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Using qualia information to identify lexical semantc classes in
an unsupervised clustering task

Lauren ROME®Sara MENDE&? Naria BEL
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(2) Centro de Linguistica da Universidade de Lisboa
Avenida Professor Gama Pinto, 2, Lisboa, Portugal

{l auren. roneo, sara. mendes, nuri a. bel } @pf . edu
ABSTRACT

Acquiring lexical information is a complex probletypically approached by relying on a number ¢
contexts to contribute information for classificati One of the first issues to address in this dom:
is the determination of such contexts. The worls@néed here proposes the use of automatice
obtainedFORMAL role descriptors as features used to draw nowm fhe same lexical semantic
class together in an unsupervised clustering t&khave dealt with three lexical semantic class
(HumaN, LocAaTION and B/ENT) in English. The results obtained show that itpisssible to
discriminate between elements from different leixisamantic classes using onipRMAL role
information, hence validating our initial hypothesAlso, iterating our method accurately accoun
for fine-grained distinctions within lexical classenamely distinctions involving ambiguous
expressions. Moreover, a filtering and bootstragstrategy employed in extractif@rRMAL role
descriptors proved to minimize effects of sparga dad noise in our task.

KEYWORDS: lexical semantic classes, qualia roles, unsugedvclustering, automatic extractior
of lexical information
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1 Introduction

Acquiring lexical information is a complex probletgpically approached by relying on a number ¢
contexts to contribute information for classificati following the Distributional Hypothesis (Harris
1954) and the idea of distributional similarity. this domain it is crucial to determine whict
distributional information is significant to chatexize lexical items. In line with Pustejovsky alefek
(2008), we will make apparent how focusing on o@mges indicative of theorRMAL role of the
Generative Lexicon (GL) theory (Pustejovsky, 198I8)ws for identifying lexical semantic classes.

Lexical classes are linguistic generalizations ndigg characteristics of meaning that corresporgkts
of properties shared by groups of words. BybeeHwgper (2001) and Bybee (2010) state that wor
are organized in lexical-semantic classes defiseeh@ergent properties of words that recurrentlyioce
in a set of particular contexts. Though many NL8kgarely on rich lexica annotated with lexics
semantic classes, reliable lexical resources imgjutiis type of lexical information are mostly rafly
developed, which is unsustainable, costly and Goressuming, and makes conceiving methods
automatically acquire such information crucial. Approach for acquiring lexical semantic class:
proposes to classify words according to their aetwes in contexts where other lexical items béhgng
to a known class also occur. Yet, this approactsba® limitations, such as data sparseness arel n
(see Section 2), which underline the importancedefeloping new strategies to improve it
effectiveness. Authors such as Pustejovsky andk J2268) have shown how distributional analysis ar
theoretical modeling interact to account for rietiation in linguistic meaning. In line with thisgposal,
we evaluate the significance of specific co-ocawres whose selection was motivated by aspects of C

This work attempts to evaluate whether informapoovided by qualia roles, in specific tReRMAL
role, is sufficient to discriminate lexical semantlasses of English nouns. With the experimer
depicted in this paper, we aim to empirically destrate to which extent these features draw togetl
nouns from the same lexical semantic class in aopervised clustering task. In this paper, Se@ior
depicts background and motivation of this work.ti®ec3 presents relevant information on the GL ar
dot-objects. Section 4 describes the methodologgutomatically obtain and clusteoRMAL role
descriptors of nouns. Section 5 and 6, respecfidelscribe and discuss results. Section 7 reflgein
lexical classes and logical polysemy and is folld\e final remarks.

2 Background and Motivation

Mainstream approaches to lexical semantic classisiibon classify words according to occurrences, i
they use the entire set of occurrences of a wodtermine class membership. Yet, this approach |
some limitations. Blind-theory distributional appobies have been shown to fail to account for tde w
range of linguistic behavior displayed by worddanguage data (see Pustejovsky and JeZek (20C
while authors such as Bel et al. (2010) reporteblpms caused by sparse data, or lack of evidande,
noise, or information obtained though not aimedCancerning sparse data in classification taskaso
that appear only once or twice in a corpus, andimaought contexts, can render ineffective ar
classifier or clustering algorithm by not providiegfficient information for classification. We aito
soften effects of sparse data in the context dfigtaring task by using a bootstrapping technigliant
on natural language inference properties (seedBedtil). Noise, another pervasive issue in lexic
semantic class acquisition, can be due to diffefactors: the occurrence of very general nomin
expressions (e.g. “kind of”), which do not provitietinguishing lexical information; misleading cogp
features; and the use of low-level tools (see Bel.g2012)). We assume noise resulting from srrc
generated by NLP tools to be typically characterizg unique occurrences and we employ a filterir
strategy to overcome its possible effects (seedpe¢il). Concerning misleading corpus featureseh
are often caused by ambiguity of lexical itemsylt&gy in nouns occurring in contexts not correspiog
to their assumed lexical class. This presentsestgilig problems in classification tasks, as mastoasi
do not distinguish among related senses of the san; i.e. they either consider it as part ofdlass
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or not (Hindle, 1990; Bullinaria, 2008; Bel et &012). This is particularly problematic when word
allow for multiple selection, i.e. when differer@nses of the same lexical item can be simultangoL
selected for in one sentence (see (1)). Knowngisalgpolysemy, this type of ambiguity has beemsho
to have well-defined properties (see PustejovsB9%) and Buitelaar (1998)) and has been consigter
reported as a factor in lexical semantic acquisitsks.

The newly constructeg OCATION) bankoffers special condition®RGANIZATION) to new clients. 1)

Approaches in this domain have usually tried tdirdisish and isolate each word sense. We addr
this phenomenon differently, considering polysemoosgns as members of a given ambiguity cla
(within a wider lexical semantic class) and malapgarent the relation between members of differe
classes by identifying shared properties beyonssdiaits. Given these considerations, we assul
lexical units are complex objects that display ni@riations of meaning in language use, placir
ourselves within a theoretical framework that piegi us the tools to account for this fact. Usirg tl
levels of representation and generative mechanisn@L, we attempt to soften the effects of th
aforementioned limitations in the automatic acgoisiof lexical information.

3 Generative Lexicon theory

GL models the internal structure of lexical itemsai computational perspective (Pustejovsky, 199!
proposing various levels of representation to sdéinaly represent words, while allowing for the
computation of meaning in context. Qualia Struc(@®§) is one of these levels, consisting of 4 rol
(FORMAL: what an object iS;ONSTITUTIVE what it is composed OfELIC: itS pUrpoSeAGENTIVE: its
origin), which model the predicative potential ekital items. Here, we focus on theRMAL role,
defined as the role that distinguishes a lexicgattwithin a larger domain (Pustejovsky, 1991).

QS also models phenomena such as polysemy of llégogs inherently complex in their meaning
These instancedpt objectsare the logical pairing of senses denoted byididal types in a complex
type (Pustejovsky, 1995), which can pick up distagpects of the object, as well as propertiesarem
than one class (Pustejovsky and JeZek, 2008)atiypallowing for multiple selection (see (1)). Bgi

able to represent lexical items as complex objsatseful in the context of our work as it provides
formal explanation for words belonging to more tbhae type, and essentially to more than one class

Our experiment usesORMAL role information as features for identifying leaficclass membership.
However, as there are no lexica available annotaféfd such information, we needed to obtain
automatically. Automatically extracting qualia ®leith lexico-syntactic patterns has been receivil
considerable attention for its success: Hearst)l@@ntified lexico-syntactic patterns to acquimin
hyponyms, corresponding to t®RMAL role, whereas Cimiano and Wenderoth (2007) idedtif
lexico-syntactic patterns to obtain informationaneting semantic relations that correspond to eaalieg
role. As we needed information regardingrbemaL role, not full lexical entries, in order for class to
emerge, following Celli and Nissim (2009), we bygesthe representation of the entire QS, assum
semantic relations can be induced by matchingdesymtactic patterns that convey a relation ofase

4  Methodology

Given the unavailability of lexica annotated WiHbRMAL role information, and considering our basi
goal of evaluating whether this information is eglodo cluster together nouns of the same class,
extracted it from a corpus using lexico-syntactttgrns, following Cimiano and Wenderoth (2007
and then used it as features for a clustering tagke experiment performed, we employed two stef
the extraction oFORMAL role descriptors from corpus data; and the clingiesf this information. To

obtain FORMAL role descriptors for our unsupervised clusterimk,t we used a part of the Ukwac
Corpus (Baroni et al., 2009), consisting of 150ianiltokens. We employed 60 seed nouns pertaini
to three lexical semantic classesIMAN, LOCATION, and B/ENT. The seed nouns were said to belor
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to a class if they contained a sense in WordNellgivit al., 1990) corresponding to one of theehre
classes. Seed nouns were not contrasted with acitairences in the corpus.

4.1 Extraction of FORMAL role descriptors using lexico-syntactic patterns

Firstly, seed nouns were used in handcrafted lesyotactic patterns, adapted from Hearst (199
patterns and the list proposed by Cimiano and Wetil¢2007), to extractORMAL role descriptors.
These patterns were specified through regular sgjones with PoS tags given after each token.

x_(or/and)_othery

X_such_asy

X_(is/are)_(a/an/the) _(kind(s)/type(s))_»f
X_(is/are)_also_known_ag_

TaBLE 1 — Clues on which patterns used to def@RMAL role information in corpus data were built

The information obtained was stored in vectorsaggmting co-occurrences with seed nouns in relev
contexts (patterns), where each element correspormtsurrences of a particular seed noymfth a
possibleFoRMAL role descriptory), following Katrenko and Adriaans (2008). Using ttlues in Table
1, we obtained 18%ORMAL role descriptors for 55 of the 60 seed nouns i 8Bcurrences.
Considering this, and given the properties of thstering algorithm used (see Section 4.2) a randc
value would be provided to nouns not sharing feainfiormation with any other noun in our data se
To avoid random cluster assignations and provideens@nificant information to the system, wk
filtered out the features not shared between at tem seed nouns, without controlling which cles
shared features belonged to, thus maintaining anpamvised environment. Though we employed
large set of data, there were not enough sheoetiAL role descriptors for an important part of ou
data set, leading us to devise a strategy to iserte information available to the clustering atgm.

a. Amammalis a [type of] animal.

b. Azebrais a[type of]l mammal.
c. Therefore, a zebra is a [type of] animal. 2)

To increase the amount BORMAL role descriptors, we employed a bootstrappingnigcie (Hearst,
1998) relying on monotonic patterns for naturablaage inference (Hoeksema, 1986; van Behthe
1991; Valencia, 1991), illustrated in (2). Thisagegy is consistent with GL lexical inheritanceicture
(Pustejovsky, 1995; 2001), which assumes lexieahst obtain their semantic representation t
accessing a hierarchy of types and inheriting médgion according to their QS, meaning quali
elements are viewed as categories hierarchicagignized. To illustrate how this applies in our ¢as
the HUMAN noun treasurer obtainedofficer as aFORMAL role descriptor, whereasficer extracted
personand employeeas its ownFORMAL role descriptors. Assuming this lexical organaatiwe
considerFORMAL role descriptors extracted fafficer to also be features dfeasurer Thus, we
gathered additional information regarding the naoneluster, using originally obtainetRMAL role
descriptors as “seed nouns” to extract more elesriaréin attempt to overcome biases due to spa
data (see Section 6), as well as to reinforce rimétion already obtained. Employing the origin:
patterns and original extractions as seeds, weneltanformation that was added to the vectors. V
conducted one iteration of the bootstrapping tegke)igoing up one level of generalization to obta
the final distribution of information below. Newbbtained information was unified with previously
extracted features, filtering out any additionalseattained. Table 2 presents the final distrdoutf
this information.

Class Elements Occurrences

HuMAN 61 elements| 841 occurrences
LOCATION | 43 elements| 225 occurrences
EVENT 36 elements| 216 occurrences

TABLE 2 — Distribution oFFORMAL role descriptors extracted (after filtering andtstrapping) per class of seed nou
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4.1.1 Error Analysis

Basing our clustering experiment on automaticaityaetedrORMAL role descriptors, the accuracy of th
information obtained was a concern. To assesctheary of the information obtained, #@RMAL role
descriptors extracted were revised manually. Extree were considered erroneous if they provide
information not in accordance with the class thatseed nouns pertained to. Table 3 presentssifiitsre
of this analysis. Erroneous extractions were dufauéis of the extraction mechanism (i.e. problen
handling phenomena such as PP attachment), Pofigaggors, lexical ambiguity or erroneou:
statements in text (Katrenko and Adriaans, 20@8)yell as errors due to logical polysemy (see &ecti
6). Note that although errors were identified,ythieere not filtered for the clustering task, i.4. a
information (erroneous or not) was included (onitiyeact of errors in results see Section 6).

Class % of accurate FORMAL role descriptors extracted
HUMAN 87.60%
LOCATION | 63.54%
EVENT 75.96%

TaBLE 3 — Percentage (%) of accurat&RMAL role descriptors obtained per class

4.2 Clustering nouns using"ORMAL role information

The second step of our experiment consisted irtetlng nouns using theORMAL role descriptors

extracted. Given the nature of our data, we salette sIB clustering algorithm (see Slonim et ¢
(2002) for a formal definition) for the manner ianages large data sets. This algorithm calcula
similarity between two vectors using tlensen-Shannodivergence, which measures similarit
between probability distributions, rather than Ehelidean distance, which can bias the results wh
the number of attributes representing the factounequal (Davidson, 2002). This was our case RS
feature spaces depend on the numbeoaiAL role descriptors each seed noun occurred withdn 1
corpus. To empirically demonstrate to which ext@RMAL role descriptors draw together nouns fror
the same class, we designed an experiment usisiBfagorithm in WEKA (Witten and Frank, 2005)
to cluster seed nouns into lexical semantic clabsegd only on theORMAL role information obtained.

5 Results

As mentioned, our goal was to cluster together sdtom the same lexical semantic class using or
FORMAL role descriptors. As the evaluation of unsupedvidstributional clustering algorithms is
usually done by comparing results to manually contd resources (see Rumshsiky et al. (200
among others), we employed our list of pre-clasdieed-words to determine if nouns of the sai
class clustered together. Tables 4 and 5 pressstedhg results. The distribution of nouns acezssh
cluster is given by the percentage of nouns pémnito each lexical class included in it. The tot:
number of seed nouns in each cluster is also given.

Cluster 0| Cluster 1§  Cluster R Class

0.9285 0 0.5714 HuMAN

0.0769 0.3913 0.1429 dCATION

0 0.6087 | 0.2857 B/ENT

14 23 7 TOTAL NUMBER OF SEED NOUNS PER CLUSTER

TABLE 4 — Distribution of nouns in a 3-way clusterindusion

We experimented with a 3-way and a 4-way clustesoigtion. In the first, the number of clusters we
defined by the number of known classes, and resiidt¢he clustering of BMAN nouns (Cluster 0).
LocATioN and E/ENT nouns grouped together in Cluster 1, the remaicinsfer being composed of
nouns from all classes with very few features atde (less than three), i.e. insufficient inforroatfor
classification. Considering this, we employed aaj~solution to see whetheotATION and B/ENT
nouns could be discriminated. This solution distislged between the three classes (Cluster 0, B ar
in Table 5) with a fourth cluster containing thpdsse data” nouns also affecting the 3-way solution
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Cluster 0| Cluster I Clusterp  Cluster lass
0 0 0.5714 0.9286 | HumAN
0 0.9 0.1429 0.0769 QCATION
1 0.1 0.2857 | O BENT
13 10 7 14 ‘BTAL NUMBER OF SEED NOUNS PER CLUSTER

TaBLE 5 — Distribution of nouns in a 4-way clusterindusion

The results show that even after filtering and &toapping the features extracted, sparse data
affected the results. However, nouns whose mo#&nsatommon trait was the lack of sufficien
information were consistently grouped together. sThihe clustering is able to both discriminat
between lexical semantic classes and act asrdiltietect those nouns for which there is noiaafft
information using onlyFORMAL role information extracted from corpus data.

6 Discussion

As shown, the clustering algorithm discriminatetinsen the three classes considered, using only
FORMAL role descriptors extracted from corpora data asifes. Leaving aside the nouns for whic
there was not enough information available (12.7%uw data set), #ENT, HUMAN andLOCATION
nouns were discriminated in the 4-way clusterifigtem (Clusters 0, 1 and 3 in Table 5, respeafivel
In this section we analyze misclassified nounsynierstand the reasons behind their misclassifigati
aiming to evaluate to which extent they corresptandecurring phenomena in language, which c:
possibly be accounted for by additional strategies.

Although their impact is not significant, noisy mdtions (see Section 4.1.1) play a role i
misclassification. In the 4-way clustering resuits,instance, an\EENT nounis included in the cluster
dominated by bCATION nouns due to errors in extraction, specifically ithcorrect identification as a
FORMAL role descriptor of the noun in a PP modifyingtikad noun of an NP, which should be the ol
extracted. This type of noise is mostly generatethb use of low-level NLP tools. Overall, howevel
the existence of some noise in the data did noffisigntly affect the clustering, as demonstratedhe
accuracy of the results presented in the previectos.

Concurrently, although general patterns can betifieh in language use, one of the mail
characteristics of language data is its heterotervehich means that elements of a given lexicgsl

do not necessarily share all their features or sperectly matching linguistic behavior. Moreover
considering lexical items are complex objects wdiffierent semantic dimensions, they may sha
properties with elements of more than one lexilzds: This type of phenomenon is behind some of 1
misclassifications in our data, such as the inotusif factory, whose expected lexical class wa
LocATioN, in the HUMAN nouns clustefThis misclassification seems to be related toabethat a part

of HumAN class members tended to obtei®RMAL role descriptors typical of tMAN nouns, as well as
of ORGANIZATION nouns, making apparent that nouns do not alwagsr dc the sense considered it
our pre-classified list of seed nouns.

7 Lexical classes and logical polysemy

As aforementioned, someUMAN nouns in our list of seed nouns obta&DRMAL role descriptors
typical of ORGANIZATION nouns. This is a type of polysemy that occurredundata only with plural
HUMAN nouns, alluding to the work of Copestake (199%5) @audal (1998), according to whom som
HUMAN nouns show a specific type of polysemy when headifinite plural NPs: the polysemy
between the individual BMAN sense and the collection obMANS sense, which in turn is polysemou
between the BMANGROUP and GRGANIZATION senses. In (3) we see how the definite pluraltindP
doctorscan select for the two senses typically denotectdilective nouns, while having also the
possibility to denote individual entities, whichrist possible with collectives (see (4a)) that cann
occur in contexts that force a distinct individeatity reading.
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The doctorday in the sun(several individual HMAN entities)
The doctorsprotested in front of the hospitdHUMAN GROUP)
The administration negotiated with the doCtqBRGANIZATION) ?3)

# The staff lay in the suiseveral individual HMAN entities)

The_employeesy in the sun(several individual HMAN entities)

The staffprotested in front of the hospitd HUMAN GROUP)

The administration negotiated with the Sté@RGANIZATION) (4)

As both collectives and definite plural NPs dermatiections, Caudal (1998) states that it is dbkreo
account for the polysemy of such items morpho-syctly. This analysis is further strengthened k
the observation that, unlike pairs such esmsployeeand staff for nouns likedoctor there is no
lexicalization for “group of doctorgh English, the same being true for collective relike audience
or committeewhose individual members are not lexicalized. Gisech lexical gaps, morpho-syntax i:
the strategy available. However, though logicatypemous, plural definite NPs likke doctorsdo
not allow for multiple selection as is typical afmplex types: once the individuabMAN sense has
been selected for there is no access to thi@AN GROUP ORGANIZATION sense, as suggested by (¢
(see Buitelaar (1998) and Rumshisky et al. (2007)).

The administration negotiated with the doctambich later lay in the surfseveral individual iHMAN entities) (5)

coop oo

Pustejovsky (1995:155) claims these patterns géiigiic behavior are due to the information in @&
In the case of expressions littee doctorsthe dot element denoting the individualNthN entity and
the complex type BMAN GROUP ORGANIZATION correspond to different qualia roles, as represkint
(6). Hence, the different senses of the expressianot be selected at the same time.

thedoctors

ARGL = x: human
ARGETR =

ARGEZ = y:Inumongroup - organization

)

Going back to the case fafctory, which was clustered withtthAN nouns (see Section 6), we will ser
how the polysemy described above partially appbethis noun. Among the descriptors obtained fi
factory we found, alongside descriptors typical @GdATION nouns, houns such ssctor organization
and profession also extracted for bMAN nouns showing the b1AN GROUP ORGANIZATION logical
polysemy, indicating that nouns likectory are also complex objects, as illustrated belovi7ly

FORMAL=x
COMST =is_part_of(xy)

QUALIA= {

a. The factoryon the corner of Main Street is big and bro{iroCATION)
b. The factorysummoned a protest against the new governmentiGasi{ORGANIZATION)
c. There was a protest organiz€dRGANIZATION) by the factorthat burned dowifLOCATION) last week. (7)

In our datafactoryshared featurdsoth with definite plural NPs headed byiiaN nouns liketeacher
andemployeeand LOCATION nouns such dstchenandresort The linguistic behavior dfctory can,
therefore, be assumed to reflect the logical pahysef ORGANIZATION - LOCATION-HUMAN GROUP dot
types identified by Rumshisky et al. (2007), amfesented as follows:

factory
ARG1 = x: location
ARGSTR =| ARG2 =y: organization
ARG3 = z: human
QUALIA = [FORMAL - x-y-z] ®

For our work, the most relevant aspect of the hiehalisplayed by nouns likiactory s that it makes
apparent how our strategy to extracRMAL role descriptors reflects the ambiguity of noumsé
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clustered, which is often difficult to handle in RLparticularly in classification tasks. The clusig
solutions we obtained (see Section 5) grouped HegdtUMAN nouns, both those that display th
ambiguity discussed in this section and thosedhaiot, the same being true fap¢tATION nouns. And
yet, polysemous nouns display features that clegoint towards the existence of finer-graine
distinctions, i.e. sub-classes within lexical setisatlasses. This way, particularly given that éése-
grained distinctions are mirrored RORMAL role descriptors, we assume it should also belpess
automatically recognize groups of nouns withinghme ambiguity class, i.e. dot objects.

Hence, we expected the clustering algorithm totifyepolysemous lexical items and distinguish thet
from other members of the same class. To valitlienypothesis we performed an additional iteratibn
the clustering using the same features and algodtfer previously identified clusters. The iteratisas
run individually over Clusters 1 and 3q€ATioN and HUIMAN noun clusters, respectively) from our 4-wa
clustering solution, as both clusters containeit#dig polysemous noung/e obtained a 2-way clustering
solution for each class, aiming to discriminatengostrictly containing the @CATION sense and those
reflecting the polysemy described above féactory on one hand, and nouns in th
HUMAN -HUMAN GROUP ORGANIZATION ambiguity class from those strictly denoting hunmadividuals
on the other. Cluster 1 split into 2 clusters digtishing between polysemousdATION nouns and those
that are not, whereas for Cluster 3 the clusterdiggrithm arrived at a near perfect distinctiorlaf object
nouns and non-ambiguousidaN nouns. The noufactory clustered with polysemousudAN nouns,
once more confirming its semantic proximity withune of the KFIMAN -HUMAN GROUP ORGANIZATION
type. Hence, a second iteration of the same diugtalgorithm over the same feature vectors was tabl
identify finer-grained distinctions within lexicalasses, automatically recognizing groups of nautise
same ambiguity class. In doing this, we validateamalysis regarding the role of logical polysemy a
dot object types in the clustering solutions ole@jrand further strengthen our original hypothesis.

Final remarks

In this paper, we proposed using automatically iobtbtFORMAL role descriptors as features to dra
together nouns from the same lexical semantic tieess unsupervised clustering task. As there were
available lexica annotated with such informatior,abtained it automatically and carried out clirster
experiments. In line with the results, our initigpothesis was supported: in an unsupervised chgte
task usingFORMAL role descriptors automatically extracted from ooapdata as features, we showed
was possible to discriminate between elementsffafreint lexical semantic classes. The filtering ar
bootstrapping strategy employed proved to minireffects of sparse data and noise in our task. éwrsh
in the 4-way clustering solution (see Table 5)dhstering exercise, as we designed it, alsoidistated
the nouns for which there was not sufficient infation for a decision to be made on their membetship
a cluster corresponding to one of the classesdemesi. Finally, we explained misclassificationstigh
logical polysemy and showed how the method outlinethis paper allows for making finer-grainec
distinctions within lexical classes, recognizingjdal items in the same ambiguity class.

The results depicted in this paper demonstratevalidity of our hypothesis, while simultaneously
showing that it is possible to incorporate the peiyous behavior of nouns in classification tas
(Hindle, 1990; Bullinaria, 2008) by using an apptoghat minimizes the effects of sparse data a
noise (Bel et al., 2010; 2012). Considering thesensing results, in future work we will address th
possibility of extending our experiments to otheali roles, as well as to other lexical semant
classes. At a more applied level, a further steists in evaluating the feasibility of this apmiodo

automatically extract lexical semantic classesénautomatic acquisition of rich language resources

Acknowledgments

This work was funded by the EU 7FP project 24808ANRCEA and the UPF-IULA PhD grant
program, with the support of DURSI, and by FCT misttoral fellowship SFRH/BPD/79900/2011.

1036



References

Baroni, M., Bernardini, S., Ferraresi, A. and Zastthy E. (2009). The WaCky Wide Web: A
Collection of Very Large Linguistically ProcessedelCrawled Corpora.anguage Resources
and Evaluation43(3), 209-226.

Bel, N., Coll, M. and Resnik, G. (2010). Automaldietection of non-deverbal event nouns for quic
lexicon production. InProceedings of the 23 International Conference on Computationa
Linguistics, (COLING 2010QBeijing, China (pp. 46-52).

Bel, N., Romeo, L. and Padr6, M. (2012). Automégxical Semantic Classification of Nouns. Ir
Proceedings of the Language Resources and Evafudfionference (LREC 20312)stanbul,
Turkey.

Buitelaar, P. (1998). CoreLex: Systematic Polysemy and Underspecifizatic
Doctoral dissertation, Brandeis University.

Bullinaria, J.A. (2008). Semantic CategorizationrndsSimple Word Co-occurrence Statistics. |
M. Baroni, S. Evert and A. Lenci (EdsBroceedings of the ESSLLI Workshop on Distribution
Lexical Semanti¢cd.-8. Hamburg, Germany.

Bybee, J. L. and Hopper, P. (200Brequency and the emergence of language structu
Amsterdam: John Benjamins.

Bybee, J. (2010).anguage, usage and cognitidbambridge: Cambridge University Press.

Caudal, P. (1998). Using complex lexical types tadet the polysemy of collective nouns withir
the Generative Lexicon. IRroceedings of the Ninth International Workshop @etabase and
Expert Systems Applicationdgna, Austria (pp.154-159).

Celli, F., Nissim, M., (2009) Automatic IdentifiGah of semantic relation in Italian complex
nominals,In Proceedings of the"8international Conference on Computational Semanti&/CS-
8), Tilburg, Netherlands.

Cimiano, P. and Wenderoth, J. (2007). Automaticudsition of Ranked Qualia Structures from th
Web. InProceedings of the #5Annual Meeting of the Association of Computatidriabuistics
Prague, Czech Republic (pp.888-895).

Copestake, A. (1995). The representation of gramting nouns in a lexical knowledge base. |
P. Saint Dizier and E. Viegas (EdSEpmputation Lexical Semanti¢gp. 207-230). Cambridge:
Cambridge University Press.

Davidson, I. (2002).Understanding K-means non-hierarchical clusteri@ech. Rep. 02-2).
Albany: State University of New York.

Harris, Z. (1954)Structural LinguisticsChicago: Chicago University Press.

Hearst, M. (1992). Automatic acquisition of hyporsyfrom large text data. IRroceedings of the
14" International Conference on Computational Lingiaist(COLING 92) Nantes, France (pp.
539-545).

Hearst, M. (1998). Automated Discovery of Word-Netations. In C. Fellbaum (Ed.An
Electronic Lexical Database and Some of Its Apfitices (pp. 131-153). Cambridge: The MIT
Press.

1037



Hindle, D. (1990). Noun classification from pred&argument structures. Proceedings of the
28th Annual Meeting of the Association for Compatet Linguistics Pittsburgh. Pennsylvania
(pp. 268-275).

Hoeksema J. (1986). Monotonicity Phenomena in latlanguagelinguistic Analysis, 1625-40.

Katrenko, S. and Adriaans, P. (200Qualia Structures and their Impact on the Concrigtain
Categorization TaskIn Proceedings of the "Bridging the gap between seimaheory and
computational simulations” workshofEESLLI 2008)Hamburg, Germany.

Miller, G.A., Beckwith, R., Fellbaum, C., Gross, @nd Miller, K.J. (1990). Introduction to
WordNet: An online lexical databadaternational Journal of Lexicography(®, 235-44.

Pustejovsky, J. (1991). The Generative Lexicdmmputational Linguistics. 1), 409-41.
Pustejovsky, J. (1995kenerative LexicanCambridge: The MIT Press.

Pustejovsky, J. (2001). Type Construction and tbgid.of Concepts. In P. Bouillon and F. Bus
(Eds.),The Language of Word Meanigp. 91-123). Cambridge: Cambridge University Bres

Pustejovsky, J. and Jezek, E. (2008). Semanticiooein language. beyond distributional analysi:
Italian Journal of Linguistics20(1), 175-208.

Rumshisky, A., Grinberg, V. and Pustejovsky, J.0@0 Detecting Selectional Behavior o
Complex Types in Text. lath International Workshop on Generative Lexid®aris, France.

Slonim, N., Friedman, N. and Tishby, N. (2002). Wervised document classification usin
sequential information maximization. IRroceedings of the 25th International ACM SIGII
Conference on Research and Development in Infoomd®etrieval Tampere, Finland (pp.129-
136).

Valencia, V. (1991)Studies on Natural Logic and Categorial GrammBoctoral dissertation,
University of Amsterdam.

van Benthem, J. (1991)anguage in Action: Categories Lambdas and Dynahagic. North
Holland: Elsevier Science Publishers.

Witten, I.H. and Frank, E. (2009pata Mining: Practical machine learning tools anechniques
(2nd ed.). San Francisco: Morgan Kaufmann.

1038



