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Recent single-cell studies in monkeys (Romo et al., 2004) show that the activity of neurons in the ventral premotor cortex covaries with the
animal’s decisions in a perceptual comparison task regarding the frequency of vibrotactile events. The firing rate response of these
neurons was dependent only on the frequency differences between the two applied vibrations, the sign of that difference being the
determining factor for correct task performance. We present a biophysically realistic neurodynamical model that can account for the
most relevant characteristics of this decision-making-related neural activity. One of the nontrivial predictions of this model is that
Weber’s law will underlie the perceptual discrimination behavior. We confirmed this prediction in behavioral tests of vibrotactile
discrimination in humans and propose a computational explanation of perceptual discrimination that accounts naturally for the emer-
gence of Weber’s law. We conclude that the neurodynamical mechanisms and computational principles underlying the decision-making
processes in this perceptual discrimination task are consistent with a fluctuation-driven scenario in a multistable regime.
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Introduction
A recurrent challenge in neuroscience is to understand how

the brain represents the external world through the stimulation
impinging on our sensory epithelia. A crucial attempt in this
direction was the conceptualization introduced by E. H. Weber
(1795–1878), who described the relationship between the physi-
cal magnitude of stimuli and the perceived (subjective) intensity
of the sensation. Given the difficulties inherent in estimating the
absolute strength of sensations, Weber operationalized the per-
ception of stimulus change in intensity by mental comparison of
two or more sensations. Perceptual comparison allows one to
discern the minimal physical difference in stimulus intensity that
produces a detectable change in sensation (i.e., the difference
threshold). Weber’s law states that the ratio between the differ-
ence threshold and the background stimulus intensity is a con-
stant. This law has been extremely successful in describing hu-
man reactions to a wide range of sensory stimuli (Oberlin, 1936;
Gaydos, 1958; Consweet and Pinsker, 1965; Fechner, 1966; In-
dow and Stevens, 1966; Panek and Stevens, 1966; Leshowitz et al.,
1968) (see also Laming, 1986), but its neural underpinnings are

still far from clear. Here, we address the potential neurophysio-
logical implementation of Weber’s law in relation to decision
making.

Recent neurophysiological studies provide a good description
of the neural correlates associated with the discrimination of vi-
brotactile stimuli within the flutter range (5– 40 Hz). Vibrotactile
stimulation has been often used to study the correlates of the
sensation of roughness in texture perception (Johnson and
Hsiao, 1992) as well as implemented in highly controlled labora-
tory settings to study neural coding and decision making. In par-
ticular, Romo and colleagues (Romo and Salinas, 2001, 2003;
Hernandez et al., 2002; Romo et al., 2002, 2003, 2004) have stud-
ied the neural mechanisms underlying perceptual comparison by
measuring single-neuron responses in monkeys trained to com-
pare two mechanical vibrations applied sequentially to the finger-
tip. As in any psychophysical task, this discrimination implied a
certain amount of training (both in humans and monkeys), but it
has been observed that after a sharp initial improvement attrib-
utable to cognitive processing, performance usually attains an
asymptotic level that most likely reflects true discrimination abil-
ities based on perceptual representations (Hernandez et al.,
1997). Using this task, Romo et al. (2004) found neurons in the
ventral premotor cortex (VPC) of the monkey the firing rate of
which was dependent only on the difference between the two
applied frequencies, the sign of that difference being the deter-
mining factor for correct task performance. These neurons reflect
the implementation of the perceptual comparison process and, to
a large extent, seemed to underlie the cognitive process of deci-
sion making.

Deco and Rolls (2006) designed a neurodynamical model to
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account for the neurophysiological data of Romo et al. (2004)
that can account for the most relevant characteristics of the
decision-related neural activity. The behavior of the model pre-
dicts that Weber’s law will apply to perceptual discrimination.
This is not a trivial prediction, given that contrary to most other
demonstrations, here Weber’s law is predicted in a domain dif-
ferent from stimulus intensity, namely vibrotactile frequency.
The results of previous research (in humans and monkeys) are
somehow mixed with respect to whether vibrotactile frequency
discrimination does or does not abide by Weber’s law (Goff,
1967; Mountcastle et al., 1972; Gescheider et al., 1990; Mahns et
al., 2006). This is especially relevant given that such attempts have
not always considered the important physiological differences
between the sensory pathways encoding vibrotactile stimuli in
the flutter range and those encoding higher frequency vibrations.
Here we performed behavioral tests of vibrotactile discrimina-
tion in humans and propose a computational explanation of per-
ceptual discrimination that accounts naturally for the emergence
of Weber’s law. The human behavioral data complements the
current neurophysiological evidence, helping to constrain the
underlying neurodynamics and computational principles in-
volved in perceptual discrimination.

Materials and Methods
Historical background
Johnson (1980a,b) carefully analyzed and formulated the relationship
between neurophysiological measurements (reflecting the neuronal rep-
resentation of sensory stimulation along the somatosensory path) and
the psychophysically observed probabilistic subject’s behavior. In partic-
ular, he proposed a rigorous theoretical framework including as explicit
variables the experimental setup, the neural representations of the stim-
uli, variance of the neural representations, and functional dependence on
the stimuli that they represent. In this theoretical framework, he distin-
guished between: (1) neuronal processes encoding peripheral stimuli
information on which the discrimination is based, and (2) neuronal
processes underlying the decision-making discrimination according the
experimental setup that he considered. In this way, Johnson (1980a,b)
was able to relate Weber’s law with the underlying neuronal mechanisms.

Nevertheless, Johnson (1980a,b) assumed linear mechanisms and as-
sumed that the neural representation of the stimuli results from a
stimulus-evoked activity and noise. In this study, we complement and
extend the theory of Johnson (1980a,b) by offering a concrete realistic
biophysical neuronal network implementing decision making in a dis-
crimination task. We address how the dynamics of the neuronal network
can transform explicitly the underlying neuronal activity and noise in the
specific subject’s behavior. Even more, we will show that the dynamical
working point of the neuronal network is fundamental and intrinsically
related with the probabilistic behavior of the subjects.

In other words, we assume, like Johnson (1980a,b), that a hallmark of
neurophysiological measurements is the high degree of variability in the
neuronal activity both within and between trials. Rather than attributing
this variability to poor sampling, we suggest that the stochastic fluctua-
tions in the neuronal dynamics may actually have a functional role. In-
deed, the fact that perception and behavior during certain types of tasks
can be well described by probabilistic models suggests a link between the
stochasticity at the cellular and behavioral level. The main aim of the
current study is to elucidate the mechanisms underlying this link by
constructing computational models that account for measurements both
at the cellular and behavioral levels.

Theoretical framework: neurodynamical model
Theoretical models can help understand the underlying neurodynamical
and computational mechanisms responsible for the evaluation of per-
ceptual evidence that lead to decision making (Brody et al., 2003; Ma-
chens et al., 2005; Deco and Rolls, 2006). Such models are constrained by,
and consistent with, extant neurophysiological data (Romo and Salinas,
2001, 2003; Romo et al., 2004). They typically involve two populations of

excitatory neurons engaged in competitive interactions mediated by in-
hibition. Sensory input may bias the competition in favor of one of the
populations, potentially resulting in a gradually developing decision in
which neurons belonging to the winning population exhibit increased
activity, whereas activity in the other population is inhibited.

We modeled the neural, synaptic, and cortical dynamics underlying
the computation of perceptual discrimination using the theoretical
framework of attractor networks (Brunel and Wang, 2001) based on the
principle of biased competition/cooperation [see previous applications
(Rolls and Deco, 2002; Deco and Rolls, 2005a,b)]. This model was de-
signed to account for the activity of neurons implementing the compar-
ison process found in the VPC, as evidenced by single-cell recordings and
the corresponding behavioral measures in monkeys. The response of
these neurons during the comparison period of the task depends on the
frequency difference between the two applied vibrotactile stimuli, the
sign of that difference being the determining factor for correct task per-
formance. The computational model of Deco and Rolls (2006) imple-
ments a neuronal network that can reproduce the decision-making re-
sponse selectivity of the mentioned VPC neurons. Competition and
cooperation mechanisms are implemented in an attractor network con-
sisting of two recurrently connected populations of excitatory neurons,
mutually connected with a common inhibitory population.

The model enables a proper description of the transients (nonstation-
ary) and probabilistic nature of behavior (performance) by the explicit
use of spiking and synaptic dynamics of one-compartment integrate-
and-fire (IF) neuron models (Tuckwell, 1988) at the microscopic level.
This allowed us to use realistic biophysical time constants, latencies, and
conductances to model the synaptic current, enabling the thorough
study of the time scales and firing rates involved in the evolution of the
neural activity. The IF neuronal cells modeled here have three types of
receptors mediating the in-flow of synaptic currents: the EPSCs are me-
diated by AMPA (fast) and NMDA-glutamate (slow) receptors, whereas
external EPSCs imposed onto the network are driven by AMPA receptors
only. IPSCs to both excitatory and inhibitory neurons are mediated by
GABA receptors [for details of the mathematical formulation, see Brunel
and Wang (2001) and Deco and Rolls (2005a, 2006)].

The attractor network implementing the comparison mechanism (Fig.
1) is composed of interacting neurons organized into a discrete set of
populations (i.e., groups of excitatory or inhibitory neurons sharing the
same inputs and connectivities). The network contains 800 NE (excita-
tory) pyramidal cells and 200 NI inhibitory interneurons, in accordance
with the proportion of 80% pyramidal cells versus 20% interneurons
typically observed in physiological studies (Abeles, 1991; Rolls and Deco,
2002). In this minimal model, specific populations encode the categori-
cal result of the comparison between the two sequentially applied vibro-
tactile stimuli, f1 and f2 (i.e., f1 � f2 or f1 � f2). Each specific population
of excitatory cells contains rNE neurons (here we use r � 0.1). There is
also a nonspecific population (labeled “Nonspecific”), which groups all
other excitatory neurons in the modeled cortical area, not specifically
involved in the present task, and one inhibitory population (labeled “In-
hibitory”) grouping the local inhibitory neurons in the modeled brain
area. The latter population regulates the overall activity and implements
competition in the network by spreading a global inhibition signal.

The conductance values for the synapses between pairs of neurons is
specified by connection weights, which can deviate from their default
value, 1. The structure and function of the network is achieved by differ-
entially adapting these synaptic strengths within and between popula-
tions of neurons. The labeling of the weights is defined in Figure 1. We
assume that the connections are already formed (e.g., by earlier-
occurring self-organization processes such as Hebbian learning). We as-
sume that the two possible outcomes of the decision, f1 � f2 and f1 � f2,
corresponding to the two response categories, are already encoded, in the
sense that the monkey or human is already trained to push one or the
other button, but not both (to obtain some reward). As a consequence of
this, neurons within a specific excitatory population are mutually cou-
pled with a strong weight w�. Furthermore, the populations encoding
these two decisions are likely to have anticorrelated activity in this behav-
ioral context, resulting in weaker than average connections between
them. Consequently, we choose a weaker value w� � 1 � r(w� � 1)/(1 �
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r), so that the overall recurrent excitatory syn-
aptic drive in the spontaneous state remains
constant as w� is varied (Brunel and Wang,
2001). Neurons in the inhibitory population are
mutually connected with an intermediate
weight w � 1. They are also connected with all
excitatory neurons in the same layer with the
same intermediate weight, which for
excitatory-to-inhibitory connections is w � 1
and for inhibitory-to-excitatory connections is
denoted by a weight wI. Neurons in a specific
excitatory population are connected to neurons
in the nonselective population in the same layer
with a feedforward synaptic weight w � 1 and a
feedback synaptic connection of weight w�.
Each individual population is driven by two dif-
ferent kinds of input. First, all neurons in the
model network receive spontaneous back-
ground activity from outside the module
through Next � 800 external excitatory connec-
tions. Each connection carries a Poisson spike
train at a spontaneous rate of 3 Hz, which is a
typical value observed in the cerebral cortex.
This results in a background external input with
a rate of 2.4 kHz for each neuron. Second, the
neurons in the two specific populations addi-
tionally receive external inputs encoding the
stimulus-specific information. These inputs are
assumed to originate from the second somato-
sensory cortex (S2) and from the prefrontal
cortex (PFC), encoding the frequency of both stimuli f1 (stored) and f2
(present) to be compared during the comparison period (i.e., when the
second stimulus is applied). As described in neurophysiological studies,
there are two main types of S2 and PFC neurons, namely neurons whose
firing rate exhibits a positive monotonic relationship with stimulus fre-
quency and others in which this relationship is negative. Based on the
experimental results (Romo et al., 2004), we model the firing rate of
positive monotonic neurons as f �

x � 5 � 2.3fx Hz, and the firing rate of
negative monotonic neurons as f �

x � 25 � 0.6fx Hz, where fx is the
frequency of the vibrotactile stimulation in Hz (i.e., fx is equal to f1 or f2).
When stimulating, the rate of the Poisson train to the neurons of both
specific populations f1 � f2 and f1 � f2 is increased by an extra value of
�1 � f �

1 � f �
2 and �2 � f �

1 � f �
2 , respectively, coding the two vibrotactile

stimuli to be compared.
The stationary states of a network of integrate-and-fire neurons can be

exhaustively studied using a reduced consistent mean field, to simplify
the integrate-and-fire equations by replacing, after the diffusion approx-
imation (Tuckwell, 1988), the sums of the synaptic components by the
average component and a fluctuation term. The stationary dynamics of
each population can be described by the population transfer function,
which provides the average population rate as a function of the average
input current. The set of stationary, self-reproducing rates �i for the
different populations i in the network can be found by solving a set of
coupled self-consistency equations. This enables the selection of the pa-
rameter region that reveals the desired emergent behavior in a bifurca-
tion diagram.a In the present case, the essential requirement is that, for
the stationary conditions, different possible attractors are stable. The
attractors of interest for our task correspond to the activation (high
spiking rates) or nonactivation (low spiking rates) of the neurons in the
specific populations f1 � f2 and f1 � f2. The activation of the specific
population f1 � f2 (f1 � f2) and the simultaneous lack of activation of
the complementary population f1 � f2 (f1 � f2) correspond to an en-
coding “single state” associated with a motor response reporting the

categorical decision f1 � f2 (f1 � f2). The lack of activation of both
specific populations (“spontaneous state”) would correspond to an en-
coding state that cannot lead to a behavioral decision (i.e., there is no
answer, or a motor response is generated completely randomly). The
same happens if both specific populations are activated to the same de-
gree (“pair state”). Because responses in animals are probabilistic in na-
ture, the operating working point of the network should be such that
both possible categorical decisions (i.e., both possible single states) are
bistable. In addition, we will show that the model predicts a behavior
consistent with Weber’s law if, and only if, the spontaneous state is also a
stable state (i.e., when the dynamical working point of the network is in a
regime of multistability). In this way, the empirical confirmation of We-
ber’s law informs about the dynamical working point of the network. We
use mean-field techniques for analyzing the nonstationary asymptotic
states via a reduced model that allows us to select easily the regime of
multistability. The mathematical formulation of the integrate-and-fire
neurons and synaptic currents as well as the corresponding consistent
mean-field is summarized in the supplemental material (available at
www.jneurosci.org) (see also Deco and Rolls, 2006).

Experimental human behavior
Participants. We tested a group of eight human participants (range,
18 –35 years of age) who volunteered for the study. All were right handed
and reported normal tactile sensitivity.

Apparatus and materials. Participants sat �60 cm away from a com-
puter cathode ray tube monitor in a dimly lit, sound-attenuated testing
room. They were instructed to direct their gaze to a fixation cross at the
center of the screen. Stimulation was delivered using a bone conduction
vibrotactile stimulator (Oticon-A bone conduction vibrators; 3.8 cm 2

vibrating surface; Oticon, Hamilton, UK). The protocols were pro-
grammed using Expe6 software (Pallier et al., 1997) and run on a Pen-
tium (Intel, Santa Clara, CA) PC computer. The vibration waves were
generated with the PC sound card and fed to the vibrators through an
amplifier (Pioneer-A307; frequency response, 5 Hz to 100 kHz). The
stimulator was attached to the distal pad of the left annular finger using a
velcroed cloth loop, so the vibrator location and pressure was held con-
stant throughout the experimental session. The subjects wore head-
phones (HD435; Sennheisser, Wedemark, Germany) delivering white

aNote that the dynamics of the whole system depend on two parameters regulating the level of competition/
cooperation, namely wI and w�. We characterized the network’s different modes of operation corresponding to
different parameter regimes by exploring these two connecting weights. In other words, these connecting weights
are fixed by selecting the dynamical region in the bifurcation diagram that is consistent with the data [for more
details, see Deco and Rolls (2006)].

Figure 1. Biophysical realistic computational model for a probabilistic decision-making network that performs the comparison
of two mechanical vibrations applied sequentially (f1 and f2). The model implements a dynamical competition between different
neurons. The network contains excitatory pyramidal cells and inhibitory interneurons. The neurons are fully connected (with
synaptic strengths as specified in the text). Neurons are clustered into populations. There are two different types of population:
excitatory and inhibitory. There are two subtypes of excitatory population, namely specific and nonselective. Specific populations
encode the result of the comparison process in the two-interval vibrotactile discrimination task (i.e., whether f1 � f2 or f1 � f2).
The recurrent arrows indicate recurrent connections between the different neurons in a population.
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noise at constant intensity throughout the experiment, sufficient to mask
any sound produced by the vibrotactile stimulators.

Procedure. The frequency discrimination experiment consisted of a
two-interval, forced-choice task in which two 500 ms vibrotactile stimuli
(the base and the comparison frequencies, order randomized, 500 ms
interstimulus interval) were presented to the participant for classifica-
tion. At the beginning of each trial, the computer screen showed a “�”
sign at the center, which was temporarily replaced by an “*” sign during
the presentation of each vibration. After the second vibration, a “?” sign
appeared in the center of the screen, until a response was made. The task
was to press the key (1 or 2) corresponding to the stimulus of higher
frequency (first or second, respectively). Five different base frequencies
were tested (20, 30, 40, 60, and 80 Hz), although only the frequencies �50
Hz (flutter) were used to test the model. This was done in an attempt to
engage the same type of somatosensory receptors and pathways (Meiss-
ner receptors) throughout all conditions (Werner and Mountcastle,
1965; Mountcastle et al., 1967; Freeman and Johnson, 1982). Each par-
ticular base frequency was confronted with eight different comparison
frequencies (�2, �4, �6, and �8 Hz) in a separate block of 112 trials
(eight combinations of base and comparison frequency presented 14
times each). No feedback was provided to participants during the exper-
imental phase. Before this vibration discrimination test, the intensities of
the different vibrotactile stimuli were carefully adjusted individually for
each participant in the following way.

Given that perceived intensity of vibration varies across frequencies,
certain adjustments were necessary to ensure that participants based
their judgments on frequency. First, we determined the simple detection
threshold for each base frequency using interleaved staircases based on
the parameter estimation by sequential testing (PEST) algorithm to ad-
just the gain of the sound card for 50% detection performance. After this
procedure, we raised the output level of the amplifier by 15% and ran a
second phase to find the point of subjective equality in intensity across
vibrotactile frequencies. In particular, we gradually adjusted the output
of the sound card [sound pressure level (SPL)] individually for each
comparison frequency in order for it to feel as intense as its correspond-
ing base frequency (we used interleaved PEST staircases). Then, for each
participant and base frequency, we found the best fitting line (linear
regression) to describe the relationship between frequency (for all com-
parison frequencies) and SPL and selected the appropriate intensity val-
ues to be used in the discrimination experiment for each comparison
frequency.

Once the particular intensity values for each frequency and subject had
been adjusted, and before the frequency discrimination task, participants
received extensive training with visual feedback presented on the com-
puter screen. In an initial training block, we used large frequency differ-
ences (�30 Hz) to acquaint participants with the task. In a second train-
ing block, participants were introduced to smaller frequency differences
(20 � 2 Hz). The third training block was divided into sub-blocks cor-
responding to each base frequency, and the tests always included the base
frequency paired with the �8 Hz comparison frequencies. Each of these
sub-blocks was repeated until a performance of 90% was achieved. Then,
each sub-block was repeated once or twice more again, just before the
experimental block corresponding to its base frequency. It took between
5 and 6 h to test each individual, and the experiment was divided into two
sessions. All the experimental blocks took place within the second
session.

Results
Model results
Figure 2A shows the probability of classifying the frequency of
the comparison stimulus f2 as higher than the frequency of the
base stimulus f1, as a function of the frequency to be compared.
Each data point corresponds to average across 200 trials of the full
spiking simulations [for the plotting of typical evolutions of the
spiking network of VPC neurons during the comparison period
and additional details, see Deco and Rolls (2006)]. The lines were
calculated by fitting the data points using a Weibull function. A
correct classification occurs when during the 500 ms comparison

period, the network evolves to a “single-state” attractor that
shows a high level of spiking activity (�10 Hz) for the population
f1 � f2 and simultaneously a low level of spiking activity for the
population f1 � f2 (at the level of the spontaneous activity). One
can observe from the different panels corresponding to different
base frequencies of f1 that to reach the 85% performance thresh-
old (top horizontal dashed line), the difference between f1 (base
frequency) and f2 (comparison frequency) must become larger as
f1 increases. Figure 2B plots the just-noticeable difference (JND)
corresponding to the difference limens calculated as one-half the
difference between the frequency identified as higher than the
standard on 85% of the trials and on 15% of the trials. The JND
increases linearly as a function of the base frequency. This linear
increase corresponds to Weber’s law for the present vibrotactile
discrimination task.

Behavioral results
We assessed the proportion of comparison-higher responses
(f2 � f1) as a function of base frequency for each participant and
then adjusted a Weibull function to the observed data (for indi-

Figure 2. Model results. A, Probability of correct discrimination as a function of the differ-
ence between the two presented vibrotactile frequencies to be compared (the horizontal
dashed lines denote the thresholds of 15 and 85% correct classification). Error bars represent
SEM. B, Weber’s law for the vibrotactile discrimination task. The JND is calculated as one-half
the difference between the frequency identified as higher than the standard on 85% of the trials
and the frequency identified as smaller on 15% of the trials.
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vidual results, see supplemental material, available at www.
jneurosci.org). From there, we calculated the average of individ-
ual JND thresholds (difference limen calculated as one-half the
difference between the frequency identified as higher than the
standard on 85% and on 15% of the trials). The relationship
between JND and base frequency is plotted in Figure 3.b The plot
reveals a positive correlation between stimulus magnitude (base
frequency) and JND, thereby illustrating Weber’s law in vibro-
tactile flutter frequency discrimination for humans. In particular,
the JND for base frequency 20 Hz (2.4 Hz) was smaller than the
JND for 30 Hz (4.1 Hz; p � 0.035) and than the JND for 40 Hz
(6.5 Hz; p � 0.024), whereas the JND for 30 Hz was smaller than
the JND for 40 Hz ( p � 0.025). The average Weber’s fraction (k)
values were 0.122, 0.138, and 0.162 for the base frequencies of 20,
30, and 40 Hz, respectively. None of the paired comparisons (un-

corrected) between these k values were significant (all, p � .25).
Therefore, the estimated value of (k) for vibrotactile (flutter) dis-
crimination is 0.140.

Computational principles underlying Weber’s law
To extract the neurodynamical mechanisms underlying a We-
ber’s law behavior in decision making, we analyzed the compu-
tational capabilities of the multistable network model by means
of a reduced model. If circuits exhibiting multistability are com-
prised of large numbers of spiking neurons, the fluctuations
needed to drive the transitions arise naturally through noisy in-
put and/or disorder in the collective behavior of the network.
However, such dynamics can also be qualitatively captured in a
system of nonlinear coupled differential equations that describe
the evolution of the average firing rate of each population (mean-
field reduction). In this case, a fluctuation term must be added to
drive the transitions. Such a minimal probabilistic decision-
making network consists of two distinct populations of neurons
whose activity encodes the two alternative choices (Fig. 4). Neu-
rons within a specific population interact via strong recurrent
excitation with weight w�. Neurons in one population are mu-
tually coupled to all other neurons in the other population in an
inhibitory manner with a weight wI. Throughout the study, the
excitatory weight is set to w� � 1, and the inhibitory weight is set
to wI � 1.

The temporal dynamics of the firing rates of the neuronal
populations can be qualitatively captured via a system of first-
order differential equations of the Wilson-Cowan type (Renart et
al., 2003; La Camera et al., 2004). For the decision-making archi-
tecture shown in Figure 4, the firing rate equations are given by
the following:

�
d�i�t	

dt
� � �i�t	 � ���i � �

j�1

2

wij�j�t		 � �i�t	,i � 1, 2,

(1)

where �i denotes the firing rate of population i, wij denotes the
synaptic strength between populations i and j (i.e., w11 � w22 �
w�, and w12 � w21 � �wI), and � � 1 ms. The external, sensory
input to the population i is denoted by �i. Throughout the study,
�1 � A� � B, whereas input to the second population is set to �2

� A(� � 
�) � B (here we use A � 1/60 and B � 8/3, so that the
multistable regime in the model falls in the flutter range). We will

bFigures 2 and 3 should be compared qualitatively. Both figures (i.e., model and experimental results) show a
behavior consistent with Weber’s law. It was not the aim of this study to perform data fitting. We used realistic
biophysical parameters, and we have adjusted the scaling of the input in an arbitrary way such that the multistable
regime in the model is in the flutter range.

Figure 3. Behavioral results. A, Mean probability of comparison higher responses (f1 � f2)
as a function of the difference between the two presented vibrotactile frequencies to be com-
pared. Error bars represent SEM. B, JND values for the different base frequencies, revealing
Weber’s law for the vibrotactile discrimination task. The JND is calculated as in the model (see
Results).

Figure 4. Minimal probabilistic decision-making neurodynamical network consisting of two
self and mutually interacting neuronal populations. The activities of the specific populations
encode the alternative choices. Continuous arrows represent excitatory connections between
neurons in the same population with weight w�. Dashed arrows represent inhibitory connec-
tions with weight wI. External sensory input to the respective population is provided at rates �
and � � 
�.
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refer to the case of 
� � 0 Hz as the unbiased case. The nonlinear
transfer response function �(�) is sigmoidal. In this work, we use

�� x	 �
a

1 � exp� � bx	
, (2)

with a � 15, and b � 0.25. Fluctuations are modeled via an
additive Gaussian noise term denoted by �i. Here ��i(t)� � 0 and
��i(t)�i(t�)� � 	 2
ij
(t � t�), where the brackets �. . .� denote the
average over stochastic random variables. Here we used the value
of 	 � 0.5. This noise term represents finite-size effects that arise
because of the finite number N of neurons in the populations.c

In the absence of noise, the fixed points of Equation 1 can be
determined by setting the time derivative equal to zero and solv-
ing for �i. The noise-free case corresponds to the limit N3�,
which leads to the so-called classical mean-field approximation
(Tuckwell, 1988; Amit and Brunel, 1997; Brunel and Wang,
2001), and a standard bifurcation analysis of the fixed points can
be performed. Figure 5 plots the bifurcation diagram showing the
fixed points of Equation 1 as a function of the input parameter �
for the unbiased case. For decision making in the multistable
regime, the relevant fixed-point solutions are the spontaneous
state and the two states representing a decision, henceforth re-
ferred to as decision states. In particular, in the unbiased case, as
one increases �, the spontaneous state in Equation 1 loses stability
at a critical value �c1, and the system undergoes a bifurcation to
the decision state solutions. There exists, then, a region of multi-
stability between the spontaneous state and the decision states

defined by the interval (�c1, �c2), where �c2 is the value of � at
which the stable decision state annihilates with the unstable fixed
point in a saddle-node bifurcation.

The different dynamical regimes that can be observed in the
bifurcation diagram are associated with different ways of com-
puting decision making (Fig. 6 represents schematically the dif-
ferent computational principles associated with the different dy-
namical regimes). The x-axis represents the neuronal activity of
one of the populations (�i), and the landscape represents an en-
ergy landscape regulating the evolution of the system. Three dif-
ferent dynamical regimes are shown: stable spontaneous state,
multistable, and bistable. For values of � � �c1 (Fig. 6, left), only
the spontaneous state is stable, whereas the decision states do not
appear (for the unbiased case). For increasing 
� (biased case),
one decision state (corresponding to the choice where the in-
creased value of � � 
� is applied) emerges, attracting the dy-
namics toward this decision states. For values between �c1 and �c2

(Fig. 6, middle), there is a region of multistability between the
spontaneous state and the decision states. In this interval, the
fluctuations are responsible for driving the system from the initial
stable spontaneous state to one of the two decision states corre-
sponding to the two possible response choices. Thus, in this sce-
nario, fluctuations play a crucial role in the computation of deci-
sion making. For values of � � �c2 (Fig. 6, right), we find a region
of bistability in which the initial spontaneous state is unstable,
and only the two decision states are stable. In this regime, the
spontaneous state destabilizes, so that the dynamics of the net-
work rapidly evolves toward one of the two decision states, re-
sembling therefore a pure diffusion model integrating the relative
evidence for one choice over another.

These three different dynamical regimes involving different
computational principles can be distinguished at the behavioral
level. Figure 7 characterizes the responses of the theoretical
model associated with a decision-making task for the different
dynamical regimes. The figure shows the critical discrimination

� value corresponding to an 85% correct performance level
(“difference threshold”) as a function of the base frequency �. For
the first region (“spontaneous state stable,” � � �c1), the decision
states do not exist for the unbiased case. Basically, the network is
not able to reach a decision in the first regime. Accordingly, 
�
has to be large enough to bring the network into the second
regime. The larger the base frequency �, the smaller the necessary
value of 
�. As a result, JNDs decrease with increasing base fre-
quency. Thus, in this region, the difference threshold shows an
experimental inconsistent linear but negative correlation with
the base frequency �. For the second region (“multistable,” �c1 �
� � �c2), corresponding to a fluctuation-driven multistable sce-
nario, a perfect linear correlation between the difference thresh-
old and the base frequency is observed. This behavior corre-
sponds to Weber’s law, and as we demonstrate experimentally in
this paper, is consistent with the observed behavior. For the third
region (“bistable,” � � �c2) corresponding to a pure diffusion
process, a deviation from Weber’s law is observed. The difference
threshold starts to show a nonlinear dependence with the base
frequency (for initial behavioral evidence, see supplemental ma-
terial, available at www.jneurosci.org).

It is important to stress that the effect of the noise is particu-
larly relevant in the multistable regime, because the fluctuations
are the driving force that allow the system to escape the decision
barriers around the stable spontaneous state. In the multistable
scenario, the choices are associated with stable attractors, and the
starting condition is also given by a stable spontaneous state. To
make a decision, the system has to escape the stable spontaneous

cWe note that there are two sources of noise in such spiking networks: the randomly arriving external Poissonian
spike trains and the fluctuations caused by the finite size of the network. Here, we concentrate on finite-size effects
attributable to the fact that the populations are described by a finite number N of neurons. In the mean-field
framework (Mattia and Del Giudice, 2002, 2004), “incoherent” fluctuations caused by quenched randomness in the
neurons’ connectivity and/or by external input are already taken into account in the variance, and “coherent”
fluctuations give rise to new phenomena. In fact, the number of spikes emitted in a time interval dt by the network
is a Poisson variable with mean and variance N�( t)dt. The estimate of �( t) is then a stochastic process �N( t), well
described in the limit of large N� by �N( t) ��( t) � [�( t)/N]1/2�( t), where �( t) is Gaussian white noise with zero
mean and unit variance, and �( t) is the probability of emitting a spike per unit time in the infinite network. Such
finite-N fluctuations, which affect the global activity �N, are coherently felt by all neurons in the network. This
approach leads to the additive Gaussian noise corrections adopted in Equation 1.

Figure 5. Bifurcation diagram of the minimal decision-making neural network as a function
of the input �. The curves plot the stable fixed points (“stationary attractor states”) of the
reduced system defined by Equation 1 for population 1 (the results for population 2 are in the
symmetric unbiased case identical). Black lines, Spontaneous state; gray lines, decision states.
The vertical dashed lines delimit the multistable region.
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state toward one of the choice attractors
[this is related to the so-called “Kramers
escape problem” (Kramers 1940)]. In con-
trast, in the bistable regime (the so-called
“ballistic” regime; see Discussion), the
noise is of course relevant as the basis of
the diffusion process, but it is not the main
driving force. This is because in the bist-
able scenario the spontaneous state is not a
stable state, and therefore with or without
noise, the system will necessarily evolve to
one or the other decision attractors just
because of the neurodynamical flow. We
investigated the effect of noise on both re-
gimes numerically and found that for
weaker noise, the Weber’s fraction in-
creases in the multistable regime, whereas
the nonlinearity (namely the saturation
observed for large �) is accentuated. Addi-
tional effects of the noise on the bifurcation and an in-depth
discussion about analytical ways of studying it for the cases of
neuronal networks implementing decision making have been de-
scribed by Deco and Marti (2007a,b).

Discussion
The main finding to emerge from the theoretical analysis of the
model is that Weber’s law behavior for the decision making in-
volved in the discrimination of two vibrotactile stimuli is consis-
tent with an underlying fluctuation-driven scenario in a multi-
stable regime. One nontrivial prediction of the model (see Deco
and Rolls, 2006) is a Weber’s law behavior for vibrotactile fre-
quency discrimination. An interesting aspect of this prediction is
that, if the connectivity parameters of the network are tuned
using mean-field techniques (so that the network has two possi-
ble stable stationary final attractors respectively related to the two
possible decisions), then the firing rate of the neurons in the
winning attractor reflects the difference in the frequencies (
f)
being compared, but not the absolute frequencies. Therefore,
Weber’s law for frequency comparison is not explicitly encoded
by the firing rate of these attractors. An analysis of the nonsta-
tionary evolution of the dynamics of the network model shows
that Weber’s law is implemented in the probability of transition
from the initial spontaneous firing state to one of the two possible
attractor states. In this way, statistical fluctuations caused by fi-
nite size noise play a crucial role in the decision-making process.
The model establishes that a Weber’s law for frequency discrim-
ination could be implemented not by the firing rate of a given
population of neurons (which reflects just 
f), but by the prob-
ability that that particular population will be activated, which is
influenced by both 
f and the absolute value of the frequency.
Thus, the model shows that the neural correlates underlying per-
ceptual discrimination are consistent with a decision-making-
like scenario of fluctuation-driven computation that causes a
probabilistic transition between multistable states.

The finding of Weber’s law in terms of vibrotactile frequency
discrimination is not trivial because, in contrast to most previous
implementations of the Weber’s law, frequency does not involve
a perceptual correlate of the physical intensity (or strength) of a
magnitude, but rather of the rate of stimulation. Therefore, the
prediction for Weber’s law when performing vibrotactile dis-
crimination is not directly obvious. Moreover, the finding that
the Weber’s law applies in the domain of vibrotactile frequency
can be very informative as to the neural correlates of perceptual

comparison. Indeed, previous attempts to establish Weber’s law
for vibrotactile frequency have provided mixed results. For in-
stance, Gescheider et al. (1990) reported that intensity difference
thresholds on the finger in humans did not vary as a function of
frequency (25 vs 250 Hz). Similarly, Tommerdahl et al. (2005)
reported that the Weber fraction (the ratio between difference
threshold and absolute stimulus frequency), which should re-
main relatively constant across frequencies if Weber’s law were to
hold, varied considerably from 25 to 200 Hz base frequencies. In
contrast, however, Mahns et al. (2006) (see also Rothenberg et al.,
1977) found that the Weber fraction remained relatively constant
across different base frequencies (they investigated glabrous as
well as hairy skin, with frequencies from 20 to 200 Hz) [but see
Goff (1967) for a slightly different result]. Nevertheless, one po-
tential challenge when comparing threshold across such different
base frequencies could be that the somatosensory channels being
excited by the different stimuli are different, thereby confound-

Figure 6. Computational principles underlying the different dynamical regimes shown in the bifurcation diagram of Figure 5:
stable spontaneous state, multistable, and bistable.

Figure 7. Decision-making behavior of the theoretical model predicted for the different
dynamical regimes. The figure shows the critical discrimination 
� value corresponding to an
85% correct performance level (difference threshold) as a function of the base frequency �. Only
in the region corresponding to the multistable regime did the difference threshold increase
linearly as a function of the base frequency (i.e., consistent with Weber’s law). The black line and
the nonlinear gray curve shown in the graph correspond to a fit of the numerical results in the
multistable and bistable regime, respectively. The vertical dashed lines delimit the multistable
region according to the bifurcation diagram shown in Figure 5.
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ing the psychophysical results. Mountcastle et al. (1972) reported
the Weber fractions of humans and monkeys performing a fre-
quency discrimination task with base frequencies ranging from
30 to 200 Hz, but that included several base frequencies in the
range of flutter. Their human Weber fractions were relatively
variable across base frequencies even within the flutter range, but
they followed Weber’s law in that difference limens did not have
a particular trend toward increasing or decreasing with base fre-
quency. However, the study by Mountcastle et al. (1972) might
have been subject to a methodological problem whereby the ob-
servers (monkey or human) could have solved the task without
necessarily performing a mental comparison (Hernandez et al.,
1997). In a more recent psychophysical study with monkeys, Her-
nandez et al. (1997) addressed this problem, but the pattern of
discrimination thresholds was not perfectly clear as to how much
the Weber’s law held. Here we found a clear positive relationship
between difference threshold and base frequency within the flut-
ter range in humans. Note, however, that the slightly worse dis-
crimination values reported in the present study, as compared
with other previous studies, are the result of using a threshold
value of 85% to calculate our just noticeable differences, rather
than the 75% threshold values used in some earlier studies. In
fact, the Weber fraction across the frequencies tested remains
statistically stable.

The attractor model described here computes decision mak-
ing via competitive-based bias in a bistable neurodynamical sys-
tem. We show experimental evidence supporting the prediction
of this model, namely that a decision-making task follows We-
ber’s law. In general, the dynamics relevant for decision making
in these networks depend on the stability of the spontaneous
activity state (i.e., the state in which no decision has yet been
made). If, once the second stimulus is presented, the spontaneous
state destabilizes, then the dynamics rapidly evolves toward one
of the two decision states (Wong and Wang, 2006). This scenario
is consistent with recent theoretical studies of behavioral data
using the so-called diffusion models (Smith and Ratcliff, 2004).
In these models, it is assumed that information that drives the
decision process is accumulated continuously over time until a
decision boundary is reached. Given the success of diffusion
models in explaining behavioral data, it seems likely that some
decision-making processes in the nervous system indeed rely on a
similar accumulation of evidence. Alternative phenomenological
models have been developed in which the effective dynamics is
equivalent to an Ornstein-Uhlenbeck process with fixed bound-
aries (Usher and McClelland, 2001). Such connectionist models
differ from the classical diffusion model in that the drift of the
decision variable is proportional to the value of the variable itself
(i.e., it can be leaky or repelling; ballistic model) (Brown and
Heathcote, 2005). The diffusion thus occurs not on a flat land-
scape but on a curved one. Furthermore, through fine tuning of
higher-dimensional systems to encode low-dimensional choices,
one can also construct an approximate line attractor (Machens et
al., 2005). In this case, the dynamics is close to pure diffusion and
is thus a true integration of the relative evidence for one choice
over another. In fact, the nonlinear dependence of JND as a func-
tion of � in this bistable regime is perhaps not surprising, given
that it results from an underlying nonlinear diffusion process.

On the other hand, we show here that both neurophysiologi-
cal and behavioral evidences suggest that decision making results
from an alternative fluctuation-driven multistable scenario. This
scenario occurs when the spontaneous state does not lose stability
but is instead bistable with the decision states, hence leading to
multistability between three possible fixed points. Locally, then,

the dynamics is similar to the “leaky” or attracting Ornstein-
Uhlenbeck process. Such multistability only occurs if the recur-
rent excitation within each neuronal group or population is
strong enough. In this case, only a sufficiently strong perturba-
tion would drive the system from the stable spontaneous state to
one of the two decision states. This differs from the earlier ballis-
tic scenario, in which the system will evolve toward one of the two
choices even in the absence of fluctuations. Thus, in the multist-
able regime, fluctuations, perhaps noise-driven, are essential for
decision making. Such a multistable region has also been evoked
in a model of decision making as a means of holding the decision
state in working memory once it has been made (Wong and
Wang, 2006). In the model of Wong and Wang (2006), the input
reflecting the evidence for the two alternatives destabilizes the
spontaneous state, thus leading to a decision. Removal of the
input brings the system into the multistable regime in which
hysteresis ensures that the elevated level of activity in the neuro-
nal group encoding the decision will be maintained.

The computational analysis of the network model showed
that a Weber’s law behavior for decision making is only consis-
tent with a fluctuation-driven scenario in a multistable regime.
Hence, the experimental behavioral evidence showing a Weber’s
law behavior for the decision making involved in the discrimina-
tion of two vibrotactile stimuli in humans suggests that the neu-
rodynamical mechanisms and computational principle underly-
ing this process is consistent with a fluctuation-driven scenario in
a multistable regime. More specifically, the computational anal-
ysis performed here allows us to reveal that the way in which a
decision is computed depends strongly on the dynamical regime
in which the system is functioning. Neurophysiological data are
compatible with both types of scenario being analyzed (i.e.,
Kramers multistable scenario and ballistic diffusion scenario).
On the other hand, the psychophysical results obtained here with
humans seem to suggest that Weber’s law behavior is more con-
sistent with an underlying multistable Kramers scenario. Never-
theless, we do not exclude the bistable scenario. In fact, we believe
that, depending on the range of the input used (�) and learning
(which can shift the dynamical working regime, by modifying
w� for example), the working regime and related underlying
scenario could change. This would explain a breaking of Weber’s
law (i.e., a change in the slope of the linear relation) for larger �
(as evidenced experimentally), and at the same time offers a con-
crete prediction: the reaction time distribution should be
different in both scenarios. Thus, integrating behavioral and
neurophysiological data, we are able to further increase our un-
derstanding of the computational principles underlying decision
making.
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