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Abstract

The simultaneous use of multiple transmit and receive antennas can unleash very
large capacity increases in rich multipath environments. Although such capacities can
be approached by layered multi-antenna architectures with per-antenna rate control, the
need for short-term feedback arises as a potential impediment, in particular as the number
of antennas—and thus the number of rates to be controlled—increases. What we show,
however, is that the need for short-term feedback in fact vanishes as the number of
antennas and/or the diversity order increases. Specifically, the rate supported by each
transmit antenna becomes deterministic and a sole function of the signal-to-noise, the
ratio of transmit and receive antennas, and the decoding order, all of which are either
fixed or slowly varying. More generally, we illustrate—through this specific derivation—
the relevance of some established random CDMA results to the single-user multi-antenna
problem.
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I Introduction

IT has been shown that, with the simultaneous use of multiple transmit and receive an-
tennas, very large capacity increases can be unleashed in rich multipath environments

[1]–[4]. As a result, the deployment of arrays at both base stations and terminals appears
as an attractive scenario for the evolution of wireless data access.

Analyzing the capacity and performance of such multi-antenna structures typically in-
volves dealing with channel matrices whose entries can be modeled stochastically. Con-
sequently, it is only natural to invoke results from random matrix theory as has been
successfully done in related fields of communication theory such as code-division multiple
access (CDMA) with random spreading [5]–[8]. This paper shows how, because of the
isomorphism of both problems, many of these results apply also to layered multi-antenna
architectures.

Focusing on mobile systems, we consider only schemes wherein the transmitter does not
have access to the instantaneous state of the channel. Only information that varies slowly
with respect to the fading rate is available to the transmitter.

II Layered Multi-Antenna Architectures

a. Multi-Antenna Channel Capacity

With M transmit and N receive antennas, the normalized channel responses from ev-
ery transmit to every receive antenna can be assembled into an N×M matrix H whose
unit-variance elements we assume independent and identically distributed [9]–[10]. Fur-
thermore, this channel matrix is presumed to be perfectly known at the receiver [11]–
[12].1 With the channel realization unknown to the transmitter, the mutual information
is maximized by transmitting a Gaussian signal with spatial covariance

Φ =
P

M
IM (1)

given a total radiated power P [3]. Note that IM symbolizes the identity matrix of size
M . Assuming flat fading, the corresponding capacity—conditioned on the channel—in
the presence of additive white Gaussian noise (AWGN) can be expressed as

C(H, SNR) = log2 det(IN + SNR

M
HH†). (2)

1The capacity penalty associated with channel estimation is small as long as the coherence time of
the channel sufficiently large [12].
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with SNR the average signal-to-noise ratio per receive antenna [1].

Since the channel is time varying in nature, the capacity fluctuates with it. With a
sufficiently long coding horizon, it is possible to code over the short-term fluctuations and
approach the ergodic capacity, which is simply the average of (2) over the distribution of
H [3]. It is also possible to code over the short-term randomness in the frequency domain,
whereby the ergodic capacity is approached as the signal bandwidth increases [13]. If
it is not possible to code over the short-term channel variations, one must resort to the
idea of outage capacity, wherein the capacity itself is regarded as a random variable that
fluctuates with the channel [14].

Fundamentally, the single-user multi-antenna problem is akin to that of a synchronous
CDMA channel with random spreading [8]. The dimensionality of such a channel, repre-
sented by the spreading factor, corresponds in our case to the number of receive antennas,
while the number of users corresponds to the number of transmit antennas. There are,
nonetheless, some differences:

• The spatial signatures for the various transmit antennas are not chosen by the system
designer, as in CDMA, but rather imposed by nature. Moreover, their distribution
depends on the type of fading being experienced.

• The transmit power constraint, which applies to each individual user in CDMA, be-
comes a constraint on the sum of powers in the multi-antenna case. This typically
leads to a scaled definition of the SNR.

• The transmit antennas are co-located and part of a single transceiver whereas, in
CDMA, the multiple users are geographically dispersed. Hence, joint coding of the
transmit signals is feasible in our problem, but not in CDMA.

Despite these differences, many of the results on random CDMA are very relevant to
the multi-antenna problem considered here, where H is unknown to the multi-antenna
transmitter. This is particularly true of asymptotic results such as those presented in
[5].2 This paper illustrates this relevance, which many in the multi-antenna community
appear to be unaware of.

b. Why Layered Architectures ?

While the covariance in (1) implies that the M transmit antennas should radiate uncor-
related signals, these signals can be jointly encoded. This has motivated a blossoming

2The singular values of H converge (almost surely) to the same asymptotic function regardless of the
distribution of its entries.
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interest in the design of space-time codes [15]–[?]. However, the complexity of joint de-
tection explodes as the number of transmit antennas grows larger and thus alternative
approaches become are of interest.

One such approach is that of layered architectures, wherein each transmit antenna ra-
diates a separately encoded signal. At the receiver, these signals can be successively
decoded and their interference cancelled [17]–[19]. The complexity of these architectures
increases more gracefully with the number of antennas. Furthermore, they can capitalize
on existing scalar coding formats. However, since (i) a successive decoding process favors
antennas differently depending on the decoding order and (ii) each transmit antenna en-
counters a distinct propagation channel, layered architectures can only approach capacity
if the radiated signals are cycled around the transmit antennas so that each signal gets
exposed, in turn, to every transmit antenna [20]–[21]. This, however, implicitly assumes
that the M transmit antennas are constrained to operate at the same data rate. Instead,
if the receiver can inform the transmitter of the instantaneous rate that can be supported
by each transmit antenna depending on the channel and on the detection order, the ca-
pacity in (2) can be approached by a layered architecture without the need to cycle [22].
This possibility, though, is complicated by the need for short-term feedback at the fading
rate [23]. However, as we shall show in the remainder, such feedback requirements in fact
vanish as the number of antennas and/or diversity order increase.

c. Layered Architectures with per-Antenna Rate Control

It was first shown in [24] (see also [5]) that a minimum mean-square error (MMSE) re-
ceiver with successive decoding and interference cancellation can approach the capacity
of the CDMA channel. This optimality carries over to layered multi-antenna architec-
tures as long as the rate of each transmit antenna can be appropriately adjusted [22].
Moreover, this is true irrespective of the decoding order. The rate of each individual
antenna depends on the decoding order, but the aggregate capacity does not. Hence, we
assume—without loss of generality—that the antennas are decoded in accordance with
some arbitrary index m.

Let us define hm as the m-th column of H. Let us further define Hm=[hm+1 hm+2 . . . hM ].
The rate supported by antenna m is given [24, 22] by

Cm = log2(1 + h†
m(HmH†

m + M
SNR

IN)−1hm) (3)

so that
M
∑

m=1

Cm = C(H, SNR) = log2 det(IN + SNR

M
HH†). (4)
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Eq. (3) can be rewritten as

Cm = log2 det(IN + hmh†
m(HmH†

m + M
SNR

IN)−1)

= log2 det( M
SNR

IN + hmh†
m + HmH†

m) − log2 det( M
SNR

IN + HmH†
m) (5)

= log2 det( M
SNR

IN + [hm Hm][hm Hm]†) − log2 det( M
SNR

IN + HmH†
m)

= log2 det(IN + SNR

M
Hm−1H

†
m−1) − log2 det(IN + SNR

M
HmH†

m)

which corresponds to

Cm = C(Hm−1,
M−m+1

M
SNR) − C(Hm, M−m

M
SNR) (6)

indicating that the rate supported by the m-th antenna is given by the difference between
the capacity of transmit antennas m to M and the capacity of transmit antennas m+1
to M .

III Asymptotic Analysis

As the number of antennas increases, the outage capacity hardens and becomes deter-
ministic. This implies that, asymptotically, the outage and ergodic capacities coincide.
Mathematically, this hardening process stems from the (almost sure) convergence of the
singular values of H [25]. Let us define the ratio of transmit and receive antennas as

β
def
=

M

N
(7)

and the capacity per receive antenna as

C def
=

C

N
. (8)

As the number of antennas is driven to infinity, C converges almost surely [5] to

C∞(β, SNR) = log2[1 + SNR − F(β, SNR

β
)] (9)

+ β log2[1 +
SNR

β
− F(β, SNR

β
)] − β

log2 e

SNR
F(β, SNR

β
)

given the auxiliary function

F(x, y)
def
=

1

4
[
√

1 + y(1 +
√

x)2 −
√

1 + y(1 −
√

x)2]2. (10)
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Notice that C∞ is solely a function of β and SNR. Furthermore, despite being an asymp-
totic result, it yields an extremely accurate approximation to the ergodic capacity even
when the number of antennas is small [26].

Defining a normalized version of the decoding index as

b
def
=

m

N
(11)

and defining also

∆
def
=

1

N
(12)

the rate supported by the m-th antenna in (6) can be rearranged as

Cm =
C(Hm−1,

M−m+1

M
SNR) − C(Hm, M−m

M
SNR)

∆
(13)

=
C(Hm−1,

β−b+∆

β
SNR) − C(Hm, β−b

β
SNR)

∆
.

As the number of antennas grows to infinity, (13) converges almost surely to

Cm =
C∞(β − b + ∆, β−b+∆

β
SNR) − C∞(β − b, β−b

β
SNR)

∆
. (14)

At the same time, the normalized index b becomes continuous within (0,β] and thus the
rates supported by the transmit antennas become also a continuous function of that index,
which we label C∞

b . Moreover, since ∆→0, the difference in (14) becomes a derivative
and hence C∞

b can be asymptotically expressed as

C∞
b =

d

dx
C∞(x, xSNR

β
) |x=β−b (15)

the converse of which is
∫ β

0

C∞
b db = C∞(β, SNR) (16)

indicating how the asymptotic capacity per receive antenna can be obtained by inte-
gration over the asymptotic rate function C∞

b . This is the same result found in [5] for
random CDMA.

If the M transmit antennas are constrained to operate—with no cycling—at the same
rate, such rate must be the smallest supported by any of the antennas, that is, the one
corresponding to m=1 and, in the limit, to b=0.3 Consequently, the asymptotic capacity
per receive antenna becomes β C∞

0 and the advantage of enabling different rates at the
transmit antennas—or, alternatively, of cycling—can be quantified, in terms of capacity
per receive antenna, as the difference between C∞ and β C∞

0 .

3The ordering process advocated in [17] becomes asymptotically irrelevant.
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IV Results

The derivative in (15) can be calculated from (9) to yield

C∞
b = log2[1 +

SNR

β
−F(β − b, SNR

β
)] (17)

which coincides with the asymptotic MMSE capacity derived in [5] for CDMA.4

The asymptotic convergence of the transmit rates to the asymptotic expression in (17) is
verified in Fig. 1. A sequence of three random realizations of the rates supported by 16,
32 and 64 antennas respectively are plotted over the asymptotic function for β=1 and
SNR=10 dB. The progressive convergence is evident as the number of antennas increases.

The ergodic convergence, on the other hand, is validated in Fig. 2. The average rates
in a Rayleigh fading channel, with only 4 transmit and 4 receive antennas, are shown to
match exactly those predicted by the asymptotic analysis, again at SNR=10 dB.

Finally, using (9) and (17), the advantage of per-antenna rate control in the presence of
AWGN is found to be

C∞ − β C∞
0 = log2[1 + SNR − F(β, SNR

β
)] − β

log2 e

SNR
F(β, SNR

β
). (18)

This advantage vanishes for diminishing β while, for growing β, it becomes

lim
β→∞

[C∞ − β C∞
0 ] = log2(1 + SNR) − SNR

1+SNR
log2 e (19)

per receive antenna. For β=1, on the other hand, it approaches

C∞ − C∞
0 ≈ log2(

√
SNR

e
) (20)

as the SNR increases.

V Summary

While it is known that layered multi-antenna architectures (MMSE with successive de-
tection and interference cancellation) can approach capacity through per-antenna rate
control, the need for short-term feedback arises as a serious impediment, in particular

4While the capacity varies if the noise is Gaussian but spatially non-white (see [?] for the random
CDMA asymptotic capacity in the presence of colored noise and [26] for its multi-antenna counterpart),
the main result in (15) holds and thus the rate function can still be derived from C∞.
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as the number of antennas (and thus the number of distinct rates) increases. However,
the need for short-term feedback in fact vanishes as the number of antennas and/or the
diversity order increases. More specifically, the rates supported by the transmit antennas
converge to a deterministic function that depends solely on the SNR, the antenna ratio
and the decoding order, all of which are either fixed or slowly varying.
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Figure 1: Asymptotic convergence: rate vs. transmit antenna index for β=1 and SNR=10
dB. Solid line corresponds to asymptotic function. Circles indicate the supported rates
(numerically computed) for individual random channel realizations with 16, 32 and 64
antennas.
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Figure 2: Ergodic convergence: rate vs. transmit antenna index with β=1 and SNR=10
dB. Solid line corresponds to asymptotic function. Circles indicate average rates (numer-
ically computed) with 4 antennas and Rayleigh fading.
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