modeled by packet-erasure channels, where packets
are randomly dropped. When immediate error-free feedback is
available, the best one can do is to retransmit each lost packet
repeatedly until it reaches its destination. When dealing with
delay-sensitive applications with a hard deadline for every
source symbol, this approach can be modified to one which
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repeats the transmission of each lost packet until either the
packet is expired or it has reached its destination. However,
when dealing with distortion-tolerant data, this approach is
no longer optimum. In this case, the overall distortion of the
received message can significantly be improved by calculatedly
sacrificing less significant bits corresponding to one symbol for
more significant bits of another.

We consider the problem of transmitting a finite set of
delay-sensitive source symbols. This is sometimes referred to
as “streaming” and is used in applications such as video-on-de-
mand where a server transmits previously stored encoded media
on demand to a client for playback in real time.

The problem of rate-distortion optimized streaming of lay-
ered media has been addressed under various scenarios in the
literature. To the best of our knowledge, the works most closely
related to the one we are presenting here has been carried out
in [1] and [2]. Podolsky et al. in [1] use a Markov chain anal-
ysis to find the optimal policy for transmitting layered media at
a fixed rate over a lossy channel. However, since the state space
grows exponentially with the size of the parameter space, the
general solution is not presented in that paper. In [2], Miao and
Ortega propose a low-complexity heuristic algorithm for sched-
uling layers of different frames for transmission, which picks,
at any transmission opportunity, the “most important” layer ac-
cording to an estimate of the received distortion. However, they
assume that the number of layers representing each frame is pre-
determined.

Other less closely related works include [3], [4], and [5]. In
[3] and [4], a group of interdependent data units are to be trans-
mitted to a destination before their deadlines. Each data unit has
a given number of transmit opportunities. The goal of the sched-
uler is to decide at each transmit opportunity whether to transmit
or not to transmit the data unit corresponding to that opportunity.
A cost is incurred for every transmission and a policy is op-
timum if there is no other policy that results in a smaller distor-
tion while incurring a smaller cost. In [5], a policy for dynamic
allocation of bandwidth to each layer of symbol representation
is found. Although the problem we are considering here is con-
ceptually related to the ones considered in these works, as we
will see, the actual problem statement and also its mathematical
model are very different.

A brief survey of different approaches and results for related
problems can be found in [3]. A more general survey of the
contributions in the field of streaming video over the Internet
can be found in [6].

In this paper, we study the distortion-delay tradeoff by consid-
ering a source-destination pair connected through a single-link
as shown in Fig. 1. A number of source symbols are residing
at the source and are to be encoded and transmitted to the desti-
nation before their corresponding deadlines. Each reconstructed
symbol will result in a distortion which is a decreasing, convex
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Fig. 1. System diagram.

function of the number of its bits received. It should be noted
here that, if the bits in an encoded symbol are arranged in a
decreasing order of utility, and furthermore, for decoding of
a given bit, all the more significant bits are required, then the
convexity of the distortion function follows. Therefore, the con-
vexity assumption on the distortion function is a reasonable one
to make.

Our goal is to find a transmission policy which minimizes the
total expected distortion. A policy determines which bits corre-
sponding to which source symbol to transmit at any time, based
on the state of the system at that time. Finding the optimum
policy depends on the values of the distortion function and, ex-
cept for special trivial cases, can be computationally very costly.

We first consider a simple case where the packets are trans-
mitted over an error-free channel. We find that when the dis-
tortion function is convex and decreasing, the optimum trans-
mission policy is independent of the specific form of that func-
tion, and present a computationally inexpensive algorithm for
solving this problem. We then proceed to solve the problem of
minimum distortion streaming over packet-erasure channels by
first showing that if we restrict ourself to the set of open-loop
policies, the optimum policy is again independent of the form of
the convex cost function. We next propose an algorithm to find
a suboptimal closed-loop policy and provide numerical results
to show how it improves the distortion compared to the optimal
open-loop solution. We conclude the paper by discussing pos-
sible improvements and future directions.

The basis of the work presented here was first reported in [7]
and [8].

II. THE BASIC PROBLEM: ERROR-FREE TRANSMISSION

In this section, we consider a simple scenario where a number
of pre-encoded delay-sensitive source symbols, residing at the
source, are to be transmitted to the destination through an error-
free channel. We refer to this problem hereafter as the Basic
Problem.

A. Problem Formulation and Notation

The Basic Problem is structured as follows.

1) source symbols pre-encoded to packets of lengths
bits are residing at the source at time zero and

must be transmitted to a receiver before they expire.
2) Each symbol expires in seconds, i.e., the bits corre-

sponding to source symbol transmitted after time will
be useless at the receiver.

3) Without loss of generality we assume that the source sym-
bols are indexed in the order in which they expire, i.e.,

for . We refer to as
the end of the session.

4) All encoded source symbols are available at the transmitter
at the beginning of the session and there are no arrivals to
the system.

5) A total of bits corresponding to source symbol are
transmitted by the end of the session

6) is the distortion for source symbol . The distortion
function is convex and decreasing.

7) The channel can accommodate an error-free transmission
of bits per second.

Note that to avoid integer constraints, we allow for fractions
of bits to be transmitted, and assume that is defined on
the set of real numbers. Given this assumption, without loss of
generality, we can assume that .

Our goal is to find the number of bits corresponding to each
source symbol to transmit in order to minimize the overall dis-
tortion at the end of the session, i.e., , while
meeting the deadline constraints. In other words, we wish to find
the vector , which solves

subject to

(1)

(2)

We denote this problem by hereafter. The first set of
constraints accounts for the fact that we cannot send more bits
of a source symbol than what we have available, and the second
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Fig. 2. Lemma 1 illustration.

set of constraints ensures that all transmitted bits corresponding
to a source symbol are sent before that source symbol expires.

B. Optimum Solution

In the following, we first prove that for a strictly convex func-
tion, , a unique solution to exists and is independent
of the form of . We provide a low complexity algorithm for
finding the solution vector . We then show that minimizes
the distortion even if the convexity of is not strict; however,
in this case may no longer be the only solution to .

The following lemma, which proves a property of convex
functions, is crucial to our proof.

Lemma 1: Let be a strictly convex function and
be such that and . Then

Proof: For the strictly convex function and
by definition we have

Similarly we can write

Adding the corresponding sides of the above two inequalities
we get

Setting and substituting, we get

Fig. 2 shows an example for the function as described in
Lemma 1. As can be seen in this figure,

. Note that the function need not be differentiable
for the lemma to hold.

Lemma 2: always has a solution.
Proof: Since is convex on the set of real numbers,

it must be continuous, and therefore, is also continuous.
On the other hand, the feasible set of is compact, and
since a continuous real-valued function attains its minimum on
a compact set, a solution to always exists.

Let be a solution to . In the following lemma, we
prove that if is strictly convex, the smallest component of

can be uniquely determined. Once the smallest component
is found, we can remove this component and solve for the next
smallest element of by applying the same argument to the
new -dimensional problem. We can continue in this
fashion until all the elements of the optimal solution are
found. Therefore, the entire vector can be uniquely deter-
mined.

Lemma 3: Let be a solution to . Let
for every , and let , and be such that

, and . If
is decreasing and strictly convex, then the value of is

uniquely given by

Proof: We split the proof into two cases and prove the
lemma by contradiction.

Case 1: .
Suppose that . Then ; otherwise, since

is the smallest of all , we would have
which violates inequality (1). We now construct a feasible vector

such that , thus contradicting the optimality
of . We pick such that and define the

-vector as follows:

Note that the elements of satisfy the inequalities (1). If meets
the inequalities (2), since is decreasing, we have

and therefore, cannot be optimum. Otherwise, if violates
some of the inequalities of (2), we let be the smallest index such
that (i.e., inequality (2) is not met). Then since

, there exists

such that , otherwise
. We set . Since is present in all the

inequalities in (2) with , adjusting is sufficient to
ensure that all the remaining inequalities hold. Now we redefine

as follows

otherwise.

Since , and from the way we picked we have
, using Lemma 1 we get

Adding to both sides of the inequality we get
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Therefore

which implies that cannot be the optimum solution unless
.

Case 2: .
If , we have to have ; otherwise

which violates inequality (2).
Therefore we can pick such that and the
rest of the proof is similar to case 1.

In the following lemma, we find the index of the smallest
element(s) of an optimum solution.

Lemma 4: Let , and be defined as in Lemma 3. Then
we have

1) If , then .
2) If , then .
3) If , then .

Proof:
1) If , Lemma 3 implies . If

, then necessarily which implies
which is not possible and therefore we

have to have .
2) If , Lemma 3 implies . If for

some , then either we have
which is a contradiction or we

have in which case there is at least one element
such that because

otherwise and again we reach a contra-
diction.

3) If , both previous arguments hold.

Using Lemma 4, we can calculate the optimum value of the
transmitted packet length for some of the ’s. Now if we
remove those ’s and the corresponding ’s and ’s from
the optimization problem and adjust the remaining ’s, the
problem reduces to a similar optimization problem with fewer
arguments for which the same lemma applies. Using this simple
argument we can find the optimum algorithm for constructing

. We call this algorithm the base algorithm.

Base Algorithm

1) Define .
2) Let , and
3) Let
4) , set
5) Let
6) , set
7) Set

8) , set .
9) If , go back to step 3); otherwise, stop.

Note that once is found, it suffices to send ’s in their
order of expiration to ensure their timely delivery.

Theorem 1 (Optimum Algorithm): For a strictly convex func-
tion , the base algorithm finds the unique optimum solution
to .

Proof: The proof of the theorem is immediately followed
from Lemma 4.

It should be noted that if the function is convex but
not strictly convex, the found by the base algorithm is
still optimal, although not necessarily unique. For example,
if and happens to lie on a linear
segment of , then there are infinite number of optimal
values for as long as they all sum up to and
stay in the same linear segment of . The optimality of
for a merely convex follows from the next lemma.

Lemma 5: Let be a minimization problem defined as fol-
lows.

subject to

where for some . Let and be the sets
of all convex and all strictly convex functions defined on ,
respectively . If a given vector solves for all

, then it solves for all .
Proof: We prove the lemma by contradiction. Suppose

does not solve for some . Then there must be some
vector such that

where . Let be a function in .
Define the function as follows

Since the sum of a strictly convex function with a convex func-
tion is strictly convex, we have for any , and
therefore, must solve for all . Let

, then

since , we have , and therefore
if we choose such that

We get . In other words, we can always
pick in a way that which implies that

does not solve , and we reach a contradiction.

Fig. 3 illustrates the algorithm for the case of . In
this case the optimum solution is found in three steps. In the
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Fig. 3. Illustration of the base algorithm for N = 5.

first step, and therefore .
In the second step, the rest of ’s are adjusted and this time

and so . And finally in the last step,
and the remaining ’s are determined.

It should be noted that if instead of having a fixed rate contin-
uous transmission we are only allowed to send data at scheduled
times, we can still solve the problem using a modified version
of this algorithm. To show this, let be the ordered
sequence of transmit opportunities before the end of the session,
i.e., . Assume that at every transmit opportunity
a maximum of bits of information can be transmitted. Define

as the number of transmit opportunities left for the source
symbol before it expires, i.e.,

or in the case of periodic transmit opportunities
, where is the period at which the transmit opportu-

nities occur. Now the problem can be translated to solving the
following constrained minimization problem:

subject to

Since , we have for ,
therefore, this problem is equivalent to the previous problem
and can be solved using the base algorithm with .
After is found, we send the ’s in their expiration order. For
this, we might have to send some of the bits corresponding to a
given source symbol in one transmit opportunity and the rest of
them in the next opportunity. However, all the bits transmitted
will still make it to the destination before their corresponding
deadlines.

It should finally be noted that this algorithm achieves a
worst case complexity of , since it involves a
sorting of at most variables in every iteration, which takes

operations, and a maximum of iterations. On the
other hand this is a convex minimization problem with linear
constraints which can be solved by nonlinear programming.
A general Linear Programming algorithm involves solving

-dimensional linear equations at each iteration which has a
complexity of .

III. PACKET-ERASURE CHANNEL

In this section, we consider a source–destination pair con-
nected through a single-link, packet-erasure channel, for which
an instantaneous error-free feedback is available, as shown in
Fig. 1.

A. Problem Formulation and Notation

source symbols are residing at the source and are to be en-
coded and transmitted to the destination before their deadlines

. We assume that the time is slotted and
that at every time slot, bits of information can be transmitted
over the link. Each -bit packet will either reach the destina-
tion in its entirety with probability , or will be entirely lost
otherwise. We make the simplifying assumption hereafter that
the bits transmitted at each time slot must correspond to a
single symbol. In other words, we cannot send a combination of
bits from different encoded source symbols in one transmission.
Once we make this assumption, without loss of generality, we
can assume that and thus avoid unnecessarily carrying
the variable around in the mathematical expressions.

At each time slot , let be an -vector whose th ele-
ment, , is the number of bits of the symbol successfully
received by the beginning of time slot . Therefore, indi-
cates the state of the system at time . We assume that is
known to the transmitter at time . Let be the index of the
symbol from which one bit is transmitted at time . If the trans-
mission at time slot is successful, we get

where is the unit -vector with all but its th element set to
zero. We denote the transmission policy by the function
such that
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TABLE I
GENERAL NOTATION

We wish to find a policy which minimizes the total expected
distortion while meeting the deadline constraints. In other words

subject to

where is the distortion function, is the time
slot succeeding the expiration of the last packet, and is
the total number of transmission attempts on packet before
time , i.e., . We refer to hereafter as the
end of the session. Note that here the variables are dropped
for simplicity. In other words, it is assumed that each source
symbol can be encoded into as many number of bits as needed.
The extension to the case where there is an upper bound on the
individual packet lengths is straightforward and can be done in
a similar manner as in the Basic Problem.

Table I lists the notation used in this section.

B. Optimal Open-Loop Policy

In this subsection, we search for the best policy among the
subset of policies for which the decision as to which symbol is
picked for transmission at each time slot does not depend on
the outcome of the previous transmissions. In other words, we
restrict ourself to the subset of policies which are only a function
of time, i.e., for some function

Therefore, we only need to decide on , the total number
of bits corresponding to every source symbol to transmit by the
end of the session, as long as we can schedule them in a way
that they meet all the deadline constraints.

In this section, we drop the time index from the mathematical
expressions and simply use and in place of and .
Note that is a binomial random variable with parameters
and , i.e.,

therefore, is a function of . Define the function
as follows:

The problem statement therefore simplifies to the following:

subject to

We refer to the above problem as hereafter. In the fol-
lowing lemma, we prove that when is strictly convex,
will have increasing forward differences. This property could be
interpreted as an equivalent of strict convexity for discrete func-
tions. We then use this property to find an optimum solution to

.

Lemma 6: Let be a binomial random variable and
a strictly convex function. Then has the

following property

(3)

Proof: We need to show that

Let and be two independent binomial random vari-
ables, which are also independent of . Then given the fact that
the sum of two independent binomial random variables with pa-
rameter pairs and is a binomial random
variable, we can write
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where and the inequality
of the last line is due to the strict convexity of and the fact
that .

It can similarly be shown that if is decreasing, is
decreasing as well. In the following lemma, we prove a neces-
sary condition for the optimality of a solution to when
is strictly convex and decreasing.

Lemma 7: Let the -vector solve . If is de-
creasing and meets inequality (3), then

(4)

where is the index of the smallest element of the set
. When there are more than one such smallest

elements, is taken to be the largest such index. In other words

Proof: If (4) does not hold, in order to meet the constraints
of , we must have . Then there exists some

such that . Let be the largest such , i.e.

Define the -vector as follows.

If meets all the constraints of , since is decreasing,
we get , and we reach a contradiction. Let be
the smallest index for which the constraints of are not met.
In other words, . Then we must
have , since for we have

thus, . If , we have . Since we
have integers on both sides of the inequality, we get

and since must be feasible, we must have

On the other hand

which contradicts the feasibility of . Therefore, and
thus, by definition of , we have

Then there must exist some such that

Set . The new meets all the constraints of
and furthermore

hence a contradiction.

The following algorithm finds an optimum solution to .

Open-Loop Algorithm

1) Let .

2) Set .

3) If , remove , set for ,
update the remaining ’s, and go back to step 1).
Stop otherwise.

Theorem 2: The vector found by the open-loop algorithm
solves for any convex and decreasing function .

Proof: We need to show that minimizes and meets
the constraints of . We prove its feasibility in Lemma 8.
Then, in Lemma 9, we show that for a strictly convex ,
the first elements of minimize among all in-
teger-valued -vectors which meet (4). Since according to
Lemma 7, (4) is a necessary condition for any vector that solves

, this suffices to show the optimality of the first elements of
. Furthermore, since the exact same procedure is followed for

finding the remaining elements of , this completes the proof
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of optimality of for strictly convex ’s. The optimality of
for merely convex functions directly follows by the use of

Lemma 5.

The following lemma proves the feasibility of .

Lemma 8: The -vector found by the open-loop algo-
rithm meets the constraints of .

Proof: ’s components are, by construction, integer and
nonnegative. To show that they meet the deadline constraints,
two possible cases need to be considered

Case 1: . In this case, we have

Case 2: . In this case we have

The last inequality is due to the fact that and .
Note that this lemma proves the feasibility of the bit assign-

ments in the first round of the algorithm. However, since at every
round of the algorithm, the exact same procedure is followed,
the same result applies for the next rounds, and therefore, the
entire bit assignment is in fact feasible. In the following lemma,
we prove the optimality of .

Lemma 9: For a strictly convex function , the -vector
found in the first round of the open-loop algorithm minimizes

among all -vectors for which (4) holds.
Proof: Let be the set of all (nonnegative) integer -vec-

tors for which (4) holds. Let be a subset of , for each
member of which the difference between any two of its elements
does not exceed a unit. In other words,

Then , and furthermore for all we have,

where . This is true since any vector in must
have elements with the value , and elements with
the value .

Let . Then must have some elements, and ,
for which . Define a new vector which has the
same elements as except that , and .
Then, since is strictly convex and , using
Lemma 1, we have

Therefore, and no vector in can be
optimum. Since we are minimizing over the set with a
finite cardinality, at least one optimum solution must exist. This
optimum cannot be in , and therefore, it must be in its
complement, . Since for all
is the minimum and is a minimizer.

It should be noted here that the optimum solution found by the
open-loop algorithm is independent of the form of the distortion
function.

Numerical evaluation of the performance of the optimal open-
loop policy is included in Section IV.

C. Suboptimal Closed-Loop Policy

In this section, we present a computationally inexpensive
closed-loop algorithm that improves the performance compared
to the optimal open-loop policy. In order to do this, we employ
the idea of Certainty Equivalent Controllers [9].

The certainty equivalent controller (CEC) is a suboptimal
control scheme that applies, at each stage, the action that would
be optimal if the random quantities were fixed at some “typical”
value. The way we apply this to our problem is to find at each
time slot what would be the optimum total number of bits of
each packet to be transmitted from on, denoted by , if
we fixed the random variable to its conditional expected
value, . Once we find the op-
timum values of , for , we need to find some
scheduling policy, that determines , the index of the
symbol of which one bit will be transmitted at time , based on

. In other words

where . So the algorithm will consist of
two parts. In the first part, at every time , we solve the following
minimization problem:

subject to

where is the smallest unexpired
index. In the second part of the algorithm, we use the found
in the first part to determine .

The value of depends on as well as , and
therefore, the vector depends on the transmission policy
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and cannot take an arbitrary value. We assume that the sched-
uling policy is such that at any given time we have

Note that this assumption can be made without loss of opti-
mality since for any two consecutive unexpired symbols, the
first symbol expires no later than the second one. Therefore,
the distortion cannot be reduced by sending more bits of the
second symbol when there has been fewer prior successful trans-
missions of the first one. As we will see later, it is possible
to find scheduling policies with the aforementioned property,
and furthermore, these policies have near optimal performance.
In the following, we will first find an optimum value for .
We will next propose some heuristic scheduling policies to find

.

Part I: Finding (t)

For the time being we drop the index from the above variables
and simply refer to , and as , and
, respectively. Let . We can rewrite the problem

in terms of as follows:

(5)

subject to

where , and ,
for . We refer to this problem as hereafter.
Note that aside from the nonzero lower-bound constraints on

’s, this is exactly the same problem as , with
for . Applying the base algorithm to the above
problem will result in nonnegative ’s, but it does not guarantee
that the lower bound constraints on are met.

In what follows, we will first find the unique solution
to the simple problem of finding the -vector which
minimizes with a strictly convex , if in-
stead of the deadline constraints of we only have the
equality constraint of . We next show that if

, the -vector above, will
also meet the deadline constraints of . We then proceed
by showing that a necessary condition for a vector to solve

is to have . We finally use these results to
find the unique optimum solution to and then extend the
results to the case where is merely convex.

For simplicity of presentation and without loss of generality,
throughout the following proofs, we set .

Lemma 10: Consider the following minimization problem:

subject to

(6)

(7)

where is a constant, , and
is a strictly convex function. Then defined below,

uniquely solves this problem.

where

and .
Proof: To prove the optimality of , we need to show that

it meets the constraints and minimizes the distortion. To show
that it meets (6), we can write

and it meets (7) trivially for , and for since by
definition of we have .

To prove the optimality of , let the -vector solve
the problem. Then there must be some element for which

. On the other hand, since must
meet (6) and (7), there must exist another element such
that . Define a new vector ” as follows:

otherwise

where . Then, due to the strict
convexity of , we have , hence
a contradiction.

Lemma 11: Let . Then the
-vector defined in Lemma 10 meets the first constraints

of , when and .
Proof: We want to show

For , we have
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For , by definition of we have

where the first inequality is because , and the second
inequality follows from , which itself is true by defini-
tion of .

Lemma 12: If an -vector solves for a strictly
convex and decreasing , we must have

where , as in Lemma 11.

Proof: Let . If , then or
will not be feasible. Note that as long as the sum, , of the

first elements of is fixed, the particular choice of each of
those elements will not affect the feasibility of the rest of the
elements, i.e., those with . Therefore, given the sum ,
we can determine the optimum value of each of the elements 1
through by choosing them such that is minimized,
and the first inequalities are met. Using Lemmas 10 and 11, the
first elements of are given by

Let be such that . Define a
new vector such that

If is feasible, since is decreasing,
and we reach a contradiction. Otherwise, let

be the smallest index for which . Then there must
be some such that and ; otherwise we

have , for all such that . Therefore

Define a new vector as follows:

otherwise

Note that , and .
Therefore, is feasible by construction, and furthermore, due
to strict convexity of we have ,
hence a contradiction.

The following algorithm finds a solution to at a given
time , for . In Theorem 3 we will show that the solution
found by this algorithm is optimum when is convex and
decreasing.

CEC Algorithm: Solving

1) .
2) .
3)

4) Let .

5) If , let and
go to step 1).

6) .

Theorem 3: The vector found by the CEC algorithm
solves for a convex and decreasing .

Proof: For a strictly convex , i.e., , by
applying Lemma 12 for a given value of , we get the following
necessary condition for a solution

Then using Lemmas 10 and 11, elements through of are
uniquely given by

where and are as given in the CEC algorithm. Once
these elements are determined, they can be removed from the
problem, and using the same argument, the rest of the elements
of can be derived in a similar manner, as is done in the CEC
algorithm. Therefore, the CEC algorithm finds the unique solu-
tion to when . Furthermore, using Lemma 5,
we can conclude that also solves for a merely convex

, i.e., when . Note that in this case the solution
is not necessarily unique.
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The CEC algorithm, finds the real-valued solution vector
. The optimum , the index of the symbol from which

one bit must be sent at time , can be directly calculated from
the integer-valued solution of the problem, if available. But
unfortunately, the optimum integer-valued solution in fact
depends on the form of the distortion function (and not just
its convexity) and finding this solution can be computationally
costly. Since the CEC algorithm is a heuristic algorithm, it
does not make sense to go through the computation cost of
finding the best integer solution, as it may not still help in
getting a better final solution to the problem. Therefore, in the
rest of this section we propose different heuristics to calculate

. The overall algorithm then is given by

Closed-Loop Algorithm

1) Let , and .
2) .
3) Find using the CEC algorithm.
4) .
5) Set , and ,

for .
6) Set . If , go to step 2).

As it was explained earlier, should be such that for every
. Furthermore, the values

of ’s given by the CEC algorithm are used as a guideline for
the way picks . For example, if for some , it in-
dicates that symbol is probably not the most important symbol
among those awaiting transmission, and therefore, a good policy
should not set .

The numerical performance evaluation of the heuristic poli-
cies proposed in this section is presented in the next section

Part II : Finding

In the following, we will provide two different heuristics for
the scheduling policy . We will show that these heuristics
have the following property:

(8)

given that the initial vector has the above property.
Policy CEC1:
In this case, is given by

where .
In other words, this policy first finds the first elements

whose sum reaches a unit. This means that we can afford
sending one bit from symbols without sacrificing
more significant bits of the rest of the symbols with later dead-
lines. Then, the policy sends a bit of the symbol corresponding
to the largest among all symbols .

Lemma 13: If in the Closed-Loop algorithm,
inequality (8) holds for all .

Proof: We carry out the proof by induction. First, note that
for , for all , and therefore, (8) holds. Next, if (8)
holds for a given , if the transmission fails, we have

and therefore the inequality is met at . If, however, the
transmission is successful, we have

therefore, at time we only need to show that
, or equivalently

. Since is an integer vector, this is equivalent to
having

On the other hand, , since

and therefore

thus, , and hence

This means that we either have if all the ’s
are equal for , in which case

; or else, if ’s are
not all equal, must be such that .

Policy CEC2:
In this case, is given by

where

This policy sends one bit corresponding to the first symbol
among for which . If all elements

are smaller than a unit, it sends one bit from
the first nonzero element of . Such element always
exists since .

Lemma 14: If in the Closed-Loop algorithm,
for any , inequality (8) holds.

Proof: If and we have
. If , then

and
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Fig. 4. Comparison of the optimum distortion with the open-loop policy and the CEC heuristic policies forM = [2 8 9 9].

therefore

so, .

IV. NUMERICAL RESULTS

In this section, we compare the performance of the different
algorithms discussed in the previous sections. The distortion
function is assumed to be given by

which is the distortion-rate function when the source symbols
are i.i.d. and are drawn according to a unit-variance Gaussian
distribution. Given this distortion function, in the open-loop
case, the expected distortion is given by

which is, as expected, a convex function of . For finding the
actual optimum closed-loop solution, we use exhaustive search.
The exhaustive search is carried out using a recursive algo-
rithm which first generates the Markov Decision Process for the
problem and then solves it backward in time by finding the best
action for every possible state, given the success probability .
The expected distortion of the optimum policy is then found by
taking an average over all possible sample paths.

Fig. 4 shows a comparison between the optimum solution,
the open-loop algorithm, and the two different heuristics for the
CEC algorithm, for the case where and is
the vector of deadlines. As we see here, the performance of the
CEC algorithm for the discussed heuristics is very close to the
optimal solution.

To do a more thorough evaluation of these algorithms, in
Fig. 5 we have considered all possible cases when and

, and have calculated the average expected distortion
achieved by all the suboptimal algorithms discussed. In other
words, we have solved the problem for all possible values of

where . So for every given
policy , we have calculated

where is the number of terms in the expression
above, and is the suboptimal policy, which can be either of
the Open-Loop, CEC1, and CEC2 policies. As we see in this
case, the CEC policies significantly outperform the Open-Loop
policy. Furthermore, with very low computational cost, the
union of these heuristics can be used to keep the distortion
achieved by the CEC algorithm within about of the
optimum distortion. Another interesting observation, is the
behavior of the heuristic policies at very high success probabil-
ities. As we see here, the average performance of the heuristics
is slightly worse than that of the open-loop policy. This may
be due to the fact that the whole rationale and the methodology
of the heuristic policies is based on having packet erasures. If
the latter seldom happens then there is little reason to expect
that the proposed method will do well. This is in contrast to the
open-loop policy which performs best when there is the least
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Fig. 5. Performance evaluation of the open-loop policy and the CEC policies for N = 4 andM = 9.

amount of uncertainty, i.e., very low and very high success
probabilities.

V. CONCLUSION AND FUTURE WORK

We studied optimum streaming of delay-sensitive data over
both error-free and packet-erasure channels. We found the op-
timum transmission policy for the case of error-free channel,
and showed that this policy is independent of the exact form of
the distortion function when it is convex and decreasing. In the
case of packet-erasure channel, we proposed an open-loop trans-
mission policy, and proved that when the rate-distortion function
is convex, this policy is optimum among the set of all open-loop
policies. While the general optimum policy depends on the form
of the rate-distortion function and finding it is usually computa-
tionally costly, our open-loop policy is independent of the form
of the distortion function and is computationally inexpensive.
We then proposed an efficient heuristic policy, which we called
the CEC algorithm, that not only outperforms the open-loop
policy, but also it has near optimal performance.

Another advantage of the CEC algorithm is that it can be used
for queuing systems with random arrivals, since it does not re-
quire for the information to be stored at the source at the begin-
ning of transmission.

Furthermore, a natural extension of this line of research can
be carried out into a network coding framework by considering
the distortion as the performance criterion as opposed to the
traditional throughput criterion.
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