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Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on
geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D X-ray reconstruc-
tion angiography (3DRA) and time of flight magnetic resonance angiography (TOF-MRA) images available
in the clinical routine.
Methods: Three aspects of the GAR method have been improved: execution time, robustness to variabil-
ity in imaging protocols and robustness to variability in image spatial resolutions. The improved GAR was
retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle
of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical
centers, each using different imaging equipment. Evaluation included qualitative and quantitative analyses of
the segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections
(33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has
also been compared to an interactive segmentation method: iso-intensity surface extraction (ISE). In addition,
since patients had been imaged with the two modalities, we performed an inter-modality agreement analysis
with respect to both the manual measurements and each of the two segmentation methods.
Results: Both GAR and ISE differed from the gold standard within acceptable limits compared to the
imaging resolution. GAR (ISE, respectively) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27
(0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower
qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatability
of GAR was superior to manual measurements and ISE. The inter-modality agreement was similar between
GAR and the manual measurements.
Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is
suitable for segmenting 3DRA and TOF-MRA images from clinical routine.

Keywords: cerebral angiography; cerebral aneurysms; vessel segmentation; geodesic active regions; quantita-
tive evaluation

I. INTRODUCTION

Cerebral aneurysm is a vascular pathology that tends
to appear near bifurcations of arteries in the Circle of
Willis. Although aneurysm prevalence is relatively low,
estimated to be between 1% - 5%1, aneurysm rupture
causes sub-arachnoid haemorrhage (SAH) having a high
fatality rate (between 40% and 60%)2. Traditionally, for
aneurysm detection, catheter 2D digital subtraction an-
giography (DSA) was considered as gold standard2 but
lately it is being supplemented or replaced by 3D ro-

tational X-ray angiography (3DRA)3. Due to its supe-
rior spatial and contrast resolution, 3DRA is normally
also used for treatment planning (surgical clipping or en-
dovascular intervention). However, for diagnosis and fol-
low ups, preference is given to noninvasive computed to-
mography angiography (CTA) and magnetic resonance
angiography (MRA): contrast enhanced CE-MRA and
time-of-flight TOF-MRA4.

Ruptured aneurysms are almost always treated. How-
ever, in the case of unruptured aneurysms, the indication
for preventive treatment is not straightforward and the
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risk of treatment has to be carefully balanced against
the risk of rupture. Computational modeling is increas-
ingly used to characterize the aneurysms in order to find
suitable predictors of risk of rupture5. Most notably,
aneurysm shape characterization6,7 and analysis of its
hemodynamic features using computational fluid dynam-
ics (CFD)8,9 are becoming increasingly important. These
results are strongly determined by the modeled geome-
try of the aneurysms and surrounding vessels. Therefore,
vascular segmentation from radiographic images is a key
methodology in the computational analysis of the vascu-
lature.

The segmentation of cerebral vasculature with
aneurysms is a difficult task often due to their complex
geometry as well as limited image contrast and spatial
resolution, which are critical factors compared with the
size of these vascular segments. Throughout their man-
agement cycle, patients undergo a variety of imaging ex-
aminations with various modalities. In addition, patients
with ruptured aneurysms have 3DRA and CTA scans
while patients with unruptured ones are preferably fol-
lowed only with MRA. Thus, it is desirable to apply a
cerebrovascular segmentation method able to cope co-
herently with different imaging modalities so that com-
putational results are comparable. Furthermore, it is im-
portant that the applied segmentation method is com-
pletely automatic. This has a two-fold advantage. First,
the segmentation method should be objective (operator-
independent) and highly repeatable to minimize variabil-
ity propagation to other steps of the analysis pipeline.
Second, requiring manual interaction from the operator
increases the processing time and needs the allocation of
human resources.

To the best of our knowledge no effective solution is
currently available for the automatic and multimodal seg-
mentation of cerebral vasculature with aneurysms. Re-
cently, Manniesing et al.10 reported a successful feasibil-
ity study for the automatic segmentation of CTA images
but their evaluation did not cover aneurysms, thus it is
not clear how their results would extrapolate to diseased
parts of the vasculature. Hernandez et al.11 proposed a
method based on a geometric deformable model called
geodesic active regions (GAR) and presented promising
results for automatic segmentation of cerebral aneurysm
from different modalities (3DRA and CTA). However,
limiting factors for its application in clinical routine was
its lack of robustness to the variation in imaging proto-
cols and its elevated computational costs.

The purpose of this study was to introduce improve-
ments into the GAR method and to evaluate its po-
tential and limitations in segmenting cerebral vascula-
ture with aneurysms from 3DRA and TOF-MRA im-
ages available in the clinical routine, including different
clinical centers and imaging equipment. The evaluation
was performed retrospectively on images of patients hav-
ing cerebral aneurysms. The segmentation results were
compared to the gold standard obtained from manual
measurements performed by interventional neuroradiol-

ogists. To analyze the segmentation consistency across
the two imaging modalities, patients having both 3DRA
and TOF-MRA examinations were chosen.

II. MATERIALS AND METHODS

A. Patient Selection

Ten patients (3 male, 7 female; age range: 35-70; mean
age: 57 years) with 16 cerebral aneurysms scanned with
3DRA and TOF-MRA within a short period (1 week)
were retrospectively selected from two different clinical
centers (7 from Academic Medical Center (AMC), The
Netherlands and 3 from Hospital Clinic i Provincial de
Barcelona (HCPB), Spain). Each center used different
imaging equipment. Anonymized imaging data sets were
used and the institutional review board approved the
study, which had no influence on patient management.
From the database of suitable candidates, patients were
selected on the basis of the location of aneurysm to ensure
that location variability followed their natural probabil-
ities of occurrence as reported in1. For patients having
multiple aneurysms only those present in both 3DRA and
MRA images were eligible. Eventually, one aneurysm per
patient was singled out. The different locations were: in-
ternal carotid artery (3), posterior communicating artery
(2), anterior communicating artery (1), middle cerebral
artery (3) and basilar tip (1). Aneurysms varied in size:
small aneurysm of 3-5 mm (5), medium aneurysm of 8-9
mm (4) and a large aneurysm of 19 mm (1).

B. Scanning Protocols

3DRA images from AMC (HCPB, respectively) were
acquired with a single-plane angiographic unit: Integris
Allura Neuro; Philips Healthcare, Best, The Netherlands
(AXIOM Artis; Siemens Medical Solutions, Erlangen,
Germany). Non-ionic contrast agent: 320 mgI/mL iodix-
anol, Visipaque (240 mgI/mL iohexol, Omnipaque), GE
Healthcare, Cork, Ireland, was injected through a 6F
catheter positioned in an internal carotid artery or verte-
bral artery. 100 images (120 images) were acquired dur-
ing a 240o (180o) rotational run in 8 seconds with 15 to
21 ml contrast agent at 3 ml/s. On a dedicated worksta-
tion, 3D images were reconstructed with a 2563 matrix
with a reconstructed voxel size of 0.19× 0.19× 0.19 mm
(0.39× 0.39× 0.39 mm).
MR imaging examinations in AMC (HCPB, respec-

tively) were performed on a 3.0-Tesla system: Intera
R10; Philips Healthcare, Best, The Netherlands (Trio-
Tim; Siemens Medical Solutions, Erlangen, Germany).
The protocol included 3D TOF-MRA with multiple over-
lapping thin slab acquisition MOTSA (with single slab
acquisition). The parameters were as follows: TR/TE,
21/4 ms (23/4 ms); flip angle, 20o (15o); 512×326 (640×
288) acquisition matrix, reconstructed to 1024 × 1024
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(640 × 480); FOV, 200 × 170 mm (200 × 150 mm), 85%
(75%) rectangular FOV; 1.0 mm thick sections interpo-
lated to 0.5 mm (0.5 mm thick sections); 220 sections (160
sections) acquired, resulting in a coverage area of 110 mm
(80 mm). The measured voxel size was 0.39 × 0.61 × 1
mm (0.31× 0.52× 0.5 mm), and the reconstructed voxel
size was 0.2 × 0.2 × 0.5 mm (0.31 × 0.31 × 0.5 mm).
The scanning time was reduced with sensitivity encod-
ing SENSE parallel imaging (generalized autocalibrating
partially parallel acquisition GRAPPA), with a reduction
factor of 1.5 (2), which resulted in an acquisition time of
7 min (4.5 min).

C. Segmentation Method

The workflow of the automatic vascular segmentation
method GAR is shown in Fig. 1. The core of the method-
ology was originally presented in11, and in12 the image
intensity standardization (IIS) filter was introduced. In
this paper, we improve some of the components of the
workflow, but we first summarize the methodology that
has remained unchanged.
The method is based on the geometric deformable

model within the level set framework13. The internal
force of the deformable model is defined as the local cur-
vature of the evolving surface, while the external one
combines region-based descriptors with gradient ones to
drive the evolution of the model towards the vascular
boundaries. The equation driving the evolution of the
surface is expressed as:

∂

∂t
Φ+ζ(kout−kin) | ∇Φ | −η(εgKm | ∇Φ | +∇g·∇Φ) = 0

(1)
where Φ is an implicit function whose zero level set at any
time t of the evolution represents the vascular surface.
The gradient descriptor g is inversely proportional to the
gradient magnitude of the image and helps stopping the
evolution at the vessel boundary. The descriptor Km is
the minimal curvature of the level set surface at each
point, which favors the smoothness of the surface. The
region descriptors kin and kout are defined by

kin(x) = − log(Pin(x)); kout(x) = − log(Pout(x)) (2)

where Pin and Pout are the probabilities that the voxel
x belongs to inner and outer regions with respect to the
vascular lumen. The constant parameters ε, ζ and η
control the influence of the curvature, region-based and
gradient-based descriptors, respectively, and were fixed
as published in11.
In general, the GAR workflow is divided into two main

phases:

Off-line training phase: Performed only once for each
imaging modality. Images forming the training set
are passed through IIS filter and interactively la-
beled into three regions: vessel, background and

undecided region, which normally corresponds to
partial volume voxels. Then, the feature vectors
are calculated at training points randomly selected
from vessel and background regions. Finally, the
fuzzy classifier is trained in a supervised fashion
on the set of feature vectors. The output is a set
of parameters of the classifier used to compute the
probabilities Pin and Pout during the segmentation
phase.

Segmentation phase: The image being segmented is
first passed through the IIS filter. At each im-
age voxel, the feature vector is calculated and the
probability of belonging to a particular region is
estimated with the previously trained classifier. In
parallel, the gradient magnitude is computed. Fol-
lowing Eq. 1, the level sets associated with Φ evolve
toward a local minimum of the energy functional
trying to maximize the probability for the vessel
region inside the zero level set and the probability
for the background region outside, taking also into
account the curvature and the gradient information
at the boundaries. The zero level set at the steady
solution corresponds to the segmented vessel lumen
surface. The resulting surface is extracted as a 3D
triangular mesh with sub-voxel precision.

Such methodology is specially suitable for vessel seg-
mentation from different modalities, since for each one
the region descriptors are learned from an appropriate
training set of images.
In this paper, we have introduced the following three

improvements to the components of the workflow: The
classifier has been replaced, the computation of the fea-
ture vector has been modified and the IIS technique has
been adapted to handle large deformations.
a. Multiple valued neuron classifier. The originally

proposed probability estimation was performed using k
nearest neighbors (k-NN) algorithm on the training set.
However k-NN is not convenient for fuzzy classification
and is highly computationally demanding since during
the classification it repeatedly searches for the near-
est neighbors within the stored training feature vectors.
Thus, we replaced it with the multiple valued neuron
(MVN)14. This improves the classification speed by ap-
proximately 8 times since most of the computational cost
is in the training phase, which is performed only once.
Furthermore, larger sets of points (1M as opposed to 20k
used with k-NN) were used for training as their size does
not influence the classification speed of MVN. Using more
points allowed building a training set with larger number
of images thus achieving better classifier generalization.
b. Voxel-based scale space. Features forming the fea-

ture vector are computed on multiple scales. To handle
a large variety of possible image resolutions, the range of
scales used for feature calculations is now based on im-
age voxel spacing instead of being predefined and fixed.
More details on how features are calculated are given in
Appendix.
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FIG. 1. Workflow of the automatic vascular segmentation method GAR. New or improved components are highlighted in gray.

c. Image intensity standardization (IIS). To get
good estimates of the probability map, the images com-
posing the training set should describe well the image
to be segmented. In MRA and 3DRA, the intensities
do not have a direct physical interpretation and the in-
tensity range for the same tissues can largely vary be-
tween images. The IIS15 ensures that the intensity ranges
corresponding to the same tissues are similar by estab-
lishing a correspondence between histograms taken from
generic images and a histogram taken as a reference. The
image histogram is aligned to the reference using a 1D
non-linear registration technique. The generated inten-
sity transformation is applied to the image volume, stan-
dardizing the intensity ranges. This enables the use of
the same training set for any image of the same modal-
ity12. In this study, we improved the registration tech-
nique to make it robust to large deformations and ap-
plicable to both 3DRA and MRA images. Normalized
cross-correlation is used as a similarity metric and the
deformation is parameterized by cubic B-spline. Limited
memory Broyden Fletcher Goldfarb Shannon with sim-
ple bounds (LBFGSB) algorithm16 is used as optimizer.
The registration is first initialized with a transformation
composed of two control points aligning the histogram
peaks and the largest intensity values. The registration
is then performed following a multiscale approach: in
three chained iterations, progressively incrementing the
number of control points (4, 5 and 6), resetting their
position equidistantly at the beginning of each iteration.
The range of movement is limited to half the inter-control
points distance17. This results in a diffeomorphic trans-
formation since it is smooth and avoids folding. Although
there is a constraint on the overall deformation, allowing
further stretching or compression was not found neces-
sary and it prevents instabilities. The IIS was able to
align the histograms in both the 3DRA and MRA im-
ages of the patients (Fig. 2).

D. Segmentation Evaluation Method

One aneurysm and three surrounding vessels of clini-
cal interest, both proximal and distal from the aneurysm

0 1 2 3 4 5 6 7

x 10
4

0

2

4

6

8

10

12

14

Image intensity

 

 

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

Image intensity

 

 

(a) 3DRA, before IIS (b) MRA, before IIS
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(c) 3DRA, after IIS (d) MRA, after IIS

FIG. 2. Image histograms of the 10 patients before (a, b) and
after (c, d) image intensity standardization of 3DRA (a, c)
and MRA (b, d) images. The logarithm of histogram values
is displayed.

(blood flow inlets and outlets) were selected per patient.
The selected vessels and aneurysm had to be visible in
both 3DRA and MRA scans of the patient. On every
image, for each selected vessel 10 cutting planes were au-
tomatically positioned 1 mm apart and orthogonal to the
vessel centerline. Three additional cutting planes were
manually positioned on the aneurysm, one cutting the
neck and the other two passing through the center of the
neck and the maximum aneurysm depth. This yields 33
cutting planes per image (660 in total). Once defined,
the cutting planes were kept fixed throughout the eval-
uation study. The positions of the cutting planes were
chosen to representatively sample the geometry of inter-
est around aneurysm. Having a good segmentation of
that region is important for subsequent computational
modeling approaches.

The cutting planes applied to 3D intensity image pro-
duce 2D images with the vessel cross-section, where the



5

manual measurements were performed. The same cut-
ting planes applied to segmented surface mesh produce
2D contours, on which the same measurements were au-
tomatically extracted. Since the cutting planes were
fixed, all the measurements were taken on the same cross-
sections. Two measurements per cross-section were per-
formed. Their definition together with the positioning of
the cutting planes and examples of measurements of the
cross-sections are shown in Fig. 3.

The shape of the vessel and aneurysm neck cross-
section was assumed to be round but not necessarily cir-
cular. We proposed to describe the shape by the two or-
thogonal widths, which capture its major and minor axes
and reduce the ambiguity when performing the manual
measurements. Measurements of the dome are relative
to the neck plane and its center. For each aneurysm neck
cross-section, its center was computed. Thus, all the pa-
rameters of the neck were fixed and did not introduce
variability into the measurements of the dome.

To build the gold standard, manual measurements per-
formed by 5 interventional neuroradiologists from two
clinical centers in 2 sessions were averaged. The mea-
suring guidelines were easily followed by the clinicians
performing the manual measurements. We also com-
pared the GAR to another segmentation method: inter-
active contouring based on iso-intensity surface extrac-
tion (ISE). The iso-intensity surface is the interface be-
tween the regions of the image I: I ≥ c (the inside)
and I < c (the outside), where c is a constant inten-
sity value. The surface is obtained by marching cubes
method18 where the points at which the iso-intensity sur-
face intersects the edges of the voxel cube are obtained
by linear interpolation, producing a triangular mesh with
sub-voxel accuracy. Four expert users, with more than
3 years of angiographic experience, performed ISE seg-
mentation in 2 independent sessions.

In order to evaluate the inter-modality agreement, a
correspondence between cutting planes in both imag-
ing modalities was established for each patient. Cut-
ting planes on vessels were manually aligned, starting
the cutting sequence at the same anatomical position
in both imaging modalities. To establish corresponding
aneurysm cutting planes, the 3DRA and MRA segmented
surface models were first rigidly registered. Then the cut-
ting planes that were manually positioned in 3DRA were
transferred to their corresponding locations in MRA.

The rigid registration was performed in a supervised
fashion. First, corresponding pairs of points on the two
meshes were identified and an initial transformation was
applied to approximately align them. Next, the registra-
tion was refined using the Iterative Closest Point algo-
rithm19. This was repeated until the two meshes were
adequately registered after visual inspection (Fig. 4). To
evaluate the repeatability of such procedure, the registra-
tion was performed three times for each pair of meshes.

1. Qualitative analysis

The segmentation results were qualitatively evaluated
by visual inspection of the cross-sections obtained from
the segmentation results. The cutting planes where
the segmented contours were missing, unrealistically de-
formed or merged with neighboring vessels, were classi-
fied as erroneous. Their occurrence rate and the effects
causing them were analyzed. However, they were ex-
cluded from the subsequent quantitative analysis, since
they would otherwise introduce large errors, which are
not representative of the segmentation performance in
denoting the actual border of the vessel lumen.

2. Quantitative analysis

For the quantitative analysis, three main factors, as
proposed by20, were considered: repeatability, accuracy
and efficiency. In addition, we also evaluated the global
correctness by region overlap with manual segmentations
and the inter-modality reproducibility.

Repeatability: The main variability of GAR results is
introduced by the differences between the images
used as a training set for the classifier. This vari-
ability was estimated from results obtained with
different training sets. In addition, we evaluated
the influence that the number of images in the
training set has on the variability. The variabil-
ity of manual measurements and ISE results is in-
troduced by the observer, thus we estimated their
inter- and intra-observer variability.

Accuracy: For GAR and ISE methods it was estimated
in two complementary ways. First, as an average
absolute difference from the gold standard. Sec-
ond, as limits of agreement with the gold stan-
dard, which represent the bias and the 95% likely
range for the differences. From this, a variability in-
dex was introduced where deviations from the gold
standard are put into perspective by comparing
them to the variability of manual measurements.

Region overlap: To complement the accuracy mea-
surements, the segmentation results were converted
from mesh to voxel representations and compared
to manual segmentations performed on the geom-
etry of interest by two experienced observers. Al-
though less sensitive to small, sub-voxel variations,
this more global metric can detect serious mis-
segmentations of the vessel region. Two region
overlap measures, as used in the recent works21,22,
were calculated: the Dice23 and the conformity24

scores.

Efficiency: Estimated as average time spent in segment-
ing an image. For automatic GAR method it was
the computer execution time while for interactive
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Vessel

Aneurysm

(a) (b) (c) (d)

FIG. 3. (a) Positioning of cutting planes. (b) For measuring vessels and aneurysm neck the two measuring segments need to
be orthogonal to each other (1st width is chosen first) and located where the width is maximum. Dome depth is the distance
from the neck center to the farthest point on the dome, while dome width is the length of the longest chord of the dome parallel
to the neck plane. (c) Example of manual measurements. (d) Example of automatic measurements.

ISE, was the time spent by the observer deciding
on the optimal iso-intensity value.

Inter-modality reproducibility: Estimated for man-
ual measurements and the two segmentation meth-
ods as limits of agreement between the correspond-
ing values on the results from the two modalities.

As the evaluation is based on limits of agreement, vari-
ability index and region overlap scores, we summarize
their calculation details.

a. Limits of Agreement (LoA). In order to analyze
the LoA between each segmentation method and the gold
standard in a repeated study (multiple sessions), a two-
way analysis of variance (ANOVA) with a statistical lin-
ear mixed model was used25. To obtain the standard
deviation of the method with respect to the ideal gold
standard (having zero variability), the variability of the
gold standard σgs was removed from the standard devia-

(a) (b)

FIG. 4. Examples of the registered surfaces from the two
modalities 3DRA (in white) and MRA (in blue).

tion of LoA (σloa).

σ
l̂oa

=
√
σ2
loa − σ2

gs. (3)

b. Variability index. To compare the deviation of
segmentation results from the gold standard, with the
variability of manual measurements, we defined the vari-
ability index (similar to the Williams index26) as the ratio
of the method’s standard deviation and the inter-observer
variability of the manual measurements:

I =
σ
l̂oa

σinter-clinician
(4)

If the value of this index I < 1, the segmentation method
deviates from the gold standard less than the manual
measurements vary between themselves.

c. Region overlap scores. The Dice and the confor-
mity scores are defined as follows:

Dice = 2
|Smethod ∩ Sgs|
|Smethod|+ |Sgs| × 100%;

Conformity =

(
1− |SFP|+ |SFN|

|STP|
)
× 100%, (5)

where Smethod and Sgs are the sets of vessel region voxels
labeled by the segmentation method and the gold stan-
dard, respectively. SFP, SFN and STP are the sets of
false positives, false negatives and true positive voxels,
respectively, with respect to the gold standard. |X| de-
notes the cardinality of the set X. Both scores reach
the value of 100% in the case of perfect overlap and are
mutually related by

Conformity = 3− 2

Dice
. (6)
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III. RESULTS

Results are grouped according to the region of inter-
est (aneurysms or vessels) and according to the imag-
ing modality (3DRA or MRA). The two widths used as
descriptors of vessel and aneurysm cross-sections were
evaluated together. For reporting statistical significance,
two-tailed 95% confidence intervals were considered.

A. Qualitative Analysis

The following effects were causing erroneous segmen-
tations in certain cutting planes:

Touching vessel effect: Two vessels are merged and
the 1st width is the sum of both vessel diameters.
It occurred mostly in 3DRA images where small
vessels can appear very close or touching. In TOF-
MRA images, due to the low spatial resolution and
the low blood flow in small vessels, these vessels are
usually not visible in the images.

Missing vessel effect: The cutting plane contains no
segmentation contour. It happened mostly in TOF-
MRA images due to the low signal in a vessel.

Wide aneurysm neck: The aneurysm dome is merged
with the surrounding vasculature. Hence, the neck
is largely oversegmented.

Indented aneurysm: Aneurysm neck and dome be-
come severely undersegmented (shape is deformed)
due to the low signal in the image. It happened
only in TOF-MRA images, where the low signal
is caused by flow induced artifacts (e.g. turbulent
flow).

Examples of the above-mentioned effects are shown in
Fig. 5. The percentage of occurrence for each specific
modality and segmentation method is shown in Table I.
The occurrence rate of touching vessels in GAR was

half of the value in ISE for 3DRA images (close to being
statistically significant, p = 0.06, binomial-test) and sig-
nificantly smaller than in ISE for MRA images (p = 0.01,
binomial-test). The missing vessel effect was rare for
both segmentation methods. In contrast, the problems
at the aneurysm were equally frequent for both GAR and
ISE (p > 0.8, binomial-test). The aneurysm neck is es-
pecially susceptible to qualitative errors since in many
cases it is hard to approximate a neck using a 2D plane.

B. Quantitative Analysis

1. Repeatability

The variability of the GAR segmentation results is
mainly due to the training set and depends on the num-
ber of images used to produce it. This variability is

(a) (b)

(c) (d)

FIG. 5. Examples of qualitative errors: Touching vessel effect
(a), missing vessel effect (b), wide aneurysm neck (c) and
indented aneurysm (d).

expected to decrease as the size of the training set in-
creases, because the variability introduced by manually
segmenting each image is canceled out when averaging
more images. To evaluate the repeatability of GAR, the
segmentation of the 10 3DRA images was repeated with
16 different training sets: 4 sizes were selected to build
the training set (number of images: 3, 6, 8 and 10) and,
for each size, 4 independent (non-overlapping) sets of im-
ages were used. For training sets having 10 images, the
inter-training set variability was less than 0.05 mm for
the vessel and aneurysm regions (Fig. 6).
The operator-induced variability values for manual

measurements and ISE segmentation method are pre-
sented in Table II. The variability of the GAR method
was clearly lower than even the intra-observer variabil-
ity of the ISE and the manual measurements. The rest
of the presented GAR results on 3DRA correspond to
those made with 4 different training sets composed from
10 images each.

2. Accuracy

Limits of agreement of GAR and ISE with the gold
standard are presented in Table III and displayed in
Fig. 7(a) where they are compared to the inter-observer
variability of manual measurements. The error is shown
in Fig. 7(b) and is expressed as the average difference (in
absolute values) between the segmentation methods and
the gold standard. The variability index (Eq. 4) is shown
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TABLE I. Percentage of excluded cutting planes due to the occurrence of qualitative segmentation errors. Per modality there
were: 300 planes positioned on vessels (10 patients, 30 planes each), and 30 planes positioned on aneurysms (10 patients, 1
plane positioned on the neck and 2 on the dome).

Effect
Occurrence rate [%]

GAR ISE
3DRA MRA 3DRA MRA

Touching vessel effect 8.7 (26/300) 0.3 (1/300) 16 (48/300) 5.7 (17/300)
Missing vessel effect 0 (0/300) 2 (6/300) 0.3 (1/300) 2 (6/300)
Wide aneurysm neck 40 (4/10) 20 (2/10) 30 (3/10) 30 (3/10)
Indented aneurysm 0 (0/30) 17 (5/30) 0 (0/30) 10 (3/30)

TABLE II. Standard deviations (SD) of variability (two-way ANOVA) with their 95% confidence interval (CI), for manual
measurements and ISE segmentation method.

Method
SD ± 95% CI [mm]

Vessel Aneurysm
3DRA MRA 3DRA MRA

Inter-observer
Manual 0.27± 0.02 0.30± 0.02 0.30± 0.05 0.29± 0.05
ISE 0.18± 0.01 0.22± 0.01 0.15± 0.03 0.24± 0.05

Intra-observer
Manual 0.17± 0.01 0.18± 0.01 0.26± 0.05 0.20± 0.04
ISE 0.14± 0.01 0.16± 0.01 0.11± 0.02 0.20± 0.04
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FIG. 6. Inter-training set variability (from 4 different training
sets) of GAR in 3DRA in relation to the number of images
(3, 6, 8 and 10) used to build the training sets. Error bars
present the 95% confidence intervals.

in Fig. 7(c).

With the exception of the vessel region in MRA, the
following observations are valid for GAR. The 95% lim-
its of agreement were within those of manual measure-
ments. The bias, although statistically significant, was
small: less than one third of the image spatial resolu-
tion (∼ 0.3 mm for 3DRA and ∼ 0.5 mm for MRA) and
two to three times smaller than the standard deviation.
The average error, when equally weighted between vessel
and aneurysm region, was 0.2 mm for 3DRA and 0.27
mm for TOF-MRA, which was similar to that of man-
ual measurements. The variability index was below 1.
Compared to ISE, GAR performed similarly in the ves-

sel region and clearly better in the aneurysm region. In
vessel region for MRA, both ISE and GAR performed
worse than the manual measurements.

3. Region overlap

Manual voxel labeling has been performed by two op-
erators on 3DRA and MRA images of the first 4 patients
in a region of interest positioned around aneurysm, hav-
ing an average size of 340000 (70× 70× 70) voxels. The
region overlap scores between each of the two segmenta-
tion methods and the manual segmentations are shown
in Fig. 8, and are compared to the corresponding score
between both manual segmentations as a measure of the
inter-observer variability. The scores were averaged from
all pairs of images and gold standard manual segmenta-
tions.
The overlap scores with the gold standard, for both

segmentation methods were larger or comparable to the
inter-observer ones. Thus, no notable mis-segmentation
occurred for neither of the methods. Overlap scores for
GAR and ISE were similar which suggests that most of
the differences between the results of the two methods
are at the sub-voxel level.

4. Efficiency

The GAR execution time depends on the size of the
evolving surface i.e. the amount of vasculature being
segmented. On average, for a cuboidal region of interest
with a size of 2563 voxels, the execution time was 17 ±
4 min (standard deviation) on a standard PC with an
Intel quad-core 2.4GHz processor and 4GB of memory.
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TABLE III. Agreement between the segmentation methods and the gold standard, expressed as bias with its 95% confidence
interval (CI) and the population’s standard deviation (SD) (computed with Eq. 3).

Method
LoA with gold standard: bias ± 95% CI (SD) [mm]

Vessel Aneurysm
3DRA MRA 3DRA MRA

GAR −0.09± 0.03 (0.27) −0.12± 0.04 (0.37) 0.09± 0.11 (0.19) −0.14± 0.10 (0.22)
ISE 0.01± 0.03 (0.29) 0.15± 0.04 (0.39) 0.20± 0.12 (0.28) 0.11± 0.12 (0.31)
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FIG. 7. (a) Limits of agreement between the segmenta-
tion method and the gold standard. Bias is denoted with a
marker while the bars correspond to 95% limits of agreement
(±2σl̂oa). Agreements are compared with inter-observer lim-
its of agreement for the manual measurements. (b) Average
absolute difference from the gold standard with 95% confi-
dence intervals. (c) Variability index with corresponding 95%
confidence intervals. In (b) and (c), statistically significant
difference (p < 0.05, t-test) is denoted with an asterisk (*).
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FIG. 8. Dice and conformity region overlap scores for the
segmentation methods and the gold standard, with their 95%
confidence intervals.

For ISE, on average ∼ 5 min were required to decide
on the optimal iso-intensity (the computational time for
extraction of the iso-intensity surface was negligible).

5. Inter-modality reproducibility

Inter-modality agreement of manual measurements,
and GAR and ISE methods are shown in Table IV. In
the vessel region, GAR performed similar to manual mea-
surements and both had a statistically significant bias.
In the aneurysm region, the segmentation methods had
large limits of agreement but were within those of the
manual measurements. The variability introduced by the
mesh registration procedure was 0.12 ± 0.05 mm (stan-
dard deviation with its 95% confidence interval), which
was small compared to the standard deviations of the
inter-modality limits of agreement.

TABLE IV. Inter-modality limits of agreement, expressed as
bias (MRA-3DRA) with its 95% confidence interval (CI) and
the population’s standard deviation (SD).

Method
Inter-modality LoA: bias ± 95% CI (SD) [mm]

Vessel Aneurysm
Manual −0.21± 0.04 (0.48) 0.03± 0.22 (0.84)
GAR −0.24± 0.04 (0.49) −0.37± 0.24 (0.69)
ISE −0.10± 0.05 (0.58) −0.17± 0.25 (0.75)
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IV. DISCUSSION

We evaluated the GAR method’s potential for seg-
menting cerebral vessels and aneurysms in 3DRA and
MRA images acquired at different medical centers and
with different imaging equipment. Three main improve-
ments to the GAR method were introduced to make it
suitable for segmenting images from clinical routine. Us-
ing an MVN classifier speeded up the region-based prob-
ability map computation. Using a voxel based feature
scale selection enabled handling a larger variety of im-
age spatial resolutions. The IIS component enabled the
training set to be built irrespective of the clinical center
and the imaging equipment.
As revealed by the qualitative analysis, the success

of the segmentation depended on the local complexity
of the vascular geometry, especially in the aneurysm re-
gion. Vessels which are very close to each other or to the
aneurysm were sometimes merged in the extracted geo-
metrical mesh. This partly happened because of insuffi-
cient imaging resolution, which means that more difficult
geometrical configurations would require higher resolu-
tion and contrast to noise ratio for ensuring successful
segmentation. In TOF-MRA images, segmentation was
further hampered by large signal variations due to slow
or turbulent flow.
In general, when qualitative segmentation errors oc-

cur, further interactive post-processing is required to re-
move the artifacts from the mesh. Favorably, the ar-
tifacts are of local nature and are easily detected visu-
ally. The methods used for their removal depend on the
application. For the use in computational blood flow
simulations, a sequence of local operations like mesh el-
ement removal and hole filling followed by an additional
volume-preserving smoothing are typically applied to im-
prove the mesh quality and to correct for geometrical and
topological irregularities. There are various open-source
tools already available, like ReMESH27, MeshLab28 or
GIMIAS29, which are able to efficiently repair triangular
meshes. Repairing the mesh is time consuming and de-
pends on the extent of the artifacts and the operator’s
experience. As a reference, a single touching vessel arti-
fact can be removed in less than 5 min. However, limiting
the occurrence of such artifacts is still a strong incentive
for the research community to continue designing new
segmentation algorithms.
The GAR method has been compared to the ISE

method. The aim was to do the comparison with a
method that is already clinically available. ISE is com-
monly used as a segmentation method on the commercial
workstations of the imaging equipment, since the high-
est intensities in 3DRA and MRA images correspond to
vessels30.
The automatic GAR and interactive ISE methods dif-

fered from the gold standard within acceptable limits
compared to the imaging resolution and had similar re-
gion overlap scores. GAR had an average accuracy of 0.2
mm for 3DRA and 0.27 mm for TOF-MRA, and had a

repeatability of 0.05 mm. Compared to ISE, GAR had a
lower qualitative error in the vessel region and a lower
quantitative error in the aneurysm region. Moreover,
GAR is automatic and its repeatability was superior to
both ISE and manual measurements. In contrast, the
inter-observer variability of ISE could even result in dif-
ferences in the extracted vascular topology, which would
also mean adding a large variability to any subsequent
vascular analysis.

Comparison of our evaluation setup and results to
that of the current state of the art methods is given in
Table V. All the methods use some variant of the de-
formable model and produce results with sub-voxel pre-
cision. Most require interactive initialization in the form
of a seeded region growing. Manniesing et al.10 study is
the most similar to ours. They also presented a fully au-
tomatic method capable of extracting the whole vascular
tree, as opposed to other groups focusing on the inter-
active segmentation of individual vascular segments, and
used manual measurements of the cross-sections as gold
standard. However, they describe the shape with only
one diameter, no observer variability was reported and
no aneurysms were included in the evaluation. Chang et
al.21 and Firouzian et al.22 used manual voxel-based seg-
mentations as gold standard, loosing sub-voxel precision
in the process. Firouzian et al. limited the evaluation
to just the aneurysms but unlike Chang et al. they did
report the inter-observer variability. Castro el al31. and
Antiga et al.8 used digital and physical phantoms, respec-
tively, which enabled them to estimate surface to surface
distance to the gold standard. Castro et al. and Chang et
al. combined the performance on vessels and aneurysms,
which made the results biased towards the ones on ves-
sels since aneurysms composed only a small part of the
resulting volume or mesh. Finally, only Chang et al.
compared their results with another method: intensity
thresholding, a voxel-wise variant of ISE.

Ideally, the results of segmenting the same vasculature
from two different modalities should coincide, although
some differences might appear due to different image for-
mation mechanisms. Of the two results from the two
modalities, we assume that the one from 3DRA is closer
to ground truth due to 3DRA’s higher imaging resolution
and contrast to noise ratio, which is also in agreement
with the inter-observer variability being larger in MRA
than in 3DRA. Thus, observing the inter-modality agree-
ment in the vessel region, the GAR and the manual mea-
surements tended to undersegment TOF-MRA on aver-
age. Probably, the actual vessel lumen was underesti-
mated because of the very slow flow near the vessel wall
and the saturation effects so the vessel seemed narrower
in the cross-section image. In the aneurysm region we no-
ticed differences in the shape of reconstructed aneurysms
between 3DRA and MRA, especially for medium and
large sized ones. This may be attributed to the differ-
ence in the contrast distribution, visible in 3DRA images,
and the blood flow, visible in TOF-MRA images. Thus,
although it was recently shown that 3T TOF-MRA and
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CE-MRA were equivalent in evaluating the occlusion sta-
tus of intracranial aneurysms32, CE-MRA might produce
better images for the purpose of accurate aneurysm seg-
mentation. However, understanding the cause of these
differences between the two modalities goes beyond the
scope of this study.

This evaluation study had some limitations. The most
important one is that the performance was evaluated
only on certain cutting plane positions, not on the en-
tire extracted surface. In addition, cross-sections were
only described with two measured widths. This decision
was made to have less but meaningful measurements in
a larger amount of images and processed by more clin-
icians. Otherwise the amount of required manual effort
would have reduced the number of analyzed patients.
However, we did perform a smaller study using region
overlap scores and no notable mis-segmentations were
observed. Lastly, the imprecision in establishing inter-
modality correspondences between the cutting planes
might have influenced the inter-modality limits of agree-
ment.

Taking all the evaluation results into account, the GAR
performed better than ISE in accuracy and repeatability,
also achieving a good agreement with the gold standard
in 3DRA and in TOF-MRA imaging modalities. Thus,
we conclude that GAR is able to segment 3DRA and
TOF-MRA images coming from clinical routine and is
better suited than ISE for extracting vascular geometry
for use in a computational modeling process.

Automatic and repeatable image segmentation tech-
nique like GAR is essential to achieve reproducibility
and consistency of the subsequent analysis steps in com-
putational modeling pipelines. Such pipelines rely on
the availability of accurate patient-specific vascular mod-
els and are able to streamline the creation of personal-
ized anatomical, structural and haemodynamic models5.
These are then used to derive robust and reliable quan-
titative descriptors providing an integrated decision sup-
port system to assess the risk of aneurysm rupture in
patients and to optimize their treatments.

Appendix: Multiscale feature vector

The region-based information of GAR is represented in
the form of a probability map associated with a particular
region R. For the application of vessel segmentation in
3DRA and MRA we define two regions: vessel region and
background region. The estimated probability value at
each voxel x of the probability map represents the condi-
tional probability, P (x ∈ R | f(x)), that voxel x belongs
to region R observing the feature vector f(x). The fea-
ture vector f(x) is built from differential invariants33 up
to the second order and in the multiscale framework34.
Differential invariants are invariant to rigid transforma-
tions but not to scale, thus they are computed at several

scales (having standard deviations: σ0 . . . σm).

f(x) = (fσ0
, . . . , fσm

)(x). (A.1)

The set of derivatives used at one scale consists of the
local jet of order two (L,Li, L

i
j) from which we compute

the invariants. The formulation is given in Eq. A.2, using
Einstein tensor notation:

fσn
(x) = (L,Li

i, LiL
i, Li

jL
j
i , LiL

i
jL

j , Li
jL

j
kL

k
i , LiL

i
jL

j
kL

k).
(A.2)

When calculating the local jet, the image is convolved
with a Gaussian kernel having standard deviation σn,
which is related to the scale at which we compute the
local-jet. Given the impossibility of computing the in-
variants at all scales, we need to quantize the scales.
To deal with the large variety of possible image reso-

lutions, the scales used for feature calculations are based
on voxel spacing and not on world spacing. It assumes
that small vessels look like large ones just on a different
scale so the number of voxels per vessel diameter is the
important factor35 instead of the vessel width in mm.
By modeling the intrinsic image resolution as a Gaussian
point spread function with standard deviation of half a
voxel size, the standard deviation of the applied Gaussian
filter kernel is taken as:

σn =
√
λ2
n − 0.52, (A.3)

where the scales in voxel units are:

λn = 0.5 exp(nδ). (A.4)

The scale sampling parameter δ was chosen to be 0.3 and
the number of scales as 5, n = 0, . . . , 4. Both present a
compromise between the density of sampling in the scale
space and the computational requirements. As a result,
the standard deviations of Gaussian filter kernels used
are σn = {0, 0.5535, 0.9941, 1.5830, 2.4255}, expressed in
voxel units. Having 7 features per scale, this produces
for each voxel a 35 dimensional feature vector.
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