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ABSTRACT

The main information sources to study a particular piece

of music are symbolic scores and audio recordings. These

are complementary representations of the piece and it is

very useful to have a proper linking between the two of

the musically meaningful events. For the case of makam

music of Turkey, linking the available scores with the cor-

responding audio recordings requires taking the specifici-

ties of this music into account, such as the particular tun-

ings, the extensive usage of non-notated expressive ele-

ments, and the way in which the performer repeats frag-

ments of the score. Moreover, for most of the pieces of the

classical repertoire, there is no score written by the orig-

inal composer. In this paper, we propose a methodology

to pair sections of a score to the corresponding fragments

of audio recording performances. The pitch information

obtained from both sources is used as the common repre-

sentation to be paired. From an audio recording, funda-

mental frequency estimation and tuning analysis is done to

compute a pitch contour. From the corresponding score,

symbolic note names and durations are converted to a syn-

thetic pitch contour. Then, a linking operation is performed

between these pitch contours in order to find the best corre-

spondences. The method is tested on a dataset of 11 com-

positions spanning 44 audio recordings, which are mostly

monophonic. An F3-score of 82% and 89% are obtained

with automatic and semi-automatic karar detection respec-

tively, showing that the methodology may give us a needed

tool for further computational tasks such as form analysis,

audio-score alignment and makam recognition.

1. INTRODUCTION

In analyzing a music piece, the score, when available, is

a highly valuable source to study since it provides an ea-

sily accessible symbolic description of many relevant mu-

sical components. The audio recordings of a performance

of the same piece are another powerful source of informa-

tion, since they can provide information about the charac-

teristics of the interpretation e.g. in terms of dynamics or

timing. If these information sources can be connected to-

gether by time-aligning fragments from each source (or in

Copyright: c©2012 Sertan Şentürk et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

other words linking the score excerpts with the correspond-

ing regions in the audio recordings), we can take profit of

their complementary aspects to study the music piece. Par-

allel information extracted from the scores and audio re-

cordings will facilitate computational tasks such as version

detection, makam recognition [1], tuning analysis [2], into-

nation analysis, form analysis, melodic modeling [3], mu-

sical similarity [4], and expressive performance modeling.

Furthermore, in previous work [3], it was discussed that

parallel to information retrieval from scores, audio analy-

sis is integral to study the unique characteristics of makam

music of Turkey.

The current state of the art in music information retrieval

involving scores and audio recordings is mainly aimed at

Western musics (Section 2.3). In these cases, typically the

scores and audio are both polyphonic. However, all makam

music scores are monophonic and the performances done

from them (esp. ensemble performances) are typically he-

terophonic (Section 2.1). Thus, the methodologies used

for Western musics cannot be applied to makam music of

Turkey and we have to develop approaches aware of the

properties of makam music (Section 3.2).

To match fragments of symbolic data to fragments of

audio recordings, we can link the melodic score excerpts

(or motifs) with the pitch information obtained from audio

recording or match metric templates of the scores with the

onset values extracted from audio recordings. In this paper,

we focus on linking score sections with the corresponding

fragments in the audio recordings, i.e. finding the time

interval in the audio recording of a piece, where a particu-

lar section indicated in the score of the same piece is per-

formed. From this linking, computational operations such

as makam recognition, usul detection or audio-score align-

ment can be done at the section level, providing a deeper

insight on structural, melodic or metric properties of the

music.

The remainder of the paper is structured as follows: Sec-

tion 2 gives a brief introduction to makam music of Turkey,

properties of makam music notation and related computa-

tional research. Section 3 explains the proposed methodo-

logy. Section 4 presents the experiments carried to evaluate

the method and the results obtained from the experiments.

Section 5 gives a discussion on the results, and Section 6

ends the paper with a brief conclusion.
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2. BACKGROUND

2.1 Makam Music of Turkey

The melodic structure of most classical and folk repertoires

of Turkey is explainable by makams. Makams are modal

structures, where the melodies typically revolve around a

başlangıç (starting, initial) tone and a karar (ending, final)

tone [5]. The octave is divided into at least 17 intervals

[5], the intervals are not equally tampered, and there is no

single fixed tuning. There are a number of different tunings

(ahenk) any of which might be favored over others due to

instrument and/or vocal range or aesthetic concerns [5].

The metric structure of makam music is explained by

usul. The term usul can be roughly translated to cyclic

meter. Nevertheless, usul is a wider concept, which is not

limited to metric implications, since a change in usul can

disrupt the melodic progressions (seyir) and even change

the perception of the makam [6].

For centuries, makam music has predominantly been an

oral tradition. In the early 20th century, a score representa-

tion based on extending Western music notation started to

be used, and it has become a fundamental complement to

the oral tradition [7]. The music written in scores are ty-

pically monophonic; nevertheless performances (esp. en-

semble performances) involve various heterophonic pecu-

liarities.

Currently Arel-Ezgi-Uzdilek theory is the mainstream the-

ory used to explain makam music [8]. Arel-Ezgi-Uzdilek

theory argues that there are 24 intervals in an octave, a sub-

set of the steps obtained by dividing each tempered whole

tone into 9 equidistant intervals [8] 1 . The extended West-

ern notation typically follows the constraints of Arel-Ezgi-

Uzdilek theory. Nevertheless, the theory is controversial

due to some critical differences with the practice [5, 6].

In the experiments (Section 4), we focused on the two

most common instrumental forms in classical makam tra-

dition, namely the saz semaisi and peşrev forms. These

two forms commonly consists of four distinct hanes and

a teslim section between the hanes. These sections can be

roughly considered as analogous to verse and chorus. Nev-

ertheless, there are peşrevs, which has no teslim, yet the

second half of each hane strongly resembles each other [9].

The fourth hane is typically longer and have a change in

the makam and usul. Also, the last measures of each teslim

may differ with respect to the hane it is being connected.

2.2 Presciptive vs. Descriptive Notation

The intent of musical notations can be either (1) prescrip-

tive notations, used as a means to explain the performers

how to perform a musical piece, or (2) descriptive nota-

tions, which narrate how the music is performed by musi-

cians [10]. In this context, the majority of compositions in

Western classical music would use prescriptive notations

and the transcriptions done from a performance would be

considered descriptive.

The available makam music scores are guidelines for the

performers [11], even tough a considerable number of com-

1 An interval equal to 1/9th of a whole tone is also termed as Holde-
rian Comma (Hc) and they divide an octave into 53 equal intervals.

positions (esp. the ones composed before 20th century)

are actually transcriptions of performances. The perform-

ers not only deviate considerably from the score, but they

normally play differently every time; showing their musi-

cality and virtuosity by using expressive timings, adding

note repetitions and non-notated embellishments. More-

over, the intonation of some intervals might change, or

even a neighboring tone might be played instead of the one

written in the score [12]. As a last remark, the complex het-

erophonic interactions in the ensemble performances are

not indicated in the scores. Therefore, the scores of makam

music can be considered both prescriptive and descriptive.

2.3 Related Computational Research

There is very little work done on the automatic segmen-

tation of makam musics. The only published experiment

was conducted by Lartillot and Ayari [13]. They used com-

putational models with low-level and high-level heuristics

to make structural segmentations of modal ney improvisa-

tions in Tunisian maqam music. They compare their au-

tomatic results with segmentations performed by human

subjects with different cultural and musical backgrounds.

The current state-of-the-art systems on section analysis

are mostly aimed at dividing audio recordings of Western

popular music into repeated and mutually exclusive sec-

tions. For these segmentations, typically self-similarity

analysis [14, 15] is employed 2 , in which a similarity ma-

trix is computed by taking the distance of temporal features

obtained from the audio recording by itself. Since the re-

sultant matrix is square, the repetitions may only occur in

the direction of the diagonal (±45 degrees, depending on

the orientation). This directional constraint makes it possi-

ble to identify repetitions, 2D sub-patterns inside the ma-

trix. However, as explained in Section 2.1, there are some

special cases in makam music, where there are no repeated

sections. In such cases self-similarity may not only be use-

less but it may also give false results.

Due to inherent characteristics of the oral tradition and

the practice of makam music of Turkey, performances of

the same piece may be substantially different from each

other. A similar situation occurs in cover song identifi-

cation [17, 18] for which a similarity matrix is computed

from the temporal descriptors obtained from a cover song

candidate and the original recording. If the similarity ma-

trix is found to have some strong regularities (i.e. several

prominent paths with minimal costs), they are deemed as

two different versions of the same piece of music. In this

case, the similarity matrix is non-square unless the audio

recordings have exactly the same duration. A proposed

solution is to “squarize” the similarity matrix is by com-

puting some hypothesis about the tempo difference [17].

However, usul analysis in makam musics is not a straight-

forward task [19]. The sections may also be found by

traversing the similarity matrices using dynamic program-

ming [18]. On the other hand, dynamic programming is

a computationally demanding task, and the approach may

only link a single section at a time, i.e. the algorithm needs

2 For an overview of section analysis (and structural analysis in gen-
eral) tasks and relevant approaches, the readers can refer to [16].
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Figure 1: Block diagram of the section linking methodology between a score of a piece and an audio recording of the same

piece.

to run multiple times to locate any repeated sections in an

audio recording.

When the score is available, incorporating information

extracted from it might be more insightful for structural

analysis than solely relying on the audio recordings. Mar-

tin et al. have proposed a methodology to structurally align

symbolic structural queries and audio recordings by ma-

king 2D comparisons of self-similarity matrices calculated

from the symbolic queries and self-similarity matrices cal-

culated from the recordings [20]. However, the method

heavily relies on the timings of the annotated queries and

it is not impervious to changes at the excerpt boundaries.

Nevertheless, the system is better aimed at retrieving a

previously annotated audio recording inside a large audio

database than at locating the sections in an arbitrary audio

recording of a music piece.

Structure analysis is related to some research in image

processing, since the similarity matrices computed may be

interpreted as topology maps, and the problem may be re-

garded as finding regularities inside these maps. To find

these regularities, structure analysis may utilize image pro-

cessing solutions such as morphological operations [21],

Hough transform [22] or geodesics [23].

3. METHODOLOGY

Here, we explain the proposed methodology for linking se-

lected score sections of a music composition with the cor-

responding audio recordings of performances. The method

uses a machine readable version of the score of a composi-

tion and an audio recording as the inputs along with some

complementary metadata about these information sources

and some concepts from makam music theory (Section 3.1).

From the audio recording, the fundamental frequency, f0,

is estimated and processed to obtain an audio pitch con-

tour. The f0 estimation is also used to calculate a pitch

histogram in order to identify the tuning and the note inter-

vals (Section 3.2.1). From the score information, we read

the note symbols, the sections and the makam of the piece,

and generate a synthetic pitch contour (Section 3.2.2). In

order to estimate the candidate locations of the sections in

the audio, the method compares these relevant pitch repre-

sentations (Section 3.3). In the final step, the candidates

are hierarchically checked to link the sections of the score

to the corresponding parts in the audio (Section 3.4). The

block diagram of the methodology is given in Figure 1.

3.1 Information Sources

To link the identified score sections with their performan-

ces we use machine-readable scores and audio recordings.

These information sources are already associated with each

other through complementary metadata available, so that

there is no need to apply version detection prior to sec-

tion linking operations. The scores are encoded as symbTr

files [24], a Humdrum-like machine readable format. The

starting and ending of the sections are explicitly marked

in the scores. We also use some theoretical knowledge,

namely the letter symbols of the notes, the letter symbol

of the karar note of the makam of the piece and melodic

intervals, to process the audio recordings and the symbolic

scores, which will be explained in Sections 3.2.1 and 3.2.2.

3.2 Descriptor Extraction

Since the scores are not strictly followed by a performer,

conversion to a more flexible representation is needed. The

data should make it possible to make one-to-one mappings

in subsequences where both sources could fit relatively well

into each other; however they should also provide a level of

fuzziness to avoid confusions in substantially dissimilar re-

gions. To achieve a robustness in linking the score and the

audio, we use post-processed pitch tracks extracted from

the audio recordings and score, which we name “pitch con-

tours.”

3.2.1 Pitch Tracking and Tuning Analysis on the Audio

To obtain the audio pitch contour, f0 estimations from the

audio recordings are extracted using the Makam Toolbox

[25]. Makam Toolbox uses YIN [26], which has been shown

to be highly reliable to estimate the fundamental frequency

over time in monophonic music 3 . The hop size is 10ms

for pitch tracks. Makam Toolbox also post-processes the

YIN output to fix the octave errors. Additionally, it has

an additional option to quantize the pitch tracks into stable

notes. The advantage of the quantized f0 estimation is that

3 Makam Toolbox can also process f0 estimations from other pitch
tracking algorithms. However we started the initial experiments with
monophonic ney recordings (Section 4.1) and empirically observed re-
liable estimations. Adaptation of other melodic descriptors is discussed
in Section 5.
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it takes out minor pitch variations such as vibratos. Af-

terwards, we further apply a median filter with a window

length of 41 frames (410ms) to fix short drops in the f0

estimation.

Together with to the pitch contour calculation, an his-

togram analysis is done on the raw f0 estimations using

the Makam Toolbox to identify the karar tone and the in-

tervals played [1]. The bin width of the histogram is taken

as 1/3 Holderian commas (Hc) 4 . The intervals played

in the performance are obtained by picking the peak va-

lues in the histogram. To neutralize the differences in pitch

height due to different ahenks, the values of pitch contours

are converted to Hc and normalized by subtracting the Hc

value of the karar tone from each. In other words, the pitch

contour shows the floating scale degree of the progression

in the audio in Hc, where the karar note is assigned 0 Hc.

Then, all pitch values are folded to the pitch range given in

the score with a tolerance of 14 Hc (approx. 1.5 semitones

below and above the theoretical frequencies of the lowest

and highest pitched notes given in the score). This thresh-

old allows some space for embellishments in the highest

and lowest registers.

In order to find the rests in the audio recording, the audio

file is divided into 50% overlapping frames with 100ms

length. The average power in each frame is calculated,

and normalized with respect to the overall average power

of the audio recording. A dynamic threshold is computed

by applying a median filter with a length of 100 frames

(10 seconds) to the logarithm of the average power val-

ues per frame. The silent regions in the audio are detected

by picking the frames which have a lower average power

than the dynamic threshold. Then, a pseudo-value is as-

signed as the pitch value of the rest (34 Hc below the low-

est register) to avoid immense penalties in case a rest is not

present in the score and vice versa. These the pitch con-

tour is downsampled by 10 (i.e. 10 samples per second)

to emphasize the structural changes and for computational

concerns. The peaks detected in the histogram and the rest

value are also noted to be used later in the synthetic pitch

contour generation (Section 3.2.2).

3.2.2 Score Data Extraction and Synthetic Pitch Contour

Generation

From the score, we read the makam of the piece, the start-

ing event numbers of the sections, the note names and their

durations. If the teslims have different endings, only the

note sequence of the first teslim is considered. The sym-

bolic format is mapped to theoretical pitches with respect

to the theoretical information given, such that the karar

note is assigned to 0 Hc and all note symbols are converted

to their respective theoretical scale degree values (i.e. the

symbol B4♭2 is converted to 7Hc, where the karar note

of a piece is A4 = 0Hc). Then each value obtained from

the theoretical intervals is interchanged with the scale de-

grees in the performance obtained through histogram anal-

ysis (Section 3.2.1), provided that there is a single promi-

nent peak observed in the pitch histogram in the vicinity

4 Holderian commas are picked due to their common usage in schol-
arly articles about makam music of Turkey.

Table 1: Structural element defined for the dilation opera-

tion

1 1 1 . . . . . .

1 1 1 . . . . . .

1 1 1 1 . . . . .

. . 1 1 . . . . .

. . . . 1 . . . .

. . . . . 1 1 . .

. . . . . 1 1 1 1

. . . . . . 1 1 1

. . . . . . 1 1 1

Table 2: Structural element defined for the erosion and

opening operations

1 1 . . .

1 1 . . .

. . 1 . .

. . . 1 1

. . . 1 1

of the theoretical value (a maximum distance of 1 Hc).

The rests in the score are assigned the same pseudo-value,

which was noted in audio pitch contour generation (Sec-

tion 3.2.1). Then, the note and time sequences are divided

into sections by using the event number of the start of each

section. Finally a synthetic pitch contour of each section

is generated from the durations and the Hc values of the

note sequences in the segments with a sampling period of

10ms to match the hop size of the pitch contour. Like for

the audio pitch contour (Section 3.2.1), the synthetic pitch

contours are downsampled by 10.

3.3 Candidate Estimation

After computing the pitch contours the method tries the es-

timate candidate time locations that can form the links be-

tween each section of the score and the audio recordings.

Similarity matrices are calculated by taking the City Block

(L1) distance [27] between each point of the synthetic pitch

contour associated with the section and the audio pitch

contour. The similarity matrices are normalized so that the

distances stay between 0 and 1.

In the normalized similarity matrices long, diagonal “val-

leys” are observed, which identify the regions where a sec-

tion in the score might have been performed and are present

in the audio recording. In order to detect these diago-

nal shapes, we first emphasize them by utilizing a number

of structural morphological operations [21, 22]. To pro-

perly apply morphological operations, the similarity ma-

trix is first subtracted from 1 such that the “valleys” be-

come “hills.” Then, the image is dilated. The structural

element is picked as a binary diagonal beam lying in the

2nd and 4th quadrants with the focus at the origin (Table 1).

Next, the similarity matrix is eroded twice. The structural

element is a similar beam to the beam defined for dilation,

but smaller (Table 2). Later, to remove noises, the simi-

larity matrix is opened with the same structuring element
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Figure 2: Section candidates shown on top of the processed similarity matrices, estimated for an audio recording of

Muhayyer Saz Semâi (recording #29 in Table 3) and groups connected prior to hierarchical linking. Horizontal blue lines

show the group borders, red lines indicate connections of preceding and following groups and pink links mark overlapping

regions.

used in the erosions. Next, the similarity matrices are con-

verted into binary images by applying thresholding, such

that all values higher than 0.96 are given the value one and

all other values are assigned to zero. Structural component

analysis is done on the binary image to find the blobs. All

blobs that are not in the desired diagonal orientation (i.e.

lying between 0 and -90 degrees) are removed. From the

remaining blobs only the biggest 20% are picked. As a

last step in pre-processing the similarity matrix, the image

is dilated by a 3x3 square structuring element to slightly

widen the diagonals.

After pre-processing the similarity matrices, Hough trans-

form [22] is applied on each similarity matrix to detect

the prominent lines. The peaks between -25 and -65 de-

grees are detected in the transformation matrix, and the

peaks which have accumulated a value higher than .3 are

picked. The detected peaks are then used to extract line

segments: in this process only the lines which are longer

than 150 pixels are selected. Since the diagonals are actu-

ally blobs, there are a number of lines in the same region

with minimal variances in locations and angles: all of these

lines are removed except the longest one. Moreover, some

prominent diagonals might have discontinuities resulting

in more than one line segment on different parts of a diag-

onal. These lines are connected with each other provided

their combined projection to the score (i.e. the range in the

corresponding y axis) covers more than 60% of the score.

Finally, all line segments covering more than 70% of the

score are extrapolated to the edges and all other lines are

removed. By combining the parallel results, candidate lo-

cations for all sections are obtained.

3.4 Hierarchical Linking

Through inspecting the candidates obtained from the esti-

mations of each section, most of the sections may be linked

with their corresponding regions in the audio recording.

Nevertheless, there might be some erroneous candidates

in several locations apart from the true location. Since

the candidate estimations for each section are temporally

independent from each other, such erroneous links might

overlap or enclose other candidates, and produce concep-

tually problematic outcomes. Moreover, there might also

be some unsure regions where no candidate was estimated.

Nevertheless, since the sequence of the sections in the

score is known, an additional step making use of the se-

quence of the sections given in the composition might be

introduced. This step would be hierarchically able to elim-

inate any erroneous candidates and guess unsure regions,

and therefore increase the overall accuracy of the method.

First, the candidates are gathered such that when the bor-

ders of a candidate is inside the borders of another (i.e.

one candidate is enclosing another), they are grouped to-

gether. Since there is always a chance for the shorter can-

didate to be exceeding a border of the longer candidate by

a very small duration, an expansion outside the border of

the longer candidate by less than 10% of the duration of

the longest candidate is tolerated. Next, regions, where

candidate estimation did not predict any candidates, are la-

beled as “unsure.” Afterwards, these groups are connected

together so that any preceding, following and overlapping

groups may be traversed (Figure 2).

After the enclosing groups are formed, linking is com-

menced iteratively. First, any non-overlapping groups hav-

ing a single candidate are temporarily linked. Next, each

hane candidate is checked whether its location is impossi-

ble with respect to already linked candidates. For example,

if a 2nd hane is linked and there are other 2nd hane can-

didates occurring later in the audio recording, which are

not directly connected to the link (i.e. a sequence of {2nd

hane, 2nd hane} is not observed) or through an unsure re-
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Table 3: The dataset used in the experimentation. hn, t and u stand for the nth hane, teslim and unrelated region respectively. t* indicates ends of the
teslims vary in the composition.

Rec. # Composition Composer Instrumentation Dur. Annotations Remarks on the Recording

1 Acemaşiran Peşrev Neyzen Salih Dede Ney 4:19 h1, h2, h3, h4 Kız Ahenk

2 Ney 4:22 h1, h2, h3, h4 Kız Ahenk

3 Ney 4:22 h1, h2, h3, h4 Mansur Ahenk

4 Hicaz Saz Semâı̂ Muhittin Erev Ney 4:00 h1, t, h2, t, h3, t, h4, t Kız Ahenk

5 Ney 4:00 h1, t, h2, t, h3, t, h4, t Mansur Ahenk

6 Hüseyni Peşrev Kul Mehmet Ney 5:21 h1, h2, h3, h4 Kız Ahenk

7 Ney 5:22 h1, h2, h3, h4 Mansur Ahenk

8 Hüseyni Peşrev Lavtacı Andon Ensemble 5:17 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End

9 Ensemble 5:15 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End

10 Hüseyni Saz Semâı̂ Lavtacı Andon Ney 4:48 h1, t, h2, t, h3, t, h4, t Kız Ahenk

11 Ney 4:48 h1, t, h2, t, h3, t, h4, t Mansur Ahenk

12 Hüseyni Saz Semâı̂ Tatyos Efendi Ensemble 3:01 h1, t, h2, t, h3, h3, t, h4, t, t, u Silence in the End

13 Ensemble 5:38 h1, t, t, h2, h2, t, t, h3, h3, t, t, h4, t, t, u Silence in the End

14 Tanbur, Kemençe 3:21 h1, t, t, h2, t, h3, h3, t, t, h4, t, t, u Repetitions in Hane 4 Omitted

Silence in the End

15 Ud 7:31 u, h1, h1, t, t, h2, h2, t, t, h3, h3, t, t, h4, t, t, u Speech and Taksim in the Start

Taksim and Silence in the End

16 Kürdilihicazkar Peşrev Vasilaki Ensemble 1:10 h1, t* Partial Performance

17 Ensemble 1:11 h1, t* Partial Performance

18 Tanbur 4:05 h1, t*, h2, t*, h3, t*, h4, t*, u Denoised Recording of Below

Silence in the End

19 Tanbur 4:07 h1, t*, h2, t*, h3, t*, h4, t*, u Noisy Recording

Silence in the End

20 Ud 4:19 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End

21 Ensemble 5:48 h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the End

22 Ensemble 2:07 h1, t*, h2, t* Partial Performance

23 Muhayyer Saz Semâı̂ Tanburi Cemil Bey Ud 6:32 u, h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the Start and the End

24 Ud 4:08 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End

25 Ud 4:16 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End

26 Ensemble 5:33 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End

27 Ney 4:20 h1, t, h2, t, h3, t, h4, t Kız Ahenk

28 Ney 4:20 h1, t, h2, t, h3, t, h4, t Mansur Ahenk

29 Ensemble 3:22 h1, t, h2, t, h3, t, h4, t, t, u Silence in the End

30 Rast Peşrev Osman Bey Ney 4:10 h1, t, h2, t, h3, t, h4, t Kız Ahenk

31 Ney 4:09 h1, t, h2, t, h3, t, h4, t Mansur Ahenk

32 Segah Saz Semâı̂ Yusuf Paşa Ensemble 2:36 h1, t* Partial Performance

33 Violin 7:35 u, h1, t*, h2, t*, h3, t*, h4, t*, u Silence in the Start and the End

34 Ney, Percussion 3:27 h1, t*, h2, t* Percussion is Recorded Loud

35 Cello, Viola 14:03 h1, t*, h2, t*, h3, t*, h4, t*, u Group Taksim, Suzidil Saz Se-

maisi and Silence in the End

36 Ney, Kanun 6:39 h1, t*, h2, t*, h3, t*, h4, t*

37 Uşşak Saz Semâı̂ Salih Dede Tanbur 6:45 h1, t, t, h2, t, t, h3, t, t, h4, h4, t, t

38 Tanbur, Kemençe 4:16 h1, t, h2, t, h3, t, h4, t, u Silence in the End

39 Ud 5:53 h1, t, t, h2, t, t, h3, t, t, h4, t, t

40 Tanbur 5:44 h1, t, t, h2, t, t, h3, t, t, h4, t, t, u Silence in the End

41 Kemençe 5:20 h1, t, h2, t, h3, t, t, h4, u, h4, t, t, u Taksim in the Middle

Silence in the End

42 Ney 5:56 h1, t, h2, t, h3, t, h4, t Kız Ahenk

43 Ney 5:56 h1, t, h2, t, h3, t, h4, t Mansur Ahenk

44 Ney 7:16 h1, t, t, h2, t, t, h3, t, t, h4, t, t Müstahsen Ahenk
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gion (i.e. a sequence of {2nd hane, unsure, 2nd hane} is

not observed), these future candidates are removed even if

they are already linked. Moreover any earlier candidates

which should not occur before a hane link (i.e. 3rd hane

and 4th hane candidates occurring before a 2nd hane link)

or should not occur after a hane link (i.e. 1st hane candi-

dates occurring after a 2nd hane link) are removed. This

way, most of the false positives occurring before and after

the true hane link may be taken care of, while linking hane

repetitions and expressive elements not related to the com-

position (i.e. taksim etc.) between two hanes of the same

label are still allowed.

After this step, the indices of links (i.e. order of the sec-

tion given in the score) are noted, where possible. Since

each hane has an unique index in the score, our starting

point is to note the indices of the linked hanes. For exam-

ple, if the score is in the form {1st hane, teslim, 2nd hane,

. . . , 4th hane, teslim}, the index of a 2nd hane link will

be 3. If a teslim or a teslim repetition is found, the index

will be the index of the previous neighboring hane plus one

or the index of the next neighboring hane minus one, pro-

vided either one is known. If the indices of both the previ-

ous and the next neighboring hane link is known, they must

be consecutive (i.e. {1sthane, teslim(s), 2ndhane}), or

the indices for the teslim will be left indeterminate. The

indices of the links are used to estimate the unsure groups

and groups with mulitple candidates, which will be ex-

plained later.

Through inspecting the enclosing groups, it was seen that

if a group is overlapping with at least two other groups,

the candidates inside the group are almost never true posi-

tives. All such overlapping groups are removed to increase

precision in exchange with a minimal-to-zero decrease in

recall.

After each step, if all the candidates of an enclosing group

is removed, the group is assigned “unsure.” Moreover, if

an unsure group is followed by another, both groups are

merged into one. Unsure groups are also not allowed to

overlap with other groups. If such a case occurs the inter-

val overlapping with the other groups is trimmed from the

unsure group.

The final confusion arises when a group does not have

any candidates (unsure group) or there are at least two can-

didates that are both linkable. To guess an unsure group,

both of the immediate neighbor groups must be already

linked 5 . If the neighbors are consecutive hanes, the al-

gorithm predicts a teslim for the unsure group. If both

of the neighbors are teslims, the algorithm predicts a hane

in between, provided that at least one of the composition

index of the (teslim) neighbors are previously noted. If

both indices are known, they must be even consecutive 6

so that there can only be a single hane nominee. If these

conditions are not met and only one of the neighbors is a

teslim, the algorithm predicts a teslim repetition. Other-

wise, the group is left as unsure. For groups, which mul-

5 With the exception of the first and the last groups since they are in
the start and end of the recording respectively. For the first and the last
groups respectively, only the next and previous groups are needed to be
linked before.

6 Since both saz semaisi and peşrev forms start with 1
st hane , teslims

always occupy even indices.

tiple candidate are possible, the same operation is done.

Nevertheless, a multiple-candidate group only requires a

single neighbor to be linked before. Moreover, if the un-

linked neighbor has more than one candidate (i.e. it is

also a multi-candidate group), all candidates in this neigh-

boring group are considered one-by-one to link the multi-

candidate group.

The iterative process is finished if no border changes or

linking is done in a cycle. Afterwards the gaps between

each neighboring link are closed provided there is one. The

first and the final links are also widened to the start and

the end of the audio recording provided the are not fur-

ther from the start/end more than 10% of the duration of

the longest candidate. Finally, all of the remaining unsure

regions are converted to links indicating regions which in-

dicate unrelated parts in the performance with respect to

the given composition.

4. EXPERIMENTS

To test the methodology, we have gathered scores of in-

strumental pieces and the corresponding audio recordings

(Section 4.1). The method is applied to each audio record-

ing, linking the sections marked in the score with the cor-

responding audio fragments. The links found between the

audio recordings and scores are then compared with man-

ually linked regions (Section 4.2).

4.1 Data

For the experiments we have used a set of 44 audio record-

ings associated with 11 scores of different compositions

(Table 3) 7 . The scores and parallel audio recordings come

from the CompMusic database, the SymbTr database [24]

and the Instrumental Pieces Played with the Ney collec-

tion 8 .

All the scores follow the Arel-Ezgi-Uzdilek theory. In

the experiments, we are using a single score per composi-

tion, which is either obtained from the SymbTr database or

obtained by encoding the scores as the symbTr files [24]

by referring to the version given in the Instrumental Pieces

Played with the Ney. As score fragments, we use the ac-

tual sections of the pieces, a total of 53 fragments. All of

the audio recordings are in wav format and either public-

domain or commercially available. The recordings encom-

pass a wide variety of instrumentation (Table 3) such as

solo ney recordings, which are monophonic; solo stringed

instruments, which involve heterophonic peculiarities; duo,

trio and ensembles, which are heterophonic. The record-

ings also cover a substantial amount of expressive deci-

sions such as changes in performance speed, different den-

sity of embellishments, note suspension and repetitions,

melodic excerpts played in different octaves and various

ahenks. Some of the recordings include some material that

is not related to the scores such as taksims (non-metered

improvisations), applauses, introductory speeches, silences

and even other pieces of music. These audio materials are

not manually removed.

7 The data will be available in http://compmusic.upf.edu/
8 http://neyzen.com/ney_den_saz_eserleri.htm

Proc. of the 2nd CompMusic Workshop (Istanbul, Turkey, July 12-13, 2012)

101



Table 5: The results of the section linking experiment in-

cluding all audio recordings. K-, K+, H- and H+ indi-

cate results obtained from fully-automatic karar recogni-

tion, semi-automatic karar recognition, candidate estima-

tion and hierarchical linking respectively.

K-H- K+H- K-H+ K+H+

Accuracy 65.17% 69.83% 73.45% 80.45%

Specificity 0% 0% 13.33% 13.04%

Recall 72.38% 79.28% 81.01% 89.11%

Precision 86.75% 85.42% 88.15% 88.86%

F1 score 78.92% 82.23% 84.43% 88.98%

F3 score 73.60% 79.86% 81.67% 89.08%

Almost all the pieces in the Instrumental Pieces Played

with the Ney collection include both the audio recording

and the score used by the musician to play from. The pro-

cedure of adding a piece to the collection is as follows:

1. The musician looks a few scores of the same composi-

tion, picks the one she/he prefers; 2. The musician makes

corrections to the score if necessary; 3. The musician per-

forms the piece while referring to the score.

4.2 Results and Evaluation

To evaluate the method, we built the ground truth by manu-

ally identifying the particular fragment of the score section

by labeling the time boundaries in the audio recordings. A

composition-related link is deemed as true positive, if and

only if it is coinciding with an annotation of the same sec-

tion, and the average distance between the borders of the

annotation and the link does not exceed 10% of the du-

ration of the annotation. Links, which do not meet these

constraints are treated as false positives. If a composition

related annotation does not coincide with any link with the

distance constraint given above, it is labeled as a false neg-

ative.

Since the system is not meant to identify what a non-

related region actually is, the boundaries of the links la-

beled as “unrelated” do not have to coincide with the bor-

ders of an unrelated annotation. Therefore, any consecu-

tive unrelated regions (i.e. introductory speech followed

by a taksim) are combined into a single one, and evalu-

ation is done on the links which are enclosed by a non-

compositional region. Links enclosed by a non-compositi-

onal region are obtained by the enclosing operation ex-

plained in Section 3.4. All links labeled as “unrelated”

enclosed by a non-compositional annotation are labeled as

true negative. All other enclosed links are treated as false

positives. Any unguessed parts in these annotations are

neither awarded or penalized.

We have computed accuracy, specificity, recall, precision,

F1-score and F3-score from the true positives, true neg-

atives, false positives and false negatives. These results

are reported for both candidate estimation and hierarchi-

cal linking. The automatic karar recognition obtained via

Makam Toolbox has failed in 7 pieces (recordings #1, #2,

#3, #6, #7, #8 and #22, indicated as bold in Table 4), which

are corrected via the graphical interface of the Makam Tool-

box. The true positive, true negative, false positive, false

negative scores calculated per experiment is given in Ta-

ble 4. The global accuracy, specificity, recall, precision,

F1 score and F3 score obtained from the candidate esti-

mation and hierarchical linking with automatic and semi-

automatic karar recognition are given in Table 5.

In order to assess the effectiveness of pitch contours pro-

posed, it is necessary to check the results obtained from the

candidate estimation with respect to the density of hetero-

phonic and expressive elements. However, it is not straight-

forward to directly measure the level of heterophony and

expressivity of an audio recording. On the other hand,

since these elements are related to instrumentation, the re-

sults obtained from candidate estimation are grouped and

compared with respect to different types instrumentation

(Table 6).

The time elapsed per experiment are also recorded. The

timings are then normalized with respect to the duration of

the audio recordings with the given formula:

tNi =
ti

duri
∗

∑n

i duri

n
(1)

where ti is the time elapsed during the section linking,

duri is the duration of the ithaudio recording and n is the

number of the recordings (Table 5). It takes an average of

42 seconds with a standard deviation of 15 seconds to link

the sections of a audio recording approximately 275 sec-

onds long (i.e. the average duration of an audio recording

in the dataset), when the implementation is run on com-

puter with a 4GB RAM and 2.26 GHz processor.

5. DISCUSSION

The results in Table 5 points that the methodology is quite

successful in linking sections given in the scores with the

corresponding audio recordings. The method is able to

deal with a wide number of situations such as composi-

tions without any section repetitions, various ahenks, par-

tial performances, hane or teslim repetitions and record-

ings with unrelated parts. Table 5 also shows that hierar-

chical linking has a clear success over candidate estima-

tion, even when failed karar detections are not altered.

The advantage of the hierarchical linking is more evident,

when results per piece (Table 4) are inspected. Except

the 14th experiment, where candidate estimation produced

one erroneous link enclosing a true link and hierarchical

linking preferred the erroneous one, hierarchical linking

emits more true positives and less false negatives. More-

over, there is no increase in the number of false positives

obtained through all experiments, thus hierarchical link-

ing presents much better precision, recall and f-scores over

evaluation on raw links provided by the section estimation.

The results also show that the pitch contours successfully

allow a flexible means of section linking specific to makam

music of Turkey. Nevertheless, in Table 6, it can be seen

that as the instrumentation of a recording gets more com-

plex, i.e. the tendency of observing heterophonic and ex-

pressive elements in an audio recording increases, the ac-

curacy and the F1-score decreases almost monotonically.
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Table 4: The results per piece. t and tN indicate the time and normalized time elapsed per experiment with semi-automatic karar recognition. K-, K+, H-
and H+ indicate results obtained from fully-automatic karar recognition, semi-automatic karar recognition, candidate estimation and hierarchical linking
respectively.

#Sections / t / tN True Positive True Negative False Negative False Positive

Rec. # #Unrelated (sec) K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+ K-H- K+H- K-H+ K+H+

1 4 32 / 34 0 4 0 4 0 0 0 0 4 0 4 0 0 2 0 0

2 4 26 / 27 0 4 0 4 0 0 0 0 4 0 4 0 0 3 0 0

3 4 26 / 28 0 4 0 4 0 0 0 0 4 0 4 0 0 3 0 0

4 8 28 / 32 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0

5 8 33 / 37 7 7 8 8 0 0 0 0 1 1 0 0 1 1 0 0

6 4 39 / 33 0 4 0 4 0 0 0 0 4 0 4 0 0 1 0 0

7 4 39 / 33 0 4 0 4 0 0 0 0 4 0 4 0 0 0 0 0

8 8 / 1 30 / 26 0 3 0 5 0 0 0 0 8 5 8 3 0 0 0 1

9 8 / 1 32 / 28 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0

10 8 27 / 32 7 7 8 8 0 0 0 0 1 1 0 0 1 1 0 0

11 8 27 / 32 8 8 8 8 0 0 0 0 0 0 0 0 3 3 0 0

12 10 / 1 28 / 42 4 4 5 5 0 0 1 1 6 6 5 5 1 1 2 2

13 14 / 1 67 / 66 10 10 12 12 0 0 0 0 4 4 2 2 0 0 2 2

14 12 / 1 46 / 62 11 11 10 10 0 0 0 0 1 1 2 2 2 2 2 2

15 15 / 2 126 / 89 13 13 14 14 0 0 2 2 2 2 0 0 1 1 3 3

16 2 13 / 53 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

17 2 14 / 52 1 1 2 2 0 0 0 0 1 1 0 0 0 0 0 0

18 8 / 1 30 / 34 7 7 7 7 0 0 0 0 1 1 1 1 0 0 1 1

19 8 / 1 28 / 31 5 5 6 6 0 0 0 0 3 3 2 2 0 0 0 0

20 8 / 1 29 / 30 5 5 6 6 0 0 0 0 3 3 2 2 0 0 1 1

21 8 / 1 32 / 30 4 4 8 8 0 0 0 0 4 4 0 0 0 0 0 0

22 4 17 / 37 0 2 0 4 0 0 0 0 4 2 4 0 0 0 0 0

23 12 / 2 40 / 33 5 5 7 7 0 0 1 1 7 7 5 5 0 0 2 2

24 12 / 1 32 / 36 4 4 7 7 0 0 0 0 8 8 5 5 1 1 1 1

25 12 / 1 59 / 63 7 7 8 8 0 0 0 0 5 5 3 3 1 1 5 5

26 12 / 1 50 / 50 7 7 10 10 0 0 0 0 5 5 2 2 0 0 2 2

27 8 28 / 29 7 7 8 8 0 0 0 0 1 1 0 0 0 0 0 0

28 8 31 / 33 7 7 7 7 0 0 0 0 1 1 1 1 1 1 2 2

29 9 / 1 40 / 54 8 8 9 9 0 0 0 0 1 1 0 0 2 2 1 1

30 8 33 / 36 8 8 8 8 0 0 0 0 0 0 0 0 3 3 0 0

31 8 36 / 39 8 8 8 8 0 0 0 0 0 0 0 0 5 5 0 0

32 2 15 / 44 2 2 2 2 0 0 0 0 0 0 0 0 1 1 0 0

33 8 / 2 45 / 32 7 7 8 8 0 0 1 1 1 1 0 0 4 4 0 0

34 4 23 / 31 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0

35 8 / 1 101 / 33 5 5 5 5 0 0 0 0 3 3 2 2 2 2 4 4

36 8 44 / 36 8 8 8 8 0 0 0 0 0 0 0 0 3 3 1 1

37 13 76 / 61 12 12 12 12 0 0 0 0 1 1 0 0 0 0 2 2

38 8 / 1 32 / 34 7 7 7 7 0 0 0 0 1 1 1 1 2 2 1 1

39 12 61 / 57 11 11 12 12 0 0 0 0 1 1 0 0 0 0 1 1

40 12 / 1 93 / 90 10 10 10 10 0 0 1 1 2 2 2 2 1 1 1 1

41 11 / 2 63 / 54 9 9 10 10 0 0 0 0 2 2 1 1 0 0 2 2

42 8 39 / 37 8 8 8 8 0 0 0 0 0 0 0 0 0 0 1 1

43 8 41 / 38 8 8 8 8 0 0 0 0 0 0 0 0 2 2 1 1

44 12 69 / 44 12 12 12 12 0 0 0 0 0 0 0 0 3 3 1 1

Total 364 / 24 1817 / 1831 262 287 290 319 0 0 6 6 100 75 68 39 40 49 39 40

( Av: 41 / 42 )

Table 6: The results obtained from the candidate estimation with semi-automatic karar detection. The results are grouped

per instrumentation. #Rec., #Sec., #Un., tp, fn, fp, Accur., Precis., F1, F3 stand for number of recordings, number of

sections, number of unrelated regions, number of true positives, number of false negatives, number of false positives,

accuracy, precision, F1-score and F3-score respectively.

#Rec. #Sec. #Un. tp fn fp Accur. Recall Precis. F1 F3

Solo Ney 17 116 0 111 5 28 77.08% 95.69% 79.86% 87.06% 93.83%

Solo Stringed 12 131 14 95 36 8 68.35% 72.52% 92.23% 81.20% 74.10%

Duo / Trio 4 36 3 31 5 9 68.89% 86.11% 77.50% 81.58% 85.16%

Ensemble 11 79 7 50 29 4 60.24% 63.29% 92.59% 75.19% 65.36%

All 44 362 24 287 75 49 69.83% 79.28% 85.42% 82.23% 79.86%
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This suggests that an improvement in the extraction of au-

dio pitch contour is necessary. Through inspecting errors

in the audio recording level, it is seen that the current bot-

tleneck of the system is the pitch estimation. Since YIN is

designed for monophonic sounds, lots of confusions arise

in the fundamental frequency estimations due to the het-

erophonic nature of makam music, especially in ensemble

performances. Moreover, YIN is found to lose its robust-

ness, where there are substantial usage of expressive el-

ements such as legatos, slides and tremolos. This prob-

lem should be tackled by using multi-pitch extraction and

prominent melody detection [28].

A second problem occurs when the performers substan-

tially deviate from the score i.e. a performer suspends

the note while the rest of the performers continue play-

ing, some notes in an melodic excerpt is played an octave

up/down. In these situations, Hough transformation de-

tects either a short, single line segment or several line seg-

ments in the region, where a section is being performed.

However, as explained in (Section 3.3), the synthetic pitch

contour do not link to its corresponding location in the per-

formance under these circumstances, unless 70% of the

section is covered by the line segments. To handle these

problems, a metric, which compensates for octave differ-

ences might be devised, analogous to octave-resilient meth-

ods used for Western music [29]. Moreover, arithmetic

geometry operations might be made more flexible by re-

moving the 70% coverage constraint and using the ratio of

the coverage as a confidence measure for hierarchical link-

ing. This way, the method will be allowed to link partial

similarity between the pitch contours.

It is also observed that hierarchical linking predicts a con-

siderable amount of regions which candidate estimate do

not (100 vs. 68 false negatives with automatic karar recog-

nition and 75 vs. 39 false negatives with semi-automatic

karar recognition). Most of the remaining false negatives

(30 false negatives out of 39, and 11 related false positives

out of 40 with semi-automatic karar detection) after hier-

archical linking are due to Hough transformation not able

to yield any links for regions encompassing at least two

consequent composition related annotations in the previ-

ous step. These regions might be linked to multiple sec-

tions by allowing hierarchical linking make multiple deci-

sions based on the duration of the particular region with

respect to the previously linked sections. Nevertheless, the

core reason of this type of confusion is due to the partial

differences in the pitch contours explained above. We pre-

dict that by implementing the relevant measures proposed

above, this type of confusions will diminish without ren-

dering the hierarchical linking step much more complex.

Another drawback of the method is the detection of the

unrelated regions in hierarchical linking 9 . In this step,

unrelated links are currently found indirectly by locating

related sections. Even if there are no estimations given

for a unrelated region after candidate estimation, hierar-

chical linking typically predicts an erroneous link in these

regions (16 false positives out of 40 with semi-automatic

9 Note that candidate estimation does not currently produce any unre-
lated links since it conceptually only tries to link patterns it is provided,
and leaves the time-related decisions to the hierarchical linking step.

karar detection), resulting in a low specificity. To increase

the detection of true negatives, some direct means of link-

ing the audio signal with some types of unrelated events,

i.e. through silence and speech detection, may be useful.

Currently hierarchical linking does not have any restric-

tions on the duration of a candidate link. By adding some

constraints in the duration of links (i.e. comparison of the

performance speed of a candidate in the audio recording by

the speed of its synthetic pitch contour and the speeds of

the pitch contours of other sections already linked), an am-

ple amount of erroneous links to silent regions and regions

spanning to multiple annotations may also be avoided. Mo-

reover, since the current approach for hierarchical linking

is completely rule-based, every single special case should

be considered explicitly, which makes the implementation

hard to maintain and prone to errors. This type of situ-

ation is highly suitable for applying principles of fuzzy

logic [30]. Fuzzy logic might also lower the complexity

of the code and increase human readability.

6. CONCLUSION AND FUTURE WORK

We have proposed a method to link sections of a musical

score of a composition with the corresponding regions in

an audio recording of the performance of the same com-

position. We have tested the method with 11 instrumental

compositions of makam music of Turkey associated with

44 audio recordings, obtaining remarkable performance in

a fast operation time.

Since a score section is basically a sequence of note e-

vents, the candidate estimation step might be generalized

to link any type of melodic fragments with an audio record-

ing. A generalized fragment linking methodology might be

helpful in computational tasks such as audio-score align-

ment, embellishment detection, tonic analysis, tuning de-

tection, intonation analysis and version detection. Con-

versely, the candidate estimation methodology might re-

quire specific adjustments for each task. Comparative can-

didate estimation experiments should be carried using other

techniques such as general Hough transform [22], SAX

[31], dynamic programming [18], minimal geodesics [23].

Currently, candidate estimation uses similarity matrices

computed from descriptors which are specifically designed

for makam music. Similarly, the method can be adapted to

other musical cultures by computing descriptors, which are

musically relevant to the culture being studied. As an ex-

ample, semi-improvised jazz music performances, where

musicians build variations of predefined melodies through

improvisation, share a similar basis with makam music. In-

stead of generation of a monophonic pitch contour from

the score based on the properties of makam music, gener-

ation of a harmonic contour from the initial melody based

on jazz harmony might be useful to traverse the variations

through out a performance. Also, candidate estimation and

hierarchical linking might be adapted to structure analy-

sis in Western music by replacing the pitch contours with

some harmonic descriptors and using a multi-dimensional

distance metric to calculate a similarity matrix.
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Esasları. İş Bankası Yayınları, 1984, p. 159.

[10] H. Myers, Ethnomusicology: an Introduction. WW

Norton, 1992, pp. 110–164.

[11] F. W. Stubbs, The art and science of taksim: an em-

prical analysis of traditional improvisation from 20th

century Istanbul, PhD dissertation, Wesleyan Univer-

sity, 1994.

[12] K. Signell, Makam: Modal practice in Turkish art mu-

sic. Da Capo Press, 1986.

[13] O. Lartillot and M. Ayari, “Cultural impact in listen-

ers’ structural understanding of a Tunisian traditional

modal improvisation, studied with the help of com-

putational models,” Journal of interdisciplinary music

studies, vol. 5, no. 1, pp. 85–100, 2011.

[14] M. Cooper and J. Foote, “Automatic music summariza-

tion via similarity analysis,” in Proceedings of ISMIR

2002, 2002, pp. 81–85.

[15] M. Goto, “A chorus-section detecting method for musi-

cal audio signals,” Proceedings of ICASSP 2003, vol. 5,

2003, pp. 437–440.

[16] J. Paulus, M. Müller, and A. Klapuri, “State of the

art report: Audio-based music structure analysis,” Pro-

ceedings of ISMIR 2010, 2010, pp. 625–636.

[17] D. Ellis and G. Poliner, “Identifying cover songs with

chroma features and dynamic programming beat track-

ing,” Proceedings of ICASSP 2007, vol. 4, 2007, pp.

1429–1432.
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