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Abstract—Supported by IEEE 802.15.4 standardization activ-
ities, embedded networks have been gaining in popularity in
recent years. The focus of this paper is to quantify the behavior of
key networking metrics of IEEE 802.15.4 beacon-enabled nodes
under typical operating conditions, with the inclusion of packet
retransmissions. We correct and extend previous analyses by
scrutinizing the assumptions on which the prevalent Markovian
modeling is generally based on. This allows us to rigorously
derive key metrics such as throughput, delay, power consumption,
and packet discard probabilities. We finally show by means
of a comparative study the superior accuracy of our modeling
approach.

I. INTRODUCTION

ZigBee [1] is arguably the most prominent alliance ded-
icated to low-power embedded systems. It is a facilitator
of applications pertaining to home and building automation,
smart metering, sensing, and health care, among many others.
Its link and access protocols rely on the specifications of
IEEE 802.15.4 [2], whereas higher layers are subject to the
profile definition of the ZigBee special interest group. ZigBee
is gaining in importance and the underlying IEEE standard
ensures that technology is available from multiple vendors.
On the downside, true deployment success stories are fairly
rare still, possibly due to the fact that it operates in the 2.4-
GHz ISM band where it suffers from inter- and intra-system
interference.

This paper is precisely focused on the intra-system behavior
in that we aim to quantify the performance of the IEEE
802.15.4 medium access control (MAC) protocol, crucial in a
successful system deployment with multiple parties suffering
from contention. IEEE 802.15.4 enjoys two channel-access
methods, namely, the non-beacon mode for low traffic and
the beacon-enabled mode for medium and high traffic. The
former uses standard carrier sensing multiple access (CSMA)
for conflict resolution and positive acknowledgments for suc-
cessfully received packets; since CSMA per se has already
been well covered in the open literature, it will not be further
investigated. The latter is a flexible approach able to mimic
the behavior of a large set of previously published wireless
sensor network MACs such as framed MACs, contention-
based MACs with common active periods, sampling protocols
with low duty cycles, and hybrids thereof [3]; it follows a
flexible superframe structure where the network coordinator
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transmits beacons at predetermined intervals. It successfully
combats the main sources of energy drainage by minimizing
idle listening, overhearing, collisions and protocol overheads,
thereby covering a large number of envisaged ZigBee appli-
cations sufficiently well.

The behavior of the slotted CSMA/CA in an IEEE 802.15.4
network has often been investigated using the approach in-
troduced by Bianchi [4] for the IEEE 802.11 CSMA/CA,
based on modeling a single node’s behavior with a discrete-
time Markov chain. In these models, the state of each node
evolves through its corresponding Markov chain independently
of other nodes’ states except for when it is sensing the channel.

In [5], Mišić et al. propose a Markov chain model to analyze
the slotted CSMA/CA under saturated and unsaturated traffic
conditions in a beacon-enabled network in acknowledgement
(ACK) mode; the superframe structure and the retransmis-
sions are not considered. A basic per-node Markov chain is
constructed for the saturated case, although with some states
missing in both the transmission and ACK-awaiting stages.
This model is then extended to the saturated case. In [6],
the unsaturated model of [5] is further extended to include
also the superframe structure and retransmissions. Since the
unsaturated models in both [5] and [6] are extensions of
the saturated Markov chain model in [5], the aforementioned
issues apply to them as well.

Pollin et al. [7] suggest a Markov chain model for the
slotted CSMA/CA under saturated and unsaturated periodic
traffic conditions in a beacon-enabled network in both ACK
and no-ACK modes. This model is simple but, in contrast
with [5] and [6], it is complete. The superframe structure
is not modeled. The model in [7] relies on the assumption
that the probability to start sensing the channel is independent
across the nodes, and it properly considers the dependence
between the nodes when calculating the channel occupancy
probabilities. However, as detailed subsequently, the model
suffers from a number of shortcomings.

Other works using similar approaches to Pollin and Mišić
include [8] and [9]; however, similar issues as the ones just
mentioned can be observed in their models and calculations
as well. In more recent works, Wen et al. [10] use a proper
Markov chain model, but they do not consider the dependence
in transmission probability of different nodes when calculating
the sensing probabilities. Finally, in [11], Jung et al. propose
a new model based on the Mišić model in [6]. However, they
too do not include all the transmission states in the Markov
chain.

With respect to the above prior art, the core contribution
of this paper is the calculation of all the network metrics
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(throughput, delay, power consumption, etc) necessary for a
system engineer to correctly dimension the network. It is based
on the following advancements:
• We examine the assumptions that underlie the traditional

Markov chain analyses, which is unprecedented and
which allows identifying some shortcomings of the prior
art and pave the way for a novel approach.

• Scrutinizing the prior art, we identify imprecise uses of
the Markov chain approach, embodied by the presence
of extra states and by the inexact definition of the packet
failure probability, among others.

• This stimulates us to redefine various parameters which,
against prior assumptions, are conditioned on other events
taking place in the network.

• All this allows us to correctly and rigorously consider
retransmissions, with the inclusion of acknowledgment
states and with the recognition that successive trans-
mission attempts for a given packet experience distinct
success probabilities.

As part of this work, a comprehensive event-driven simu-
lator has been assembled in order to validate the analytical
derivations and to aid in the computation of some of the
quantities of interest. This simulator, detailed in Appendix D,
is freely available to the research community.

The paper is organized as follows. In Section II, we briefly
detail the IEEE 802.15.4 MAC protocol so as to aid the
understanding of subsequent sections. In Section III, we detail
the Markov chain and introduce the basic notation. Section IV
is then dedicated to the underlying system assumptions and a
rigorous scrutiny of these assumptions, their applicability and
limitations. In Sections V and VI, we then calculate the afore-
mentioned network performance metrics respectively using the
traditional as well as loosened Markov chain assumptions.
Finally, Section VII concludes the paper.

II. IEEE 802.15.4 MAC PROTOCOL DESCRIPTION

In a Low Rate Wireless Personal Area Network (LR-
WPAN), the PAN coordinator (i.e., the central controller)
builds the network in its personal operating space. Communi-
cations from nodes to coordinator (uplink), from coordinator to
nodes (downlink), or from node to node (ad hoc) are possible.

In the beacon-enabled mode, which is the object of our
attention, the time axis is structured as a sequence of su-
perframes bounded by beacon frames. Each superframe com-
prises:
• An active part made up of a contention access period

(CAP) and an optional contention free period (CFP).
During the CAP, nodes access the channel using slotted
CSMA/CA. The optional CFP is activated upon request
from the nodes to the PAN coordinator for allocating
guaranteed time slots.

• An optional inactive part where the devices do not interact
with the PAN coordinator and could enter a low-power
state to save energy.

The slotted CSMA/CA mechanism adopted with the
beacon-enabled mode of IEEE 802.15.4 is different from
the well-known IEEE 802.11 CSMA/CA scheme [12]. The

main differences involve the time slotted behavior, the backoff
algorithm, and the clear channel assessment (CCA) procedure
used to sense whether the channel is idle. Specifically:
• In IEEE 802.15.4, each operation (channel access, back-

off count, CCA) can only begin at the boundary of time
slots, which recall are termed backoff periods. In IEEE
802.11, the notion of a slot exists only insofar as backoff
counting is concerned.

• In IEEE 802.15.4, only when the backoff counter reaches
zero does the node sense the channel (CCA). In IEEE
802.11, nodes are constantly sensing while in backoff,
thereby incurring an additional consumption of energy.

• In IEEE 802.15.4, the backoff counter of a node decreases
regardless of whether the channel is idle or busy. In
contrast, in IEEE 802.11 the backoff counting pauses
whenever the channel becomes busy.

The basic time unit of the IEEE 802.15.4 MAC protocol is
the backoff period, a time slot of length aUnitBackoffPeriod.

For each generated packet, each node maintains a vari-
able r indicating the number collisions that the packet has
undergone.1 For a newly generated packet, r is initialized
to 0. Moreover, for each transmission attempt, the node
maintains three variables: NB, CW, and BE. NB indicates
the backoff stage or, equivalently, the number of times the
backoff procedure has been repeated while attempting the
current transmission. CW is the contention window length,
which defines the number of backoff periods the channel has to
be sensed idle before transmission can start. BE is the backoff
exponent used to draw the random backoff value and it should
satisfy macMinBE ≤ BE ≤ macMaxBE, where macMinBE
and macMaxBE are constants.

The slotted CSMA/CA mechanism works as shown in Fig.
1. Before every new transmission, NB, CW and BE are
initialized to 0, 2, and macMinBE, respectively. The node
waits for a random number of backoff periods specified by
the backoff value, drawn uniformly in the range [0, 2BE − 1].
Then, it performs the first CCA, i.e., it senses the channel and,
if it is idle, the first CCA succeeds and CW is decreased by
one. The node then performs the second CCA and, if that is
also successful, it can transmit the packet.

If either of the CCAs fail, both NB and BE are incremented
by one, ensuring that BE levels at macMaxBE, and CW is reset
to 2. The node repeats the procedure for the new backoff stage
by drawing a new backoff value, unless the value of NB has
become greater than a constant M = macMaxCSMABackoffs.
In that case, the CSMA/CA algorithm terminates with a
channel access failure status and the concerned packet is
discarded.

The network can be operating in either acknowledged or
unacknowledged modes. Hereafter, we refer to these modes
as the ACK mode and the no-ACK mode, respectively. In
both modes, a packet transmitted after a successful chan-
nel access procedure can either be received successfully or
experience a collision. In the no-ACK mode, regardless of

1We identify all unsuccessful transmissions with collisions, focusing on sys-
tems where interference among nodes is the dominant source of transmission
failures and the effects of fading or noise are secondary.
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Fig. 1. Flow chart of the channel access procedure.

whether the transmission is successful or ends in collision,
no acknowledgment will be received by the sending node and
thus the node immediately continues the CSMA/CA procedure
on a new packet. In the ACK mode, a successful transmission
is accompanied by the reception of an ACK, which has a
fixed length of Lack backoff periods. The ACK is fed back
to the sender node after a minimum time which allows for
the transceiver of the node to switch from transmission mode
(TX) to reception mode (RX). The ACK is expected by the
sender node to be received before a fixed maximum time of
macAckWaitDuration. If the ACK is not correctly received
after this time, a collision is declared. A collided packet
can be retransmitted at most R = aMaxFrameRetries times
if required, before being discarded. Therefore, every time a
transmitted packet collides, r is incremented by 1, and if
r ≤ R, the packet is retransmitted using a new transmission
procedure with NB, CW, and BE reset to their initial values.

III. MODEL AND NOTATION

Our Markov chain model, as well as our notation, closely
follow those introduced in [7] with some necessary modifi-
cations, both to include retransmissions and to improve the
accuracy of the model as will be described in due course.

A. Markov Chain Model

In [7], the performance of a single-hop LR-WPAN, com-
posed by N nodes and a PAN coordinator, is evaluated for
uplink traffic. Saturated traffic conditions (i.e., when each of
the N nodes always has a packet available for transmission),
under ACK and no-ACK modes, are considered.2 Here, we
focus on the saturated case in ACK mode with retransmissions.
The ACK-mode was extensively studied in [13]. We further
focus our attention on the CAP, which is the most interesting
superframe period from a MAC perspective. To that end, we
do not explicitly consider the superframe structure and simply
model an infinitely long CAP. We also assume that all data
packets have the same length3 and that their transmission takes
an integer multiple of the backoff period.

In [7], the ACK mode is considered but without collided
packets being retransmitted. In our work, we do consider
retransmissions, thereby obtaining a complete model of the
behavior of a system in ACK mode. Fig. 2 shows the outline
of the Markov chain model for the behavior of a node in
ACK mode with retransmissions. We assume that the behavior
of a given transmission attempt is the same regardless of
the number of unsuccessful previous attempts on the current
packet. In other words, Fig. 2 consists of R + 1 replicas of
the Markov chain modeling a single attempt. This assumption
is more precisely stated in Section IV as assumption A2, and
is used in Section V to calculate various network metrics. As
we will see in Section VI, this assumption does not affect the
accuracy of most of the calculated metrics. However, when
calculating the average delay, it leads to some inaccuracy.
We offer an alternative way of calculating the average delay
without the use of this assumption in Section VI.

Given the aforementioned assumption, the behavior of the
network can be analyzed by looking only at the per-attempt
Markov chain model of a node. In detail, the behavior of a
single node per-attempt is modeled using a two-dimensional
Markov chain, with states represented by {s(t), c(t)} at a
given backoff period t, as shown in Fig. 3. Hereafter, we use
the term slot to refer to a backoff period. All events happen
at the beginning of a slot.

At a given slot t, the stochastic process s(t) represents the
transmission stage when s(t) = −1, the ACK stage when
s(t) = −2, and the backoff and CCA stages when s(t) ∈
{0, . . . ,M}. Depending on the value of s(t), the stochastic
process c(t) acquires a different significance as follows:
• When the node is in transmission (i.e., s(t) = −1), c(t) ∈
{0, . . . , L−1} represents the state of packet transmission,
i.e., the number of slots spent thus far on the current
transmission. L is the packet size, measured in number
of slots and including the overhead introduced by the
PHY and MAC headers.

• When the node is in the ACK states (i.e., s(t) = −2),
c(t) = 0 represents the state used for switching the
transceiver from TX to RX. Since the packet length is

2The saturated case reflects a sensor network scenario in which an event
is detected by many nodes that want to transmit the gathered information at
the same time.

3Again, this is consistent with a scenario where multiple nodes report the
same event.
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TABLE I
MARKOV CHAIN STATES
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Fig. 2. Markov chain model for slotted CSMA/CA with retransmissions

rounded to a multiple of a slot, and since all operations
have to start at the boundary of a slot, a node spends
exactly one slot in waiting before the beginning of the
reception of an ACK. A node always goes through this
state, after a transmission, both in a successful and in
a collided attempt. We assume that the transceiver is in
idle mode during this slot. Otherwise, c(t) represents the
number of slots spent in waiting in vain for the ACK in a
collided attempt when c(t) ∈ {−2,−1}, and in receiving
the ACK in a successful attempt when c(t) ∈ {1, 2}. As
per the IEEE 802.15.4 standard, Lack = 2 slots.

• When the node is in backoff, c(t) ∈ {0, . . . ,Wi − 1}
represents the value of the backoff counter, where Wi =
2min{macMinBE+i,macMaxBE} is the size of the backoff win-
dow at backoff stage s(t) = i ∈ {0, . . . ,M}.

• Finally, when the node is performing one of the CCAs,
c(t) represents the value of the CCA counter, with
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Fig. 3. Markov Model for slotted CSMA/CA per single transmission attempt.

c(t) = 0 during CCA1 and c(t) = −1 during CCA2.
Note that the state {s(t), c(t)} = {i, 0}, has to be seen
as a CCA1 state and not as a backoff state as in the
formulation in [7]. In fact, although the randomly picked
backoff window size at stage i can take any value in the
set {0, . . . ,Wi − 1}, the value zero indicates no waiting
and immediate sensing.

Table I summarizes the values of s(t) and c(t) for the different
states of the Markov chain.

The parameter α in Fig. 3 is the probability of assessing
the channel busy during CCA1, and β is the probability of
assessing it busy during CCA2given that it was idle in CCA1.
As was mentioned earlier, in this per-node Markov chain
model, the effect of other nodes on the behavior of a given
node is captured only through the values of α and β and,
therefore, these two parameters play a key role. In all the
Markov chain models available in the literature, it is assumed
that the values of both α and β are the same for different
backoff stages. In reality, however, α and β depend on the
backoff stage in which the node is performing the sensing.
We discuss this assumption in more detail in Section IV and
refer to it as assumption A1.

B. Calculating the Markov Chain Parameters

Let bi,k be the steady-state probability of being in state
{i, k}, i.e., bi,k = limt→∞ P{s(t) = i, c(t) = k}. By
inspecting Fig. 3, these steady-state probabilities can be seen
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to relate through the following equations:

bi,k =
Wi − k
Wi

bi,0 0 ≤ i ≤M, 0 ≤ k ≤Wi − 1

bi,0 = (1− y)ib0,0 1 ≤ i ≤M
bi,−1 = (1− α)bi,0 0 ≤ i ≤M

b−1,k = y

M∑
j=0

bj,0 = yφ 0 ≤ k ≤ L− 1

b−2,k =

 pc◦yφ
yφ
(1− pc◦)yφ

−2 ≤ k ≤ −1
k = 0

1 ≤ k ≤ 2
(1)

where, for compactness, we have defined the access probability

y = (1− α)(1− β) (2)

and φ is the probability that a given node spends a randomly
picked slot performing CCA1,

φ =

M∑
j=0

bj,0 =
1− (1− y)M+1

y
b0,0, (3)

and pc◦ (derived in Section V-C) is the probability that the
transmission of a given node ends up in a collision, .

By taking into account the interactions between the N
nodes, expressions for α and β were derived in [7]. In short,
the probability α of finding the channel busy during CCA1is

α = [L+ Lack(1− pc∗)]
[
1− (1− φ)N−1

]
y (4)

where pc∗ (derived in Section V-C) is the probability that at a
random slot a collision takes place in the network.

In turn, β, the probability that the channel is busy when the
considered node does its second sensing, equals

β =

[
1− 2− pc∗

2− pc∗ + 1
1−(1−φ)N

]
(1− (1− φ)N−1)

+
1− pc∗

2− pc∗ + 1
1−(1−φ)N

. (5)

The values of φ, α and β can be determined by imposing the
normalizing condition ∑

i

∑
k

bi,k = 1 (6)

which, substituting bi,k from (1) and b0,0 from (3), leads to a
relationship that involves solely α, β, and φ. This relationship,
together with (4), and (5), constitute a system of equations
that is used in [7] to numerically obtain α, β and φ. Instead,
throughout this work, we obtain φ directly from simulation
and use it to compute α and β and validate the accuracy of
our formulation for calculating different network metrics.

As mentioned earlier, in [7] the states {s(t), c(t)} = {i, 0}
are considered as backoff states, and an additional set of
states are considered CCA1 states. Thus, in the normalizing
condition (6), the states bi,0—as per our notation—are counted
twice in [7], which affects the values of α, β, and φ obtained
from the aforementioned system of equations.

As can be seen in Fig. 4, (4) and (5) offer a relatively good
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Fig. 4. Comparison between the values of α and β obtained from (4) and
(5), and those obtained from simulation.

approximation to the simulated values of α and β, specially
for large network sizes.

C. Events Notation

Henceforth, we use the notation introduced in Table II to
refer to events that can take place in the network. Except in
the case of CF1 and CF2, the notation is in the general form of
CX where C stands for CCA1, and X represents the number
of nodes or the set of nodes involved. Replacing the C in this
notation with TX indicates the corresponding nodes being in a
transmission state, e.g., TX⊇i is the event that exactly i nodes
are in transmission.

TABLE II
EVENTS NOTATION

Notation Event Description

CF1 Channel Free in 1 slot

CF2 Channel Free in 2 consecutive slots

C⊇{i} At least node i in CCA1

C≥i At least i nodes in CCA1

C{i} Only node i in CCA1

Ci Exactly i nodes in CCA1

Ĉi Exactly i nodes including node 1 in CCA1

In the Ĉi notation and in general in the derivations hereafter,
node 1 will be used as the reference node. This will be
done only when the event under consideration is symmetric
with respect to all nodes and, therefore, there is no loss of
generality.

IV. DISCUSSION OF THE KEY ASSUMPTIONS

In Section V, we use the following simplifying assumptions
in order to calculate the network metrics from the Markov
chain model:
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A1. The probability to sense the channel busy during
CCA1 and CCA2 does not depend on the backoff
stage where the corresponding CCA is performed.

A2. The probability to sense the channel busy during
CCA1 and CCA2 does not depend on r, the number
of attempts the current packet has gone through. In
other words, α and β are constant for all transmission
attempts of a given packet and, therefore, the Markov
chains of different attempts are exactly the same.

A3. The probability of sensing the channel busy during a
CCA does not depend on the random backoff value
drawn in the backoff stage preceding the CCA;

A4. The probability φ that at a given time, a given node
starts sensing the channel is independent of what other
nodes in the network are doing at the same time;

A5. The probability of sensing the channel free in two
consecutive slots equals y = (1 − α)(1 − β) from
the per-node Markov chain. This assumption, which
is expressed more precisely in Section IV-B, is fairly
mild.

Assumptions A1-A3 are directly implied by the way we
have constructed the Markov chain. A1 allows us to use the
same α and β value for all backoff stages of the chain.
A2 basically implies that different transmission attempts on
a packet are i.i.d, which is what enables us to simplify the
Markov chain model from the one in Fig. 2 to the one in
Fig. 3. Assumptions A4 and A5 simplify our calculations in
Section V.

In all the Markov chain models of the IEEE 802.15.4
MAC proposed in the literature, wherever applicable, these
assumptions are also made. In most cases, however, they are
not explicitly stated as assumptions, but are rather considered
as given facts. For example, in [7], A4 is the only stated
assumption, even though the rest of the assumptions (except
for A2, which does not apply) are also made. Furthermore,
in all the works where retransmissions are modeled ( [6], [8],
[9], and [11]) it is always assumed that different attempts on
a packet are i.i.d, as in A2.

These assumptions greatly simplify the model and the
derivations, and often lead to relatively good results when
compared to simulation. However, as we will see in Section
VI, for certain network metrics (e.g., packet-discard probabil-
ity and throughput) the values of the metrics calculated using
these assumptions have noticeable differences compared to
their values from simulation, specially for small networks. This
is despite the fact that α and β match well their value from
simulation, as we saw in Fig. 4. To explain this behavior, in the
remainder of this section, we introduce some new parameters
that will only be used in Section VI and later.

A. Sensing probabilities for different backoff stages: αi, βi
Let αi and βi denote the probabilities of sensing the channel

busy during CCA1 and CCA2, respectively, for each backoff
stage i. As was mentioned earlier, in the Markov chain model
of Fig. 3, it was assumed that αi = α and βi = β for
all i ∈ {0 · · ·M} (A1). This greatly simplifies the analysis.
However, as seen in Fig. 5, α and β are in fact very dependent
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Fig. 5. Dependence of α and β on the backoff stage.

on the backoff stage. This difference is particularly noticeable
between the first backoff stage (i = 0) and the rest of the
backoff stages. This can be explained by observing that a
node in the first backoff stage on average draws a smaller
backoff value than other nodes that are competing with it.
Additionally, as explained in [13], even though the probability
of a node being in the first backoff stage is not small (a node
goes through the first backoff stage once per every attempt),
the joint probability of two nodes being in the first backoff
stage is very small. This means that a node in the first backoff
stage is given better opportunities than nodes in any other
stage. Thus, it is very likely for it to find the channel idle.
This explains why α0 and β0 are different from αi and βi for
i > 0.

Referring back to the α and β derived in Section III-B, they
can be viewed as unconditional versions of αi and βi, which
are conditioned on the backoff stage. As function of αi and
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βi, α can be expressed

1− α = Pr
{

CF1
∣∣C⊇{1}}

= Pr

{
CF1

∣∣∣∣∣
M⋃
i=0

{Node 1 in state (i, 0)}

}

=

∑M
i=0 Pr {CF1 |Node 1 in state (i, 0)} bi,0∑M

i=0 bi,0

=

∑M
i=0(1− αi)bi,0

φ
(7)

while, in turn, β can be expressed as

1− β = Pr {CF1 |Node 1 in CCA2 }

= Pr

{
CF1

∣∣∣∣∣
M⋃
i=0

{Node 1 in state (i,−1)}

}

=

∑M
i=0 Pr {CF1 |Node 1 in state (i,−1)} bi,−1∑M

i=0 bi,−1

=

∑M
i=0(1− βi)(1− αi)bi,0

(1− α)φ
(8)

From (8) we can directly obtain the following equality for
y = (1− α)(1− β):

y =
1

φ

M∑
i=0

(1− βi)(1− αi)bi,0 (9)

This means that, in Sections V and VI, whenever the metric
being calculated does not directly depend on the particular
backoff stage where the CCAs are performed, using α and
β will not amount to any inaccuracy. This is due to the fact
that, in these cases, αi and βi only appear through the form∑M
i=0(1 − βi)(1 − αi)bi,0, which, as per (9), can be directly

replaced with yφ without invoking A1. This is the main reason
why, as we will see, the only network metrics affected by A1
are average delay and average power consumption, where we
need to calculate the expected time spent in backoff and CCA.

B. Refining the access probability: y◦ and y∗
Let y◦ be the probability that a given node in CCA1senses

the channel free for two consecutive slots. In other words,

y◦ = Pr
{

CF2
∣∣C⊇{1}} . (10)

This probability is conditioned on the fact that at least node 1
is in CCA1, and therefore other nodes could be in any state,
including CCA1.

Note that y◦ is equivalent to y = (1 − α)(1 − β) as
defined in Section III, i.e., the probability that when a node
reaches a CCA1 state in its Markov chain, it finds the channel
free for two consecutive slots. Since this probability is only
conditioned on a given node being in CCA1, and there is
no conditioning on what the rest of the nodes are doing, by
definition we have y◦ = y.

We then define y∗ as

y∗ = Pr {CF2 |C≥1 } (11)

which is the probability that the channel is sensed free for two

consecutive slots, given that at least one node was in CCA1.
These probabilities, y◦ and y∗, have a subtle but important
difference. To see this, we define

y
(i)

= Pr {CF2 |Ci } (12)

which is the probability that the channel is free for two slots,
given that exactly i nodes are in CCA1. Then y◦ can be
calculated as

y◦ = Pr
{

CF2
∣∣C⊇{1}} = Pr

{
CF2

∣∣∣∣∣
N⋃
i=1

Ĉi

}

=

∑N
i=1 Pr{Ĉi}Pr{CF2|Ĉi}∑N

i=1 Pr{Ĉi}
(13)

=

∑N
i=1

(
N−1
i−1
)
φi(1− φ)N−iy

(i)∑N
i=1

(
N−1
i−1
)
φi(1− φ)N−i

. (14)

where (13) is due to disjointness of Ĉi, and (14) is reached
by replacing Pr{CF2|Ĉi} with y

(i)
. This can be done because

Pr{CF2|Ĉi} = Pr {CF2 |Ci } = y
(i)

. To see this, note that
Ci can be written as the union of events in the form of
C{j,k1···ki−1} with j = 1 · · ·N and kj ordered such that
j < k1 < · · · < ki−1. These events are symmetric and
disjoint with respect to the event CF2. Furthermore, Ĉi can
also be written as the union of the subset of the same events
with j = 1. Therefore, from the Lemma 1 in Appendix A,
Pr{CF2|Ĉi} = Pr

{
CF2

∣∣C{1,k1···ki−1}
}

= Pr {CF2 |Ci }.
In turn, y∗ is given by

y∗ = Pr {CF2 |C≥1 } = Pr

{
CF2

∣∣∣∣∣
N⋃
i=1

Ci

}

=

∑N
i=1 Pr {Ci}Pr {CF2 |Ci }∑N

i=1 Pr {Ci}
(15)

=

∑N
i=1

(
N
i

)
φi(1− φ)N−iy

(i)∑N
i=1

(
N
i

)
φi(1− φ)N−i

. (16)

where (15) is due to disjointness of Ci.
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Fig. 6. Comparison between different y values obtained from simulation.
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Fig. 6 contrasts the different y values introduced above, as
obtained from simulation.

We can now use this notation to express A5 more precisely
as stating that y◦ = y∗ = y

(1)
= y. All these quantities are

close (cf. Fig. 6), and that motivates A5, which is used in
Section V and in all the works reported from the literature. It
will be shown in Section VI that, indeed, A5 has negligible
impact on a number of network metrics, but it has a significant
effect on other metrics.

V. CALCULATING NETWORK METRICS USING THE
TRADITIONAL MARKOV CHAIN ASSUMPTIONS

In this section, we use the Markov chain model and As-
sumptions A1-A5 to calculate different network metrics as a
function of φ and y (or, equivalently, φ, α and β).

A. Throughput

We define the per-node throughput, S◦, as the fraction of
time that a node spends in successful transmission.4 Alter-
natively, the network throughput, S∗, is defined, as in [7],
as the fraction of time that the network spends in successful
transmission, i.e., the fraction of time in which exactly one
node is transmitting:

S∗ = NS◦ (17)
= Pr {at t : TX1}
= N Pr

{
at t : TX{1}

}
(18)

= NLPr
{

at t′ ∈ [t− 1− L, t− 2] : C{1} ∩ CF2
}

(19)

where (17) and (18) are due to symmetry, and (19) holds
because, if node 1 is transmitting at time t, it must have been
sensing the channel at some time t′ prior to t, and the channel
must have been free for two consecutive slots (t′ and t′+ 1).5

Using A5, (19) simplifies to [7]

S∗ = NLφ(1− φ)N−1y. (20)

Note that S∗ can equivalently be viewed as the network
success probability, i.e., the probability that at a random time,
a successful transmission is taking place in the network.

B. Transmission Probability

Let ptx◦ denote the probability that, at a random slot, a
particular node is transmitting. This probability is the same
for all nodes due to symmetry and can be written as

ptx◦ = Pr
{

TX⊇{1}
}

= LPr
{

C⊇{1} ∩ CF2
}
. (21)

Using A5,
ptx◦ = Lφy. (22)

Note that, given ptx◦ , one cannot directly obtain ptx∗ ,
the probability that one or more nodes in the network are

4To convert fraction of time into bits/s, the throughput must be multiplied
by 25×103, which is the number of bits per slot divided by the slot duration.

5Since the time can usually be deduced from the context, it is henceforth
dropped from the notation.

transmitting at a random slot. This is because ptx◦ does not
provide any information on the number of other nodes that
are transmitting at the same time as the considered one. The
network transmission probability, ptx∗ , can be calculated as

ptx∗ = Pr {TX≥1}
= LPr {C≥1 ∩ CF2} . (23)

Invoking A5 again [7]

ptx∗ = L
[
1− (1− φ)N

]
y. (24)

C. Collision Probability
The per-node collision probability, pc◦ , is defined as the

probability that at a time in which a given node, e.g., node 1,
is transmitting, one or more other nodes are also transmitting.
This can happen only if, when node 1 was performing the
CCA1 that led to the current transmission, another node was
also in CCA1. In other words,

pc◦ = Pr
{

TX≥2
∣∣TX⊇{1}

}
= Pr

{
C≥2

∣∣C⊇{1} ∩ CF2
}

(25)

Using A4, this simplifies to

pc◦ = Pr {at least one of N − 1 nodes sensing}
= 1− (1− φ)N−1 (26)

The network collision probability, pc∗ , is the probability that
at a time in which at least one node is transmitting, one or
more other nodes are also transmitting:

pc∗ = Pr {TX≥2 |TX≥1 }
= 1− Pr {TX1 |TX≥1 }

= 1− S∗
ptx∗

. (27)

Replacing S∗ from (20) and ptx∗ from (24), we obtain the
same expression as in [7], i.e.,

pc∗ = 1− Nφ(1− φ)N−1

1− (1− φ)N−1
. (28)

Since the time intervals that different nodes spend in col-
lision overlap, and the amount of overlap is not captured by
pc◦ , the relationship between pc◦ and pc∗ is not a trivial one.
This can be seen comparing (26) and (28).

D. Packet Discard Probability
The packet discard probability, pd, is the fraction of gener-

ated packets that are not transmitted with success.
To compute pd, let us first focus on what happens on an

individual transmission attempt. An attempt can end either in
channel access failure, in collision, or in successful transmis-
sion (cf. Sections II–III), to which hereafter we refer as FAIL,
COL, and SUC, respectively. The probabilities that an attempt
ends in FAIL, COL and SUC are respectively

pFAIL = (1− y)M+1 (29)
pCOL = pc◦(1− pFAIL) (30)
pSUC = (1− pc◦)(1− pFAIL). (31)
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A packet may require i transmission attempts, with 1 ≤ i ≤
R+ 1, to be successfully transmitted. A packet is discarded if
all the R+ 1 possible attempts end in COL or if one attempt
ends in FAIL. Thus,

pd = pdc + pdf (32)

where pdc and pdf are the probabilities that a packet is
discarded due to reaching the retransmission limit R or due
to FAIL, respectively. These probabilities are

pdc = Pr {A1, · · · , AR+1 : COL} (33)

= pR+1
COL

(34)

and

pdf =

R∑
i=0

Pr {A1, · · · , Ai : COL ∩ Ai+1 : FAIL} (35)

=

R∑
i=0

pFAILp
i
COL

(36)

= pFAIL

1− pR+1
COL

1− pCOL

where Ai indicates the ith attempt. Equalities (34) and (36)
are due to A2.

Finally, the packet discard probability is given by

pd = pR+1
COL

+ pFAIL

1− pR+1
COL

1− pCOL

(37)

It should be mentioned that pd is also calculated in [9].
However, to calculate pdf , [9] only takes into account the
potential failure at the first attempt. Furthermore, when cal-
culating pdc, [9] uses the probability that a given slot is spent
in collision in place of the probability that an attempt collides.
These result in an incorrect formulation for pd = pdc+pdf . In
[7], the packet discard probability pd is not computed, but the
failure probability is given as pFAIL = b0,0(1 − y)M+1. Since
an attempt always has to go through the state {0, 0}, the extra
term b0,0 results in an incorrect formulation for the probability
of an attempt ending in failure.

E. Power Consumption

At a given instant in time, depending on whether a node is
idle, receiving, or transmitting, it uses different power levels
denoted by Pid, Prx, and Ptx, respectively. Thus, the average
power consumption per node is given by

P̄ =
n̄

B
Pid + n̄

C
Prx + (1− pFAIL) [(Pid + 2Prx) + LPtx]

n̄
B

+ n̄
C

+ (3 + L)(1− pFAIL)
(38)

where n̄
B

and n̄
C

are the average number of slots spent per
attempt in backoff and CCA, respectively, and are derived in
Appendix B. The transceiver is idle when the node is either in
backoff or in the first ACK state. It is in reception mode when
the node is either performing CCA, or waiting for or receiving
an ACK, and it is in transmission mode only when the node is
transmitting a packet. The last term in the numerator accounts
for the energy spent in transmission and ACK reception, and,
therefore, it is multiplied by (1−pFAIL), the probability that an

attempt ends in transmission (and not a failure). Finally, the
denominator is the average number of slots spent per attempt.

F. Delay

The average delay for a successfully transmitted packet, i.e.
the number of slots it takes from the moment it reaches the
head of the line to the moment it arrives at its destination, is

D̄ = (n̄
Btx

+ n̄
Ctx

+ L+ 3)(r̄suc + 1)− 3 (39)

where n̄
Btx

and n̄
Ctx

are the mean number of slots spent
performing backoff and CCA, respectively, during an attempt
that ends in transmission. They are derived in Appendix B.
r̄suc is the average number of times a packet has to be
retransmitted until it is transmitted with success. For each
transmission attempt that ends in either COL or SUC, a node
spends L slots transmitting the packet and 3 slots waiting for
the ACK.

A packet has R + 1 possible transmission attempts, and
therefore it can be transmitted with success after colliding in
up to R attempts. Therefore, r̄suc can be computed as

r̄suc =

R∑
i=0

iPr {A1 · · ·Ai : COL ∩ Ai+1 : SUC |pkt SUC}

=

R∑
i=0

iPr {pkt SUC |A1 · · ·Ai : COL ∩ Ai+1 : SUC}

× Pr {A1 · · ·Ai : COL ∩ Ai+1 : SUC}
Pr {pkt SUC}

(40)

Since, if a packet is not discarded, it must have been transmit-
ted successfully, the probability that a packet is successfully
transmitted is

Pr {pkt SUC} = 1− pd = pSUC

1− pR+1
COL

1− pCOL

. (41)

Finally, based on A2,

r̄suc =

R∑
i=0

i
pSUCp

i
COL

1− pd

=
pSUC

1− pd
· pCOL

R∑
i=0

ipi−1
COL

=
1− pCOL

1− pR+1
COL

· pCOL ·
1− (R+ 1)pR

COL
+RpR+1

COL

(1− pCOL)2

= pCOL ·
1− (R+ 1)pR

COL
+RpR+1

COL

(1− pR+1
COL

)(1− pCOL)
. (42)

VI. BEYOND THE TRADITIONAL MARKOV CHAIN
ASSUMPTIONS

In the previous section, we derived the network metrics
using A1-A5 in Section IV. These assumptions enabled cal-
culating α and β as a function of φ. This is because pc∗ ,
calculated in this fashion as per (28), is only a function of φ,
which in turn means that β is also only a function of φ, from
which α can be directly calculated. These parameters can then
be used to calculate all the relevant network metrics. In this
section we see, through comparison with simulation results (cf.
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Appendix D), that, although the formulation obtained using
these assumptions gives a relatively good approximation for
certain metrics (e.g., power consumption and delay), there is
a larger discrepancy between analytical and simulation results
for some other metrics (e.g., transmission, collision, packet
discard probabilities, and throughput).

In what follows, we look at the metrics derived in the
previous section and single out the assumptions that have the
most impact on each one. We then calculate the same metrics,
without those assumptions, and see that the new formulation
offers more accurate results. However, in this case, only a
semi-analytical approach is possible since, in addition to φ,
one needs to obtain the parameters defined in Sections IV-A
and IV-B also from simulation as no explicit formulation is
derived for them.

A. Throughput

The network throughput, from (19), is given by

S∗ = NLPr
{

C{1} ∩ CF2
}

= NLPr
{

C{1}
}

Pr
{

CF2
∣∣C{1}}

= NLφ(1− φ)N−1y
(1)
. (43)

As before, S∗ = NS◦. Comparing (20) and (43), we see that
the difference between simulation and formula (cf. Fig. 7) is
only due to the use of different y values. Even though the
difference between y◦ and y

(1)
is relatively small, we see here

that it gives rise to a discrepancy of more than 10% in the
network throughput for small networks. Using the appropriate
y, i.e., y

(1)
, the discrepancy between simulation and formula

almost completely vanishes.

Notice that the per-node throughput drops rapidly with
the network size, which justifies focusing on relatively small
networks.
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Fig. 7. Comparison between simulation and formula for S∗ and S◦.

B. Transmission Probability

From (21),

ptx◦ = LPr
{

C⊇{1} ∩ CF2
}

= LPr
{

C⊇{1}
}

Pr
{

CF2
∣∣C⊇{1}}

= Lφy◦ = Lφy (44)

which means that the per-node transmission probability in
(22) was already characterized without the need for any of
the assumptions. This can also be seen in Fig. 8, where the
small difference between simulation and formula is due to the
approximations in calculating α and β which directly affect
y◦ = (1− α)(1− β).

However, for the network transmission probability, from
(23)

ptx∗ = LPr {C≥1 ∩ CF2}
= LPr {C≥1}Pr {CF2 |C≥1 }
= L

[
1− (1− φ)N

]
y∗. (45)

As evidenced in Fig. 8, using y◦ instead of y∗ in this case
results in a relatively large error in ptx∗ .
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C. Collision Probability

As can be seen in Fig. 9, one of the metrics most affected
by A1-A5 is the collision probability, both per-node and per-
network, and especially for small networks.

The per node collision probability, without using A1-A5,
can be calculated from (25) as

pc◦ = Pr
{

TX≥2
∣∣TX⊇{1}

}
= Pr

{
C≥2

∣∣C⊇{1} ∩ CF2
}

=
Pr
{

C≥2 ∩ C⊇{1} ∩ CF2
}

Pr
{

C⊇{1} ∩ CF2
} =

Pr
{

C≥2 ∩ C⊇{1} ∩ CF2
}

ptx◦/L

=
Pr
{

CF2 ∩
[
∪Ni=2(C⊇{1} ∩ Ci)

]}
φy◦

=
Pr
{

CF2 ∩
[
∪Ni=2Ĉi

]}
φy◦

. (46)
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Since the events Ĉi = C⊇{1} ∩ Ci are disjoint for different
values of i,

pc◦ =

∑N
i=2 Pr{CF2|Ĉi}Pr{Ĉi}

φy◦

=

∑N
i=2 y(i)

(
N−1
i−1
)
φi(1− φ)N−i

φy◦
(47)

=
φ
[
y◦ − y(1)

(1− φ)N−1
]

φy◦

= 1−
y
(1)

y◦
(1− φ)N−1 (48)

The network collision probability, from (27), is given by

pc∗ = 1− S∗
ptx∗

= 1−
NLφ(1− φ)N−1y

(1)

L [1− (1− φ)N ] y∗

= 1−
Nφ(1− φ)N−1y

(1)

[1− (1− φ)N ] y∗
. (49)

Note that, using A5, y
(1)

= y∗ = y and therefore y
(1)

and
y∗ would cancel out in (49). In Section V-C, this enabled
calculating pc∗ without needing α and β, and subsequently
calculating α and β in the ACK mode. However, this is no
longer possible without A5 because, to calculate pc∗ , we need
α and β, and vice versa.
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D. Packet Discard Probability

As can be seen in Fig. 10, pd as given in (37) exhibits
a large error of 78% for two-node network, which gradually
reduces to about 5% for a 9-node network. To interpret this
discrepancy, using (32), (33), and (35), we have

pd = Pr {A1 · · ·AR+1 : COL}

+

R∑
i=0

Pr {A1 · · ·Ai : COL ∩Ai+1 : FAIL} . (50)

In order to derive (37), we used A1 and A2. A1 affects the
value of pFAIL and turns out to be the one that contributes the
most to the difference between simulation and analytical result.

Without A1, the exact value of pFAIL is

pFAIL =

M∏
i=0

(1− yi) (51)

where yi = (1− αi)(1− βi).
As of pCOL , even though its value depends on the attempt

number, which means that A2 is not exactly true for pCOL itself,
it turns out that Pr {A1 · · ·Ai : COL} ' pi

COL
. Therefore, in

this section, we can continue to use A2 without any significant
impact on the results.

The value of pd can therefore be calculated using (37), but
with pFAIL obtained from (51).
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E. Power Consumption

The average power consumption formulation of (38), in
Section V-E, was derived without using A1-A5. However, as
can be seen in Fig. 11, there is a small difference between the
simulation and the analytical results. This is mainly due to
A1 used in computing pFAIL . The transmission and ACK states
are the states in which the most energy is spent, and they
are reached only when a transmission attempt does not end
in FAIL; thus, the probability that an attempt ends in FAIL,
pFAIL , has a key role in (38). As explained in Section VI-D, the
exact pFAIL is given by (51), where αi and βi are taken into
account.

In order to obtain the correct power consumption, the exact
pFAIL has to be replaced in all its occurrences in (38) including
in the n̄

B
and n̄

C
formulas, (57) and (61), whose values are

strongly affected by pFAIL . The power consumption resulted
from this replacement is also depicted in Fig. 11.

F. Delay

Similarly to the case of average power consumption, in (39)
we derived the average delay without using any assumptions.
However, we did use some of the assumptions in order to
compute the final formulation of the parameters involved (i.e.,
n̄

Btx
, n̄

Ctx
, and r̄suc). In detail, n̄

Btx
and n̄

Ctx
are affected

by A1, which turns out to be one of the main reasons of the
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Fig. 11. Average Power Consumption, P̄ , with the power level for different
operating modes given by Ptx = 80.7 mW, Prx = 80.1 mW, and Pid = 1.5
µW from CC2430 transceiver data sheet.

difference between simulation and analytical results for the
average delay. The exact n̄

Btx
is derived in Appendix C.

The small discrepancy between simulation and formula,
shown in Fig. 12, is also partly due to A2 used in calculating
r̄suc. To derive r̄suc in (42), we assumed that the probability of
the ith attempt ending in success, pSUC (i)

, or in collision, pCOL (i)
,

is the same as that for any other attempt, i.e., pSUC = pSUC (i)
,

and pCOL = pCOL (i)
, ∀ i, 1 ≤ i ≤ R + 1. It turns out that

these probabilities actually depend on the attempt number, i.
Mainly, the probability that the first attempt ends in SUC or
COL is different from that for any other attempt. Without A2,
the exact r̄suc is

r̄suc =

R∑
i=0

i
Pr {A1 · · ·Ai : COL ∩ Ai+1 : SUC}

Pr {pkt SUC}

=
1

1− pd

R∑
i=0

i pSUC (i+1)

i∏
j=1

pCOL (j)

=
1

1− pd

R∑
i=0

i pSUC (i+1)
× pCOL (1···i) (52)

where pCOL (1···i) is the probability that all the attempts from
the first to the ith end in collision.

VII. CONCLUSION

This paper has studied the behavior of key networking
metrics of IEEE 802.15.4 beacon-enabled nodes.

The assumptions that underlie the Markov chain analyses
available to date have been scrutinized and some deficiencies
have been pointed out. In particular, it has been shown that—
contrary to what is assumed in those analyses—the probability
of sensing the channel free can vary widely from one backoff
stage to another. Likewise, it has been shown that—again
contrary to prior assumptions—the probability of sensing the
channel free is not independent of the number of nodes that
are sensing the channel. The implications of these assumptions
have been discussed, and their impact on the characterization
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Fig. 12. Comparison between simulation and formula for D̄.

of the various networking metrics has been assessed. Circum-
venting these assumptions, accurate results are obtained at the
expense of a more computationally intensive approach (part
analytical, part simulation).

Besides examining the aforementioned assumptions, this
paper has also extended the model and the performance
evaluation to encompass retransmissions, and it has further
corrected imprecise uses of the Markov chain approach.

As a by-product of the work, a comprehensive event-driven
simulator has been assembled and made freely available to the
research community.
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APPENDIX

A. A Lemma on Conditional Probability

Lemma 1: If Bi are disjoint and symmetric, such that
Pr {A |Bi } = Pr {A |Bj }, and Pr {Bi} = Pr {Bj} , ∀ i, j ∈
{1 · · ·N}, then

Pr {A |∪Bi } = Pr {A |Bi } (53)

Proof:

Pr
{
A
∣∣∪Ni=1Bi

}
=

∑N
i=1 Pr {A |Bi }Pr {Bi}∑N

i=1 Pr {Bi}

=
N Pr {A |Bi }Pr {Bi}

N Pr {Bi}
= Pr {A |Bi }

B. Mean Number of Backoffs and CCAs Using the Markov
Chain Simplifying Assumptions

To calculate the average delay and the average power
consumption, we need to know how many slots on average
a node spends per attempt performing backoff and CCA.
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1) Mean Number of Backoffs: For an attempt to fail, it
needs to unsuccessfully go through all the M + 1 backoff
stages, whereas an attempt that ends in a transmission can
end after a successful sensing in any backoff stage. Based on
this,

n̄
Btx

=

M∑
i=0

(
i∑

k=0

Wk − 1

2

)
p

Si

1− pFAIL

(54)

where p
Si

is the probability that the first time two consecutive
CCAs are successful is in backoff stage i, given by

p
Si

= y(1− y)i, 0 ≤ i ≤M. (55)

In turn,

n̄
Bf

=

M∑
k=0

(
Wk − 1

2

)
p

SM

pFAIL

=

M∑
k=0

Wk − 1

2
(56)

Finally, the mean number of slots that a node spends per
attempt in backoff is

n̄
B

= n̄
Btx

(1− pFAIL) + n̄
Bf
pFAIL . (57)

2) Mean Number of CCAs: For an attempt to end in
transmission, a node needs to succeed in the access procedure
in some backoff stage. If the access procedure succeeds in
stage i, it means that it had two successful CCAs in that stage,
and at least one failed CCA in stages 0 to i−1. In other words,
it must have had k successful CCA1’s and failed CCA2’s, for
some k ≤ i, and i − k failed CCA1’s. This happens with
probability

pfi,k =

(
i

k

)
[(1− α)β]

k · αi−k. (58)

In this case, there will be a total of i + k CCAs performed
during the failed accesses plus an additional two successful
CCAs at stage i where the access procedure succeeds. Thus,
the mean number of CCAs before a successful access proce-
dure is given by

n̄
Ctx

= y

M∑
i=0

i∑
k=0

(i+ k + 2)
pfi,k

1− pFAIL

(59)

= 2 + [2(1− y)− α]

[
1

y
− (M + 1)

(1− y)M

1− pFAIL

]
.

In the case of an access procedure failure, there are M + 1
failed attempts and no successful consecutive CCAs. Thus, the
mean number of CCAs due to an access failure is

n̄
Cf

=

M+1∑
k=0

(M + 1 + k)
pfM+1,k

pFAIL

= (M + 1)

(
2− α

1− y

)
.

(60)
Finally, the mean number of CCAs per attempt is

n̄
C

= n̄
Ctx

(1− pFAIL) + n̄
Cf
pFAIL . (61)

C. Mean number of Backoffs and CCAs in Section VI

In this appendix, we discuss the effect of A1-A5 on the
mean number of backoff and CCAs. We do not depict the
simulation results due to space limitations. Similar results are
depicted in [13] for the no-ACK mode.

1) Mean Number of Backoffs: In Appendix B we used A1
to compute n̄

Btx
. Without invoking this assumption, the exact

n̄
Btx

is still given by (54), but p
Si

has to be calculated using

p
Si

=


y0, i = 0,

yi

i−1∏
k=0

(1− yk), 1 ≤ i ≤M (62)

where yi = (1 − αi)(1 − βi), and pFAIL has to be computed
according to (51).

The mean number of slots spent in backoff before an access
procedure failure, n̄

Bf
, given by (56), is not a function of

α and β and, therefore, it is valid independently of A1.
Moreover, n̄

Bf
is not a function of N because every discarded

packet goes through all the backoff stages and, hence, the
number of slots spent in backoff for a discarded packet only
depends on the random backoff value drawn at every backoff
stage. Under A3, for a given backoff stage i, an average of
(Wi − 1)/2 slots are spent in backoff before performing the
CCA. As it turns out, the value obtained from (56) is very
close but always slightly lower than the one obtained from
simulation. This is because α is not completely independent
of the random backoff value drawn. In fact, the packets that
end up being discarded are those that draw a larger backoff
value.

2) Mean Number of CCAs: For n̄
Ctx

, as for n̄
Btx

, there
is a difference (although smaller both in relative and absolute
terms) between simulation and formula. We conjecture that
this difference is also due to A1. However, we will not validate
this conjecture here because the calculation of n̄

Ctx
as a

function of αi and βi becomes so complex as to obscure any
possible insight and is not warranted given the very small
differences.

D. Event-Driven Network Simulator

In order to validate the analytical results, a large-scale
event-driven simulator has been implemented in Matlab. The
network is simulated under the same conditions of the ana-
lytical model, i.e., in the ACK mode, with retransmissions,
and disregarding the superframe structure. For the simulation,
no assumptions are made on the dependence of the nodes
or backoff stages and transmission attempts and, thus, the
simulation truly reflects the behavior of the network under
the aforementioned conditions, and not the behavior of the
Markov chain model.

For the MAC parameters, the default values defined by the
standard (i.e., macMinBE = 3, macMaxBE = 5, M = 4, and
R = 3) are used and the packet length is fixed for all nodes
to L = 7 slots. For illustrative purposes, when computing the
power consumption the parameter values specified for Chipcon
802.15.4-compliant RF transceiver CC2430 [14] are utilized.
The simulation results have been obtained over 108 slots.

The simulator can be downloaded from http://www.dtic.upf.
edu/∼alozano/software.
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